×
10.02.2013
216.012.2454

Результат интеллектуальной деятельности: СПОСОБ АДАПТАЦИИ РАБОЧЕЙ ЧАСТИ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ ДЛЯ ПОЛУЧЕНИЯ БЕЗЫНДУКЦИОННОГО ОБТЕКАНИЯ МОДЕЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Заявленная группа изобретений относится к области экспериментальной аэродинамики и может быть использована при проведении испытаний в трансзвуковых аэродинамических трубах. Предложен новый способ адаптации рабочей части аэродинамической трубы, содержащий новую технологию получения на границах рабочего потока составляющих скорости, соответствующих безграничному обтеканию испытываемой модели. Технология основана на применении наклонных отверстий, клапанов и поверхностей в стенке, позволяющих отбирать из потока и нагнетать в поток воздух из камеры давления навстречу действующему местному перепаду статических давлений, как это требуется на отдельных участках линий тока при безграничном обтекании. Предложено устройство для реализации нового способа адаптации. Технический результат - разработка способа и технических средств адаптации рабочей части аэродинамической трубы для получения безындукционного обтекания моделей летательных аппаратов. 2 н.п. ф-лы, 7 ил.

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при проведении испытаний в трансзвуковых аэродинамических трубах.

При создании аэродинамических труб (АДТ) остро стоит проблема влияния границ потока на точность эксперимента.

Ранее она решалась простым отодвиганием границ, т.е. увеличением размеров (диаметров) рабочей части, что существенно удорожало аэродинамический эксперимент.

Первым реальным и технически правильным способом решения этой проблемы явилось применение гибких стенок рабочей части, повторяющих линии тока набегающего и обтекающего модель потока воздуха. Этот способ впервые применен для труб малых скоростей в 1944 году, и он применяется также в настоящее время (см. Самокорректирующиеся трансзвуковые трубы. Обзор №634, 1984, ЦАГИ. Составители: Г.Н.Мачехина, А.С.Фонарев, стр.51-95). Настройки приграничных течений с помощью гибких стенок сложны и практически непригодны при моделировании трехмерных пространственных течений.

Особенно остро проблема влияния границ потока встала при создании АДТ с околозвуковыми скоростями. Ее частичным решением стало применение перфорированных рабочих частей (см. Сборник работ по взаимодействию сверхзвуковых потоков с перфорированными границами. БНИ ЦАГИ, 1961). Полупроницаемые стенки с одной камерой давления (КД) и перфорацией в виде круглых отверстий и щелей позволяют решить некоторые, но не все проблемы индукции (влияния границ потока). Главная трудность здесь заключается в том, что направление действия перепада давлений на перфорированной границе не всегда совпадает с необходимым для безындукционного обтекания модели направлением течения через нее.

Для согласования направления действительного течения газа через стенку с тем направлением, которое соответствует безграничному обтеканию, было предложено секционирование камеры давления (КД), окружающей перфорированную рабочую часть [Самокорректирующиеся трансзвуковые трубы. Обзор №634, 1984, ЦАГИ. Составители: Г.Н.Мачехина, А.С.Фонарев, стр.3-50].

Секционирование камеры давления было применено в способе адаптации рабочей части аэродинамической трубы, включающем обдув модели рабочим потоком, измерение параметров потока вблизи его границ, вычисление потребных для безграничного обтекания распределений параметров вблизи границ и их сравнение между собой. В случае несовпадения этих распределений производят перенастройку параметров потока вдоль стенок рабочей части, для чего в различных секциях камеры давления создают различное давление, регулированием которого меняют направление движения газа через отверстия отдельных секций перфорации. Этот способ адаптации взят нами за прототип. Однако технические трудности по созданию таких рабочих частей даже для плоского (двухмерного) случая оказались очень большими. Для пространственных течений, которые представляют наибольший практический интерес, трудности по созданию и управлению секциями возрастают на порядок, что и является, по-видимому, причиной отсутствия действующих адаптируемых рабочих частей для исследования трехмерных объектов.

