×
10.02.2013
216.012.23de

Результат интеллектуальной деятельности: СИСТЕМА ДЛЯ КОНТРОЛЯ ИСКРИВЛЕНИЯ СТВОЛА ВЕРТИКАЛЬНОЙ СКВАЖИНЫ

Вид РИД

Изобретение

№ охранного документа
0002474684
Дата охранного документа
10.02.2013
Аннотация: Изобретение относится к нефтегазодобывающей отрасли и может быть использовано для контроля целостности скважин, в частности осуществления контроля искривления ствола скважины. Система для контроля искривления ствола скважины содержит обратимый акустический преобразователь с равномерной характеристикой направленности, закрепленный на каротажном кабеле, спускоподъемное устройство с датчиком глубины и последовательно соединенные вторичную аппаратуру и регистрирующее устройство. Обратимый акустический преобразователь работает в режиме последовательности зондирующих импульсов. При этом регистрирующее устройство выполнено в виде компьютера, три входа которого соединены с выходами детектора, ослабителя импульсов и датчика глубины спускоподъемного устройства. В указанном компьютере рассчитывают уширение отраженного акустического радиоимпульса относительно зондирующего импульса, по которому определяют величину прогиба ствола скважины. Предложенное устройство обеспечивает бесконтактное проведение измерений в скважине. 2 з.п. ф-лы, 3 ил.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для контроля целостности скважин.

Известна система для контроля искривления ствола вертикальной скважины, реализующая способ того же назначения, принятая за прототип, содержащая закрепленный на каротажном кабеле датчик прогиба ствола скважины (ДПСС) и спускоподъемное устройство (СПУ) с датчиком глубины, а также последовательно соединенные вторичную аппаратуру и регистрирующее устройство, подключенные к выходу датчика ДПСС.

/Патент РФ №2055178, кл. E21B 47/00, 1996/.

Хотя в прототипе отсутствуют СПУ, вторичная аппаратура, например, в виде усилителя и регистрирующее устройство, но косвенно их наличие вытекает из описания работы системы.

В прототипе в качестве скважинного прибора, вертикально спускаемого в насосно-компрессорную трубу, используют датчики прогиба, выполненные в виде выдвижных элементов, расположенных попарно в двух взаимно перпендикулярных плоскостях, проходящих через ось корпуса прибора.

Недостатком прототипа является контактный характер проводимых измерений, что снижает надежность исследований ствола скважины из-за возможной поломки скважинного прибора.

Техническим результатом, получаемым от внедрения изобретения, является обеспечение бесконтактных измерений, проводимых в скважине с помощью спускаемого в нее скважинного прибора.

Данный технический результат достигается за счет того, что в известной системе для контроля искривления ствола вертикальной скважины, содержащей закрепленный на каротажном кабеле датчик прогиба ствола скважины и спускоподъемное устройство с датчиком глубины, а также последовательно соединенные вторичную аппаратуру и регистрирующее устройство, подключенные к выходу датчика прогиба, датчик прогиба ствола скважины выполнен в виде обратимого акустического преобразователя с равномерной характеристикой направленности, работающего в режиме последовательности зондирующих импульсов, а регистрирующее устройство выполнено в виде регистратора ширины импульсов.

Вторичная аппаратура выполнена в виде акустических передающего и приемного трактов, подключенных через реле приема-передачи акустических импульсов к акустическому преобразователю.

Акустический передающий тракт выполнен в виде формирователя импульсов, генератора звуковой частоты, модулятора и усилителя мощности, при этом выход генератора звуковой частоты подсоединен к основному входу модулятора, управляемый вход которого подключен к выходу формирователя импульсов, а выход - к входу усилителя мощности, выход которого соединен с входом реле приема-передачи, управляемый вход последнего подключен к выходу формирователя импульсов, а акустический приемный тракт выполнен в виде усилителя-ограничителя, детектора и ослабителя импульсов, при этом выход формирователя импульсов передающего тракта соединен с входом ослабителя импульсов приемного тракта, выход реле приема-передачи подключен через усилитель-ограничитель к входу детектора, причем регистрирующее устройство выполнено в виде компьютера, три входа которого соединены с входами детектора, ослабителя импульсов и датчика глубины спускоподъемного устройства.

