×
27.01.2013
216.012.20bd

Результат интеллектуальной деятельности: СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ НИЗКОТЕМПЕРАТУРНОЙ ВЯЗКОСТИ, ФИЛЬТРУЕМОСТИ И ЗАГРЯЗНЕННОСТИ НЕФТЕПРОДУКТОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области анализа нефтепродуктов и позволяет определить прокачиваемость и фильтруемость нефтепродуктов при низких температурах, а также степень их загрязнения. Способ основан на измерении времени заполнения определенного объема нефтепродуктом, поступающим по трубке под действием разрежения. Постепенно охлаждая продукт, находят температуру, при которой время заполнения рабочего объема становится больше предельного - температуру прокачиваемости (для масел) или фильтруемости (для топлив). При определении низкотемпературной вязкости и прокачиваемости измеряют время заполнения трубки устройства. При определении фильтруемости топлив дополнительно устанавливают фильтр и измеряют время заполнения емкости. При определении степени загрязнения сравнивают время заполнения емкости с фильтром и без. Техническим результатом изобретения является сокращение времени определения низкотемпературной вязкости, прокачиваемости, фильтруемости нефтепродуктов, степени их загрязнения механическими примесями (при плюсовых температурах) и возможность определения этих показателей как в лабораторных условиях, так и непосредственно в машинах, оборудовании, резервуарах и др. 4 н. и 2 з.п. ф-лы, 3 ил., 3 табл.

Изобретение относится к области анализа нефтепродуктов. Способ позволяет определить прокачиваемость, фильтруемость (топлив, смазочных материалов) при низких температурах и степень загрязнения нефтепродуктов. Может быть применен для экспресс-анализа топлива и смазочных материалов в машинах; в научно-исследовательских целях; для квалификационных испытаний в любых областях. Способ осуществляется путем прокачивания нефтепродуктов под вакуумом, создаваемым поршнем, через трубку (с установленным фильтром в случае определения фильтруемости и загрязненности топлив). Отбор нефтепродукта может производиться непосредственно из картера двигателя или редуктора, топливного бака автомобиля, различных емкостей и резервуаров при низких температурах. В лабораторных условиях проводят анализ охлажденного продукта (с использованием холодильника, охлаждающей жидкости и т.д.). При проведении лабораторных исследований строят кривые зависимости времени поступления по трубке эталонного охлажденного нефтепродукта от температуры (при определении фильтруемости на трубку устанавливают муфту с металлической сеткой и определяют время заполнения топливом рабочего объема емкости). Построенные кривые используют при испытании анализируемого нефтепродукта. Для определения загрязненности находят отношение времени заполнения емкости устройства нефтепродуктом с установленным на трубке фильтром ко времени заполнения емкости без фильтра и сравнивают с аналогичным показателем для незагрязненного нефтепродукта. Технический результат - сокращение времени определения низкотемпературной вязкости, прокачиваемости, фильтруемости нефтепродуктов, степени их загрязнения механическими примесями (при плюсовых температурах) и возможность определения этих показателей как в лабораторных условиях, так и непосредственно в машинах, оборудовании, резервуарах и др.

Изобретение относится к нефтеперерабатывающей, нефтехимической промышленности и может быть использовано в других областях для определения низкотемпературной вязкости, прокачиваемости, фильтруемости и загрязненности нефтепродуктов.

Известен способ визуального определения помутнения и начала кристаллизации (ГОСТ 5066-91. Нефтепродукты. Методы определения температуры помутнения и начала кристаллизации). Сущность метода заключается в охлаждении испытуемого образца топлива и визуальном фиксировании помутнения или начала кристаллизации топлива. Однако этот метод имеет следующие недостатки: испытания нужно проводить в лабораторных условиях, длительное время проведения анализа, требуется утилизация пробы.