Рассмотрим причины, не позволяющие получить безындукционное обтекание модели в обычной перфорированной рабочей части с одной окружающей ее камерой давления. На фиг.1 приведено (из упомянутого Обзора №634, 1984, ЦАГИ. Составители: Г.Н.Мачехина, А.С.Фонарев, стр.7) распределение статического давления и вертикальной составляющей скорости вдоль плоскости, расположенной на расстоянии трех хорд у=3с от обтекаемого профиля. Профиль имеет чечевицеобразную форму, толщину 6% и располагается в невозмущенном потоке с числом Маха М=0,91 на участке х/с=-0,5 и х/с=0,5 (т.е. его центр находится в начале координат, длина хорды равна 1). Из фиг.1 видно, что распределение давления дважды проходит через линию, где меняется направление действия перепада давления (P1/P=1 и ΔP1/P=0), a вертикальная составляющая скорости V/U лишь в одной точке проходит через нуль и соответственно также меняет свой знак. Если теперь представить на рассматриваемой линии у=3c=const проницаемую границу рабочей части аэродинамической трубы, то требования к этой границе будут очень сильно отличаться на различных ее участках:

1. На участке АВ (фиг.1) со стороны рабочей части статическое давление на стенке больше, чем в невозмущенном потоке и, соответственно, в камере давления ΔР1>0. Вертикальная составляющая скорости направлена также в камеру давления V/U>0. Оба параметра имеют один знак и требуемая вертикальная составляющая скорости может быть получена на перфорированной стенке с обычными отверстиями. Величина этой составляющей определяется только коэффициентом проницаемости, который должен быть лишь правильно подобран.

2. На участке ВС (фиг.1) статическое давление на стенке со стороны рабочего потока уже меньше статического давления в камере давления, а вертикальная составляющая скорости по-прежнему должна быть направлена в камеру давления V/U. Параметры имеют разные знаки. На этом участке обычная перфорация не может обеспечить условий безындукционного обтекания в силу разного знака у скорости газа в отверстии и перепада статических давлений на нем.

3. На участке СД (фиг.1) перепад давлений на перфорированной стенке направлен, как и на предыдущем участке ВС, из камеры давления в рабочий поток ΔP1/P<0 и вертикальная составляющая скорости потока также направлена внутрь рабочей части (V/U<0). Оба параметра имеют один знак и все проблемы согласования расхода и перепада могут быть решены с помощью надлежащего выбора коэффициента проницаемости обычной перфорации.

4. На участке ДЕ (фиг.1) давление внутри рабочей части снова выше, чем в камере давления ΔP1/P>0, но при этом вертикальная составляющая скорости должна быть отрицательной V/U<0, т.е. газ должен втекать в рабочую часть. Параметры имеют разные знаки, и обычная перфорация не может обеспечить такого режима на границе потока.

Задача настоящего изобретения и технический результат заключаются в разработке способа и технических средств адаптации рабочей части аэродинамической трубы для получения безындукционного обтекания моделей летательных аппаратов.

Решение задачи и технический результат достигаются тем, что в способе адаптации рабочей части аэродинамической трубы, включающем обдув модели рабочим потоком, измерение параметров потока вблизи его границ, вычисление потребных для безграничного обтекания распределений параметров вблизи границ, их сравнение между собой и, в случае несовпадения этих распределений, перенастройку параметров потока вдоль стенок рабочей части, отбирают часть рабочего потока в камеру давления с помощью отверстий в стенке с клапанами, которые отклоняют навстречу потоку и далее эжектируют эту часть в основной поток с помощью отверстий с клапанами, которые отклоняют в противоположную сторону. Принудительный отбор воздуха из рабочей части и эжектирование воздуха в рабочую часть производятся за счет скоростного напора рабочего потока.

Решение задачи и технический результат достигается также тем, что в конструкции адаптируемой рабочей части аэродинамической трубы, включающей камеру давления и проницаемые стенки, последние снабжены отверстиями и щелями со специальными клапанами, отклоняемыми на углы α±45° для принудительного отбора воздуха из рабочей части и эжектирования воздуха в рабочую часть за счет скоростного напора рабочего потока.

На фиг.1 приведены распределения статического давления и значения вертикальной составляющей скорости на уровне стенки рабочей части при безграничном обтекании.

На фиг.2 приведена схема полной процедуры адаптации рабочей части с регулированием скоростей возмущенного моделью течения на контрольной поверхности по предлагаемому способу.

На фиг.3 приведена схема отверстия с клапаном, выступающим в поток и наклоненным против потока.

На фиг.4 приведена схема отверстия с клапаном, выступающим в поток и наклоненным по потоку.

На фиг.5 приведены экспериментальные зависимости вертикальной составляющей скорости вблизи стенки рабочей части от перепада давлений на ней для клапанов, приведенных на фиг.3 и 4.

На фиг.6 и 7 приведены еще два варианта клапанов со схемами течения воздуха в предлагаемом устройстве.