Изобретение поясняется чертежами.

На фиг.1 представлена схема системы и ее принцип работы в различных сечениях ствола скважины; на фиг.2, 3 - временные диаграммы для пояснения работы системы.

Система содержит (фиг.1) обратимый акустический преобразователь (АП1) с равномерной характеристикой направленности (ХН), работающий в режиме излучения и приема последовательности акустических импульсов.

АП1, например, пьезоэлектрического типа закреплен на каротажном кабеле 2, кинематически связанном со спускоподъемным устройством 3 (СПУ3).

СПУ3 обеспечивает спуск (подъем) АП1 на каротажном кабеле 2 вертикально вниз (вверх) по оси бурильной трубы или НКТ4, которой снабжен стол скважины.

СПУ3 снабжено датчиком 5 глубины, на которую спускается АП1.

Скважинный прибор включает в себя реле 6 приема-передачи, передающий тракт 7 и приемный тракт 8.

Передающий тракт 7 содержит генератор 9 звуковой (или ультразвуковой) частоты; формирователь 10 импульса; модулятор 11 и усилитель 12 мощности.

Приемный тракт 8 содержит усилитель-ограничитель 13; детектор 14; ослабитель 15 и компьютер 16, который в формуле изобретения представлен как регистрирующее устройство.

Электрические связи между блоками передающего и приемного трактов 7, 8 представлены на фиг.1.

Генератор 9 звуковой частоты и формирователь 10 импульсов связаны соответственно с основным и модулирующим входами модулятора 11, выход которого через усилитель 12 мощности подключен к первому контакту реле 6 приема-передачи. Второй контакт реле 6 приема-передачи соединен с усилителем-ограничителем 13, а управляемый третий контакт реле 6 приема-передачи подключен через каротажный кабель 2 к АП1. Кроме того, выход формирователя 10 импульсов связан с управляющим входом реле 6 приема-передачи.

Выход усилителя-ограничителя 13 через детектор 14 соединен с первым входом компьютера 16, второй и третий входы которого соединены с выходами датчика 5 глубины и ослабителя 15 импульсов.

Система работает следующим образом.

Генератор 9 звуковой частоты формирует непрерывный гармонический сигнал звуковой или ультразвуковой частоты, например 100 КГц, а формирователь 10 - видеоимпульс, например, длительностью 100 мкс прямоугольной или колоколообразной (гауссовой) формы (фиг.2 слева и справа).

При смешении этих сигналов в модуляторе 11 формируется акустический радиоимпульс с частотой заполнения, равной в данном случае 10.

Сформированный акустический радиоимпульс усиливается в усилителе 12 мощности и затем направляется на первый вход реле 6 приема-передачи, работа которого управляется от формирователя 10 импульсов.

В реальных условиях при длительности акустических радиоимпульсов в 10-4 с скважность последовательности радиоимпульсов целесообразно задавать равной 10.

Оптимальные временные параметры импульсов и режимы проводимых экспериментов зависят от геометрических размеров скважины и используемых в них бурильных или насосно-компрессорных труб, а также от характера предполагаемых нарушений прямолинейности ствола скважины.

АП1 с равномерной ХН при его равномерном спуске вдоль оси скважины (НКТ4) излучает последовательность акустических радиоимпульсов, которые отражаясь от боковых стенок НКТ4, вновь поступают на вход АП1, но сдвинутые на время Δt.

Принятые АП1 отраженные сигналы с помощью реле 6 приема-передачи направляются через усилитель-ограничитель 13 и детектор 14 на компьютер 16, в котором рассчитывается ширина или уширение отраженного акустического радиоимпульса относительно зондирующего импульса и несущего информацию о величине прогиба НКТ4 на измеренной глубине L (Информация о глубине расположения АП1 в скважине непрерывно поступает на компьютер 16 с датчика 5 глубины).