Известен способ определения предельной температуры фильтруемости (ГОСТ 22254-92. Топливо дизельное. Метод определения предельной температуры фильтруемости на холодном фильтре. Государственный стандарт СССР). Сущность определения предельной температуры фильтруемости данным способом заключается в постоянном охлаждении испытуемого топлива с интервалом в 1°С, и стекании его через проволочную фильтрационную сетку при постоянном вакууме. Определение ведут до температуры, при которой кристаллы парафина, выделенного из раствора на фильтр, вызывают прекращение или замедление протекания в такой степени, что время наполнения пипетки объемом 20 мл превышает 60 с или топливо не стекает полностью в измерительный сосуд. Недостатки метода - требуется предварительный отбор пробы и ее последующая утилизация.

Известен метод определения вязкости автоматическим капиллярным вискозиметром (ГОСТ 7163-84. Государственный стандарт СССР). Сущность метода заключается в том, что смазка выдавливается штоком из цилиндра через капилляр под действием предварительно сжатой пружины. Скорость опускания штока зависит от характеристики пружины и вязкости смазки. По кривой, записываемой на вращающемся барабане карандашом, соединенным со штоком, можно вычислить вязкость и ее зависимость от скорости сдвига. К недостаткам метода относятся громоздкость оборудования, необходимость предварительного отбора пробы и ее утилизации.

Известен способ определения степени загрязнения жидкости по ГОСТ 17216-2001 «Чистота промышленная. Классы чистоты жидкостей», основанный на подсчете количества частиц разных размеров, находящихся в определенном объеме пробы жидкости. Его недостатками являются сложность, необходимость наличия сложного оборудования для подсчета количества частиц разных размеров и непригодность для проведения экспресс-анализа.

Также известен способ определения степени загрязнения масла, описанный в ГОСТ 10734-64 «Масла смазочные с присадками. Метод определения моющего потенциала», в котором раствор масла в бензине пропускают через бумажный фильтр, по времени фильтрации и по цвету фильтра судят о степени загрязнения масла. Недостатки способа - расход вспомогательных веществ, невозможность повторного использования отобранной пробы масла.

В качестве прототипа выбран наиболее близкий по технической сущности и достигаемому эффекту капиллярный вискозиметр постоянного расхода (SOD, методы ASTM D 1092, ANSI Z11.72 и FTSM 306, NFT 06-139). Сущность работы капиллярного вискозиметра SOD заключается в том, что смазку продавливают поршнем с постоянной скоростью через капилляр диаметром 0,45…3,8 мм с отношением длины трубки к диаметру 40:1. По экспериментальным точкам строят кривую зависимости вязкости от скорости деформации - вязкостно-скоростную характеристику смазки. Однако вискозиметр SOD имеет недостатки - громоздкость, сложность в эксплуатации, высокую погрешность, а также требуется предварительный отбор пробы и ее утилизация.

Цель изобретения - сокращение времени испытаний и создание возможности для определения низкотемпературной вязкости, прокачиваемости, фильтруемости и загрязненности нефтепродуктов на месте нахождения техники и нефтепродуктов при низких температурах.

Реализация способа.

Устройство (см. фиг.1) состоит из:

- емкости 1;

- штока с поршнем 2;

- пружины 3;

- трубки 4 диаметром 1,5 мм, длиной 520 мм (для определения фильтруемости - диаметром 3 мм, длиной 400 мм);

- термостата 5;

- фиксатора 6;

- фильтра 7 с сеткой диаметром 12 мм с ячейками: для определения степени загрязнения - не более 15 мкм, для определения фильтруемости - не более 55 мкм.

Способ осуществляется следующим образом.

1) Лабораторные исследования низкотемпературной вязкости и прокачиваемости нефтепродукта.

Анализируемую пробу постепенно охлаждают в термостате со скоростью 0,2…1°С в минуту. Каждые 1…2°С определяют низкотемпературную вязкость по следующему алгоритму.

Пружину сжимают, трубку устройства (диаметром 1,5 мм, длиной 520 мм) опускают в емкость с охлажденным нефтепродуктом, отпускают пружину, одновременно включают секундомер. В емкости устройства создается разрежение, нефтепродукт начинает подниматься. При этом время заполнения трубки и появления масла в емкости устройства фиксируют и заносят в таблицу.