Предложенный способ адаптации границ потока в трансзвуковой аэродинамической трубе реализуется по процедуре, полностью приведенной на фиг.2. Процедура адаптации начинается с вывода АДТ на рабочий режим и установки испытываемой модели на необходимый угол атаки. В этом положении производят измерения структуры (параметров) потока в рабочей части вблизи границ. Затем производят расчет этих же параметров по основным уравнениям аэромеханики в предположении безграничного обтекания модели. Эти распределения сравнивают между собой и, если распределения не совпадают, то ищут поправки в геометрию граничной стенки. После внесения этих поправок снова производят измерения параметров потока и расчеты при безграничном обтекании. Процедуру продолжают до совпадения этих распределений с заданной точностью, для чего может потребоваться 5-7 итераций.

Отличие данного предложения от аналогов и прототипа заключается в радикальном изменении технологии настройки составляющих возмущенной скорости потока на границах рабочей части. Для перенастройки параметров вдоль стенок рабочей части отбирают часть рабочего потока в камеру давления с помощью отверстий в стенке рабочей части трубы с клапанами, которые отклоняют навстречу потоку и далее эжектируют ее (часть) в основной поток с помощью отверстий с клапанами, которые отклоняют в противоположную сторону. Для создания потоков газа через отверстия стенки рабочей части, имеющих направление, обратное действующему местному перепаду давления, в предлагаемом способе используется скоростной напор основного сносящего потока.

В предлагаемом способе адаптации перфорированной границы аэродинамической трубы используют только одну камеру давления, но реализуют получение любых распределений вертикальной составляющей скорости независимо от направления местного действующего на стенку перепада давлений, как и в многосекционной камере давления.

Для реализации предлагаемого способа адаптации проницаемой границы аэродинамической трубы предлагается новая конструкция стенок рабочей части. Она должна включать клапаны с наклонными поверхностями, например по схемам на фиг.3 и 4. Ниже в подтверждение наших предложений приводятся результаты экспериментальной проверки. На фиг.3 и 4 приведены схемы отверстий с клапанами, выступающими в поток и наклоненными против потока и по потоку, где 1 - отверстие, 2 - рабочая поверхность клапана. Отверстие с клапаном фиг.3 отбирает часть основного потока даже при значительных обратных перепадах давления, что и требуется на участке ВС (фиг.1). При обратном наклоне рабочей поверхности клапана, выступающего в поток (фиг.4), основное течение будет эжектировать газ из камеры давления даже при некотором обратном перепаде давления, что и требуется на участке ДЕ перфорированной границы (фиг.1).

На фиг.6 и 7 приведены еще две конструктивные схемы клапанов, регулирующих расход и направление движения газа, также пригодных для адаптации границ потока в трансзвуковой аэродинамической трубе. Клапаны 2 могут перемещаться перпендикулярно потоку и поворачиваться на углы α от 0 до ±45° (фиг.6а). Для отбора части рабочего потока в камеру давления поверхности в отверстиях стенки выдвигают навстречу потоку (фиг.6б и 7б). В случае необходимости эжектирования ее из камеры давления в основной поток отверстия и поверхности в стенке наклоняют и выдвигают в противоположную сторону (фиг.6в и 7в). Клапаны могут применяться как в отверстиях, так и в продольных щелях. На фиг.6 диаметр клапана 2 практически равен диаметру отверстия 1 и работает это устройство только выдвижением наклонных поверхностей в поток. На фиг.7 диаметр клапана значительно меньше диаметра отверстия и он работает не только при выдвижении (отклонении) рабочих поверхностей в поток, но и как обычная перфорация. Управляющие приводы клапанов на фиг.6 и 7 для простоты опущены.

На фиг.5 представлены экспериментальные расходные характеристики испытанных клапанов - зависимости нормальной к стенке составляющей скорости V/U от относительного перепада давления на стенках ΔР/ρu2 (для случая звуковой скорости сносящего потока Мрч=1). Кривые 1 и 2 получены при положении (ориентации) клапана навстречу потоку, кривые 3, 4 и 5 при повороте рабочей поверхности клапана на 180° и ее ориентации по потоку. Кривые 2 и 3 сняты при наклоне рабочей поверхности клапана относительно направления потока на 5° (выступание в поток на 2 мм), кривые 1 и 4 при отклонении стенки на 10°, кривая 5 - при отклонении соответственно на 15°. Здесь же линией 6 изображена типичная характеристика стенки с обычным отверстием (например, в виде поперечной щели с относительной площадью 5%).