На фиг.1, внизу представлены случаи а), б) и в) расположения АП1 на различных глубинах скважины.

В случае а) АП1 расположен на одинаковом расстоянии от стенок НКТ4. В этом случае отраженные от стенок НКТ4 импульсы поступят на вход АП1 одновременно через время t1-t0, где t0 - время излучения, а t1 - время приема импульсов. При этом ширина суммарного отраженного импульса не изменится и будет равной Δt1=Δt0, где Δt0 - ширина зондирующего импульса. То есть уширение отраженного от стенок зондирующего импульса равно нулю. Данный случай представлен на фиг.3а.

Характеристики ослабителя 15 импульсов и усилителя-ограничителя 13 подбираются такими, чтобы передающий (зондирующий) и отраженный (приемный) импульсы были равны по форме и по амплитуде.

В сечении б) НКТ4 ширина принятого импульса увеличивается в связи с появлением искривления трубы (фиг.3б), при этом с увеличением величины искривления трубы (фиг.3в) уширение импульса увеличивается.

Данным способом невозможно определить в какую сторону наклонена изогнутая труба. Но на практике гораздо важнее определить размеры изгиба безотносительно к сторонам света и оценить достиг или нет изгиб трубы критического значения, при котором требуется ее замена. Прогиб трубы связан с изгибом ствола скважины, что позволяет сделать выводы и об общем техническом состоянии скважины.

Градуировка акустического скважинного прибора в реальных, заводских или лабораторных условиях позволяет связать ширину Δt отраженного импульса с величиной прогиба трубы или скважины, что позволяет непосредственно производить измерения изгиба (прогиба) трубы в каждом сечении, например, в единицах длины бесконтактным способом.

Этим достигается поставленный технический результат.


СИСТЕМА ДЛЯ КОНТРОЛЯ ИСКРИВЛЕНИЯ СТВОЛА ВЕРТИКАЛЬНОЙ СКВАЖИНЫ
СИСТЕМА ДЛЯ КОНТРОЛЯ ИСКРИВЛЕНИЯ СТВОЛА ВЕРТИКАЛЬНОЙ СКВАЖИНЫ
СИСТЕМА ДЛЯ КОНТРОЛЯ ИСКРИВЛЕНИЯ СТВОЛА ВЕРТИКАЛЬНОЙ СКВАЖИНЫ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 22.
20.02.2014
№216.012.a2cf

Способ контроля коррозионного состояния обсадных колонн скважин

Изобретение относится к эксплуатации нефтяных и газовых скважин и может быть использовано при контроле коррозионного состояния обсадных колонн (ОК) и насосно-компрессорных труб (НКТ) скважин. Техническим результатом является контроль коррозионного состояния ОК и НКТ скважин прямым методом...
Тип: Изобретение
Номер охранного документа: 0002507394
Дата охранного документа: 20.02.2014
10.11.2014
№216.013.0370

Способ эксплуатации подземного хранилища природного газа

Изобретение относится к области нефтегазовой промышленности и предназначено для эксплуатации подземных хранилищ газа (ПХГ). На ПХГ, на которых сооружены эксплуатационные скважины со вскрытием коллекторов хранилища, производят циклическую закачку в хранилище природного газа с созданием буферного...
Тип: Изобретение
Номер охранного документа: 0002532278
Дата охранного документа: 10.11.2014
10.02.2015
№216.013.21e2

Градирня с воздухорегулирующими устройствами

Изобретение относится к энергетике и может быть использовано для повышения теплового КПД башенных испарительных градирен. Испарительная градирня содержит вытяжную башню, в основании которой находятся воздуховходные окна с поворотными потокорегулирующими щитами с горизонтальной осью вращения и...
Тип: Изобретение
Номер охранного документа: 0002540127
Дата охранного документа: 10.02.2015
10.09.2015
№216.013.75d6