По полученным данным строят график зависимости вязкости от температуры. Пример графика приведен на фиг.2. За предельную температуру прокачиваемости принимают температуру, при которой время заполнения трубки и появления нефтепродукта в емкости становится больше 300 с.

2) Определение низкотемпературной вязкости нефтепродукта.

Низкотемпературную вязкость нефтепродукта можно определять как в лаборатории (с охлаждением образца), так и в холодную погоду на улице на месте нахождения техники.

Алгоритм определения низкотемпературной вязкости такой же, как и при лабораторном исследовании, за исключением того, что вязкость определяют при одной температуре. Результат измерения сравнивают с данными для данной температуры из графика, полученного при лабораторных исследованиях.

Кроме этого, без предварительных испытаний непосредственно на месте нахождения техники можно дать заключение о возможности ее использования смазочного материала при данной температуре. На основании проведенных исследований масел Лукойл SAE 15W-40, Shell Helix SAE 10W-40, Shell Helix SAE 5W-30, Nissan SAE 5W-40, И-40 и П-40 установлено, что если время заполнения трубки и появления нефтепродукта в емкости больше 300 с, смазочный материал будет слишком долго идти по масляным каналам к узлам трения, что может привести к повышенному износу деталей машины или ее аварийной остановке. Поэтому если время появления нефтепродукта в емкости больше 300 с, эксплуатация техники не рекомендуется.

3) Лабораторные исследования фильтруемости топлив.

Анализируемую пробу постепенно охлаждают в термостате со скоростью 0,2…1°С в минуту. Каждые 1…2°С определяют фильтруемость по следующему алгоритму.

Пружину сжимают, трубку устройства (диаметром 3 мм, длиной 400 мм, с установленным на конце фильтром с размером ячеек 55 мкм) опускают в емкость с охлажденным нефтепродуктом, отпускают пружину, одновременно включают секундомер. В емкости устройства создается разрежение, нефтепродукт начинает подниматься. При этом время заполнения емкости устройства топливом до отметки 20 мл фиксируют и заносят в таблицу.

По полученным данным строят график зависимости времени заполнения от температуры. За предельную температуру фильтруемости принимают температуру, при которой кристаллы парафина, выделенного из раствора на фильтр, вызывают прекращение или замедление протекания в такой степени, что время поступления 20 мл топлива превышает 60 с или топливо не стекает полностью при извлечении штока.

4) Определение фильтруемости топлива.

Фильтруемость топлива можно определять как в лаборатории (с охлаждением образца), так и в холодную погоду на улице на месте нахождения техники или резервуара с топливом.

Алгоритм определения фильтруемости такой же, как и при лабораторном исследовании, за исключением того, что фильтруемость определяют при одной температуре. Результат измерения сравнивают с данными для этой температуры из графика, полученного при лабораторных исследованиях.

5) Определение степени загрязнения нефтепродукта механическими примесями.

Для определения степени загрязнения нефтепродукта механическими примесями определяют отношение времени заполнения емкости устройства нефтепродуктом с установленным на трубке фильтром ко времени заполнения емкости без фильтра и сравнивают с аналогичным показателем для незагрязненного нефтепродукта. Чем больше полученное значение, тем больше частиц оседает на фильтре, тем выше степень загрязнения нефтепродукта механическими частицами. Если полученное отношение больше 2,5, масло непригодно к дальнейшему использованию из-за высокого содержания механических частиц.

В случае определения загрязненности используют фильтр с размером ячеек не более 15 мкм (15 мкм - максимальный размер частиц при нормальном износе узлов трения). Для обеспечения возможности определения загрязненности масла, находящегося в картере двигателя и в других аналогичных ситуациях, фильтр устанавливают перед емкостью (фиг.3), чтобы трубка устройства могла входить в отверстие для масломерной линейки.

Если определяется загрязненность маловязких продуктов (дизельное топливо и др.) на конце трубки устанавливают вставку 8 (фиг.3) диаметром 0,5 мм для повышения точности измерения.