Из фиг.5 следует, что характеристики предлагаемых клапанов качественно отличаются от характеристик обычных перфорированных стенок. Если последние имеют вид кривых, проходящих через начало координат и расположенных в 1-ом и 3-ем квадрантах (линия 6), то у предлагаемых клапанов значительная часть характеристики расположена либо во втором, либо в четвертом квадранте. Это говорит о том, что расход газа через клапан и перепад на нем имеют разные знаки. При ориентации клапана навстречу потоку (кривые 1 и 2) при нулевом перепаде на стенке (ΔP/ρu2=0) через стенку имеет место значительный положительный расход газа (V/U=0,015 для угла отклонения клапана 5° и V/U=0,03 для угла 10°). Нулевой расход газа через стенку (V/U=0) достигается в этом случае при значительном обратном перепаде давления (ΔР/ρu2=-0,15 и -0,22 соответственно).

При ориентации рабочей поверхности клапана в направлении по потоку при нулевом и даже положительном перепаде давления ΔP/ρu2≥0 газ втекает из камеры в поток со значительной отрицательной нормальной к стенке составляющей скорости. Так, при ΔP/ρu2=0 и угле наклона рабочей поверхности 5° вертикальная составляющая скорости равна - 0,005 (0,5%), при угле 10° - (-0,01) и при угле 15° - (0,018). Газ перестает эжектироваться из камеры давления в рабочую часть при положительных перепадах на стенке ΔP/ρu2=0,05; 0,08 и 0,13 соответственно при наклонах рабочей поверхности клапана 5°, 10° и 15°.

Данные фиг.5 показывают, что предлагаемые клапаны, площадь которых составляет менее 25% от полной площади изучаемого участка перфорации, легко позволяют получить требуемые вертикальные составляющие скорости V/U≈±1% при любых перепадах давления на стенке, в том числе ΔР/Р1≈±0,02 (фиг.4), как то необходимо из графика фиг.1. Для этого достаточно изменить угол наклона рабочей поверхности клапана к стенке трубы в диапазоне ±10°÷15°, а возможно, и значительно меньшем диапазоне (от+5° до -10°). Выступание клапана в поток при этом составляет 2÷4 мм и не превышает толщины пограничного слоя.

В целом эти эксперименты подтверждают реальность и работоспособность предлагаемых способа и устройства.

Физической основой предлагаемого процесса адаптации является использование энергии и скоростного напора основного течения в рабочей части аэродинамической трубы для управления его границами.


СПОСОБ АДАПТАЦИИ РАБОЧЕЙ ЧАСТИ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ ДЛЯ ПОЛУЧЕНИЯ БЕЗЫНДУКЦИОННОГО ОБТЕКАНИЯ МОДЕЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ АДАПТАЦИИ РАБОЧЕЙ ЧАСТИ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ ДЛЯ ПОЛУЧЕНИЯ БЕЗЫНДУКЦИОННОГО ОБТЕКАНИЯ МОДЕЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ АДАПТАЦИИ РАБОЧЕЙ ЧАСТИ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ ДЛЯ ПОЛУЧЕНИЯ БЕЗЫНДУКЦИОННОГО ОБТЕКАНИЯ МОДЕЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ АДАПТАЦИИ РАБОЧЕЙ ЧАСТИ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ ДЛЯ ПОЛУЧЕНИЯ БЕЗЫНДУКЦИОННОГО ОБТЕКАНИЯ МОДЕЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ АДАПТАЦИИ РАБОЧЕЙ ЧАСТИ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ ДЛЯ ПОЛУЧЕНИЯ БЕЗЫНДУКЦИОННОГО ОБТЕКАНИЯ МОДЕЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ АДАПТАЦИИ РАБОЧЕЙ ЧАСТИ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ ДЛЯ ПОЛУЧЕНИЯ БЕЗЫНДУКЦИОННОГО ОБТЕКАНИЯ МОДЕЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ АДАПТАЦИИ РАБОЧЕЙ ЧАСТИ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ ДЛЯ ПОЛУЧЕНИЯ БЕЗЫНДУКЦИОННОГО ОБТЕКАНИЯ МОДЕЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 71-80 из 502.
20.11.2013
№216.012.825c

Рекомбинантная плазмида, рекомбинантный штамм, рекомбинантный белок вмр-2 и способ выделения рекомбинантного белка в димерной форме