Способ работы и устройство газотурбинной установки

Группа изобретений относится к энергетике Способ работы газотурбинной установки предусматривает подачу в камеру сгорания сжатого воздуха и паро-метановодородной смеси, расширение продуктов ее сгорания в газовой турбине, охлаждение путем испарения или перегрева водяного пара, направляемого в...
Тип: Изобретение
Номер охранного документа: 0002561755
Дата охранного документа: 10.09.2015
12.01.2017
№217.015.6116

Способ обеспечения экологической безопасности подземного хранилища газа

Изобретение относится к области подземного хранения газа и может быть использовано в газодобывающей и нефтяной промышленности. Способ обеспечения экологической безопасности подземного хранилища газа включает его закачку через скважину, хранение и отбор газа из хранилища, при этом в зонах...
Тип: Изобретение
Номер охранного документа: 0002591118
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.85a0

Устройство для измерения энергетических характеристик вибраций бурильных труб при бурении скважин

Изобретение относится к вибрационной технике и может быть использовано для измерения энергетических характеристик вибраций бурильных труб при бурении скважин в условиях вечной мерзлоты. Техническим результатом является повышение помехоустойчивости и обеспечение одинаковой чувствительности...
Тип: Изобретение
Номер охранного документа: 0002603111
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.ccc3

Способ рекультивации разрушенных земель в зоне многолетней мерзлоты

Изобретение относится к сельскому хозяйству и может быть использовано в области экологии для рекультивации земель в зоне многолетней мерзлоты при освоении новых месторождений углеводородов, прокладке трубопроводов, строительстве подземных хранилищ газа. Способ рекультивации разрушенных земель...
Тип: Изобретение
Номер охранного документа: 0002620828
Дата охранного документа: 30.05.2017
25.08.2017
№217.015.ccdd

Способ рекультивации разрушенных земель в зоне многолетней мерзлоты

Изобретение относится к сельскому хозяйству и может быть использовано в области экологии для рекультивации земель в зоне многолетней мерзлоты при освоении новых месторождений углеводородов, прокладке трубопроводов, строительстве подземных хранилищ газа. Способ рекультивации разрушенных земель в...
Тип: Изобретение
Номер охранного документа: 0002620829
Дата охранного документа: 30.05.2017
26.08.2017
№217.015.d5aa

Способ изготовления органоминерального удобрения для рекультивации разрушенных земель

Изобретение относится к сельскому хозяйству и может быть использовано для рекультивации земель в зоне многолетней мерзлоты. Способ изготовления органоминерального удобрения заключается в размельчении и смешении твердой составляющей пищевых отходов с минеральной компонентой удобрения при...
Тип: Изобретение
Номер охранного документа: 0002623045
Дата охранного документа: 21.06.2017
26.08.2017
№217.015.e4c0

Блочный нанопористый углеродный материал для аккумулирования природного газа, метана и способ его получения

Изобретение относится к активированному углеродному материалу для хранения, распределения и транспортировки природного газа или метана. Нанопористый материал получают из дробленого карбонизованного и активированного природного сырья органического происхождения путем его смешения с полимерным...
Тип: Изобретение
Номер охранного документа: 0002625671
Дата охранного документа: 18.07.2017
Показаны записи 1-2 из 2.
27.02.2013
№216.012.2b85

Способ контроля искривления ствола скважины

Изобретение относится к нефтегазодобывающей отрасли и может быть использовано для контроля целостности скважин. Способ контроля искривления ствола скважины заключается в измерении величины прогиба бурильной или насосно-компрессорной трубы скважины с помощью скважинного прибора, спускаемого...
Тип: Изобретение
Номер охранного документа: 0002476668
Дата охранного документа: 27.02.2013
10.12.2013
№216.012.8984

Способ исследования технического состояния скважины

Изобретение относится к нефтегазодобывающей отрасли и может быть использовано для исследования нефтяных и газовых скважин. Техническим результатом является устранение необходимости проведения двух измерений распределений температуры вдоль оси скважины при закачке и отборе флюида для...
Тип: Изобретение
Номер охранного документа: 0002500886
Дата охранного документа: 10.12.2013
+ добавить свой РИД