Время заполнения емкости без фильтра позволяет оценить вязкость продукта.

Перечень фигур. На фиг.1 изображено устройство для определения низкотемпературной вязкости, прокачиваемости, фильтруемости и загрязненности. На фиг.2 изображены графики зависимости времени заполнения трубки от температуры для масел Лукойл SAE 15W-40, Shell Helix SAE 10W-40, Nissan SAE 5W-40. На фиг.3 изображено устройство с дополнительной вставкой и с альтернативным вариантом установки фильтра.

Примеры испытаний нефтепродуктов предлагаемым устройством.

1. Лабораторные исследования низкотемпературной вязкости и прокачиваемости моторного масла SAE 15W-40 "Лукойл - Супер". По приведенной методике определяли вязкость масла в диапазоне температур -29…-12°С. По полученным данным построили график (фиг.2, верхний график). Из графика видно, что при -29°С время заполнения трубки становится больше 300 с, следовательно, за предельную температуру прокачиваемости принимаем -29°С.При более низких температурах эксплуатация оборудования на этом масле не рекомендуется.

2. Моторное масло SAE 15W-40 "Лукойл - Супер" (свежее - эталон) и анализируемое масло SAE 15W-40 из картера автомобиля с пробегом 12500 км. Диаметр трубки устройства 1,5 мм, длина трубки 520 мм. Температура масла -25°С. Анализ прокачиваемости испытываемого аналогичного масла из картера автомобиля проводился на стоянке при температуре окружающей среды -25°С.Результаты испытаний приведены в таблице 1.

Таблица 1
Результаты измерения прокачиваемости масла SAE 15W-40.
Наименование нефтепродукта Температура определения прокачиваемости, °С Время появления нефтепродукта в емкости, с На вискозиметре MRV ASTM D 4684, мПа·с
Масло SAE 15W-40 (эталон) -25 262 32400
Масло SAE 15W-40 (анализ) -25 304 37250

Сравнив полученные данные с результатами лабораторного анализа свежего масла "Лукойл-Супер" (фиг.2), можно увидеть, что низкотемпературная вязкость увеличилась на 15%. Время заполнения трубки устройства больше 300 с, следовательно, при данной температуре эксплуатация автомобиля на этом масле не рекомендуется.

3. Моторное масло SAE 5W-40 «Nissan» (свежее - эталон) и испытываемое аналогичное масло из картера автомобиля с пробегом 9440 км. Диаметр трубки устройства 1,5 мм, длина трубки 520 мм, усилие пружины 10 кгс. Температура масла -35°С. Анализ прокачиваемости испытываемого аналогичного масла проводился на стоянке при температуре окружающей среды -35°С. Результаты испытаний приведены в таблице 2.

Таблица 2
Результаты измерения прокачиваемости масла SAE 5W-40
Наименование нефтепродукта Температура определения прокачиваемости, °С Время появления нефтепродукта в емкости, с На вискозиметре MRV ASTM D 4684, мПа·с
Масло SAE 5W40 (эталон) -35 151 18000
Масло SAE 5W40 (анализ) -35 162 19550

В данном случае низкотемпературная вязкость увеличилась незначительно и находится в допустимых пределах.

4. Дизельное топливо ТУ 38.401-58-110-94, диаметр трубки 3 мм, диаметр сетки 12 мм, диаметр ячейки 42-43 мкм, длина трубки 400 мм. Усилие пружины 10 кгс. Температура дизельного топлива -30°С.

Фильтр - муфта с сеткой - устанавливается на конец трубки.

Проводим несколько измерений при постоянном охлаждении топлива. Когда температура пробы достигнет соответствующей величины (ориентируются на температуру помутнения или на заявленную в паспорте на топливо температуру фильтруемости), сжимают пружину, опускают в топливо трубку с фильтром и разжимают пружину, одновременно включив секундомер. Когда топливо наполнит емкость устройства до отметки 20 мл, фиксируют время заполнения. Измерения повторяют после каждого снижения температура пробы на 1°С до достижения температуры, при которой течение через фильтр прекращается или уровень топлива не достигает отметки 20 мл в течение 60 с. Записывают температуру начала последней фильтрации как предельную температуру фильтруемости на холодном фильтре. В результате проведенных испытаний удалось оптимизировать размеры используемых в устройстве трубок и фильтра и добиться сходимости результатов измерений устройством и прибором по ГОСТ 22254-92.