Изобретение относится к биотехнологии и представляет собой рекомбинантную плазмиду BMPRIA-CBD, штамм E.coli, трансформированный данной плазмидой. Изобретение относится также к рекомбинантному белку BMPRIA-CBD, с использованием которого получают белок BMP-2. Изобретение позволяет получить...
Тип: Изобретение
Номер охранного документа: 0002499048
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.82ed

Сверхзвуковой плазмохимический стабилизатор горения

Изобретение относится к области авиационной техники. Сверхзвуковой плазмохимический стабилизатор горения для прямоточной камеры сгорания состоит из установленных в проточной части камеры сгорания двух последовательно расположенных по потоку электродов, выполненных в виде обтекаемых пилонов с...
Тип: Изобретение
Номер охранного документа: 0002499193
Дата охранного документа: 20.11.2013
10.12.2013
№216.012.8808

Способ изготовления аэродинамических поверхностей лопаток роторов газотурбинных двигателей на станках с чпу

Изобретение относится к машиностроению и может быть использовано при обработке профиля пера рабочих лопаток газотурбинных двигателей. Способ основан на выборе безопасной частоты вращения шпинделя, обеспечивающей исключение резонанса между частотами колебаний фрезы, воздействующих на...
Тип: Изобретение
Номер охранного документа: 0002500506
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8812

Способ снижения вибраций нежесткой заготовки, обрабатываемой фрезерованием

Изобретение относится к машиностроению и может быть использовано при обработке нежестких заготовок при фрезеровании. Способ включает прикрепление к вибрирующей нежесткой заготовке динамического виброгасителя, который состоит из набора механических резонаторов с различными значениями собственной...
Тип: Изобретение
Номер охранного документа: 0002500516
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.88d0

Способ диспергирования наночастиц в эпоксидной смоле

Изобретение относится к области нанотехнологии и может применяться в отраслях машиностроения, транспорта, строительства, энергетики для повышения прочности и ресурса конструкций из металлических, композиционных полимерных и металлополимерных материалов. Способ диспергирования заключается в...
Тип: Изобретение
Номер охранного документа: 0002500706
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.89f1

Разборная упругоподобная аэродинамическая модель и способ ее изготовления

Изобретение относится к области экспериментальной аэродинамики, в частности к исследованию проблем аэроупругости летательных аппаратов в области авиационной техники, а именно к разработке моделей для аэродинамических труб. Модель содержит силовой сердечник и крышку, представляющие в сборе...
Тип: Изобретение
Номер охранного документа: 0002500995
Дата охранного документа: 10.12.2013
20.12.2013
№216.012.8c86

Двухслойная, стойкая к динамическому воздействию, листовая сталь высокой прочности и способ ее производства

Изобретение относится к области производства материалов для броневых изделий и конструкций, подвергающихся воздействию динамических нагрузок. Способ производства листовой стали включает сварку взрывом тыльного и лицевого слоев стали. Затем осуществляют отпуск двухслойного листа при температуре...
Тип: Изобретение
Номер охранного документа: 0002501657
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8e1b

Способ испытания железобетонных шпал и стенд для его реализации

Изобретение относится к области машиностроения и может быть использовано, в частности, при аттестации, сертификации и исследовании продукции заводов, выпускающих шпалы. Сущность: максимальную нормированную нагрузку на шпалу задают отдельно в ее наиболее нагруженных сечениях. Проводят испытания...
Тип: Изобретение
Номер охранного документа: 0002502062
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.9030

Многослойный материал для спасательных средств

Изобретение относится к многослойным материалам, предназначенным для изготовления элементов спасательных средств в авиации, в частности для изготовления дорожек скольжения спасательных трапов и касается многослойного материала для спасательных средств, который включает текстильную основу из...
Тип: Изобретение
Номер охранного документа: 0002502605
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.904e

Механизированное крыло летательного аппарата

Изобретение относится к авиационной технике. Механизированное крыло летательного аппарата состоит из кессонной части крыла, внутренней и внешней секций однощелевых закрылков, внутренней и внешних секций однощелевых предкрылков, элерона, интерцепторов, воздушных тормозов, мотогондолы с пилоном,...
Тип: Изобретение
Номер охранного документа: 0002502635
Дата охранного документа: 27.12.2013
Показаны записи 71-80 из 321.
20.10.2013
№216.012.757e

Гибкая автоматизированная система базирования

Изобретение относится к приспособлениям для крепления-зажима деталей, более конкретно к способам и устройствам для базирования сложнопрофильных нежестких деталей на многокоординатных станках, которое может быть использовано в авиакосмической и других отраслях промышленности. Технический...
Тип: Изобретение
Номер охранного документа: 0002495738
Дата охранного документа: 20.10.2013
20.10.2013
№216.012.7584

Устройство для изготовления длинномерной панели с ребрами жесткости из полимерного композиционного материала

Изобретение относится к изготовлению панелей из полимерного композиционного материала пропиткой под давлением преформы панели и может быть использовано в аэрокосмической промышленности, в частности для изготовления деталей оперения самолета, где применяются панели, подкрепленные ребрами, а...
Тип: Изобретение
Номер охранного документа: 0002495744
Дата охранного документа: 20.10.2013
20.10.2013
№216.012.75ae

Стыковочное соединение панелей из полимерного композиционного материала

Изобретение относится к области изготовления конструкций, содержащих стыковочные соединения панелей из полимерного композиционного материала (ПКМ), и касается стыковки габаритных деталей самолета из ПКМ (кессонов крыла, стабилизаторов). Стыковочное соединение панелей из ПКМ содержит две...
Тип: Изобретение
Номер охранного документа: 0002495786
Дата охранного документа: 20.10.2013
20.10.2013
№216.012.75af

Законцовка крыла летательного аппарата

Изобретение относится к авиационной технике. Законцовка крыла летательного аппарата имеет корневой профиль, который выполнен с S-образной средней линией и участком отрицательной вогнутости длиной 20-70% хорды. Изломный и концевой профили законцовки выполнены с положительной вогнутостью....
Тип: Изобретение
Номер охранного документа: 0002495787
Дата охранного документа: 20.10.2013
27.10.2013
№216.012.7b84

Способ оценки электромагнитной совместимости бортового оборудования в составе летательного аппарата в диапазоне частот от 10 кгц до 400 мгц

Изобретение относится к области испытаний электромагнитной совместимости (ЭМС) бортового радиоэлектронного и электронного оборудования в составе летательных аппаратов (ЛА) и может быть использовано при проведении испытаний по оценке влияния на испытываемое бортовое оборудование (БО) радиопомех...
Тип: Изобретение
Номер охранного документа: 0002497282
Дата охранного документа: 27.10.2013
10.11.2013
№216.012.7cdc

Режущий инструмент

Изобретение относится к машиностроению и может быть использовано в режущих инструментах с механическим креплением режущих пластин. Инструмент содержит корпус, в гнезде которого установлена режущая пластина, закрепляемая с помощью Г-образного прихвата с цилиндрической направляющей частью,...
Тип: Изобретение
Номер охранного документа: 0002497637
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7ebd

Прецизионный комплектный цифровой линейный гидропривод

Изобретение относится к области машиностроения, в частности к программируемым гидроприводам механообрабатывающего оборудования с числовым программным управлением. Гидропривод содержит одноштоковый силовой гидроцилиндр с позиционным датчиком обратной связи, гидрораспределитель с пропорциональным...
Тип: Изобретение
Номер охранного документа: 0002498118
Дата охранного документа: 10.11.2013
20.11.2013
№216.012.825b

Рекомбинантная плазмида, рекомбинантный штамм, рекомбинантный белок вмр-7 и способ выделения рекомбинантного белка в димерной форме

Изобретение относится к биотехнологии и представляет собой рекомбинантную плазмиду BMPRIB-CBD, штамм E.coli, трансформированный данной плазмидой. Изобретение относится также к рекомбинантному белку BMPRIB-CBD, с использованием которого получают белок BMP-7. Изобретение позволяет получить...
Тип: Изобретение
Номер охранного документа: 0002499047
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.825c

Рекомбинантная плазмида, рекомбинантный штамм, рекомбинантный белок вмр-2 и способ выделения рекомбинантного белка в димерной форме

Изобретение относится к биотехнологии и представляет собой рекомбинантную плазмиду BMPRIA-CBD, штамм E.coli, трансформированный данной плазмидой. Изобретение относится также к рекомбинантному белку BMPRIA-CBD, с использованием которого получают белок BMP-2. Изобретение позволяет получить...
Тип: Изобретение
Номер охранного документа: 0002499048
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.82ed

Сверхзвуковой плазмохимический стабилизатор горения

Изобретение относится к области авиационной техники. Сверхзвуковой плазмохимический стабилизатор горения для прямоточной камеры сгорания состоит из установленных в проточной части камеры сгорания двух последовательно расположенных по потоку электродов, выполненных в виде обтекаемых пилонов с...
Тип: Изобретение
Номер охранного документа: 0002499193
Дата охранного документа: 20.11.2013
+ добавить свой РИД