Для эксперимента было взято дизельное топливо «зимнее» 3-0.2-35 по ГОСТ 305-82. Пробу медленно охлаждали в холодильнике и измеряли предельную фильтруемость дизельного топлива предлагаемым устройством с холодным фильтром, сравнивали с результатами, полученными по ГОСТ 22254-92 «Метод определения предельной температуры фильтруемости на холодном фильтре». Результаты измерений приведены в таблице 3.

Таблица 3
Результаты определения фильтруемости дизельного топлива.
№п/п Предельная температура фильтруемости, °С.
по ГОСТ 22254-92 по предлагаемому методу
1 -30 -30
2 -29 -29
3 -30 -29

Полученные результаты измерения предельной фильтруемости топлива из топливного бака автомобиля на стоянке при температуре окружающего воздуха -30°С коррелируют с результатами измерений по ГОСТ 22254-92. Проведенные испытания нефтепродуктов на прокачиваемость и фильтруемость при низких температурах предлагаемым способом показали хорошую сходимость с результатами измерений, проведенных на лабораторном оборудовании известными методами.

5. Для гидравлического масла определяли степень загрязнения механическими примесями. Диаметр трубки устройства 1,5 мм, длина трубки 520 мм. Эксперимент проводили при комнатной температуре (25°С).

Взяли чистое масло, определили время заполнения рабочего объема емкости устройства. Оно составило 50 с. Затем перед емкостью установили фильтр с размером ячеек 15 мкм. Время заполнения увеличилось до 61 с.

Провели аналогичный эксперимент с загрязненным маслом. Время заполнения без фильтра - 53 с, с фильтром - 68 с.

Коэффициент загрязненности для чистого масла:

k=61/50=1,22.

Коэффициент загрязненности для загрязненного масла:

k=68/53=1,283

Коэффициент загрязненности увеличился незначительно, степень загрязнения масла невысока.


СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ НИЗКОТЕМПЕРАТУРНОЙ ВЯЗКОСТИ, ФИЛЬТРУЕМОСТИ И ЗАГРЯЗНЕННОСТИ НЕФТЕПРОДУКТОВ
СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ НИЗКОТЕМПЕРАТУРНОЙ ВЯЗКОСТИ, ФИЛЬТРУЕМОСТИ И ЗАГРЯЗНЕННОСТИ НЕФТЕПРОДУКТОВ
СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ НИЗКОТЕМПЕРАТУРНОЙ ВЯЗКОСТИ, ФИЛЬТРУЕМОСТИ И ЗАГРЯЗНЕННОСТИ НЕФТЕПРОДУКТОВ
Источник поступления информации: Роспатент

Показаны записи 11-14 из 14.
09.06.2018
№218.016.5de7

Способ утилизации отработанного комплекса на основе хлористого алюминия

Изобретение относится к способу утилизации отработанных каталитического и очистного комплексов на основе хлористого алюминия, включающему нагрев и конденсацию образовавшихся паров нефтяных фракций и хлористого алюминия. Для утилизации хлористого алюминия и получения углекаркаса-наполнителя для...
Тип: Изобретение
Номер охранного документа: 0002656336
Дата охранного документа: 05.06.2018
19.01.2019
№219.016.b217

Способ и устройство для контроля состояния динамического оборудования

Изобретение относится к измерительной технике и может быть использовано в нефтяной, автомобильной, авиационной, машиностроительной и других отраслях промышленности. Заявленное устройство содержит магнитную ловушку и датчик массы частиц износа, дополнительно оно содержит датчик температуры и...
Тип: Изобретение
Номер охранного документа: 0002677490
Дата охранного документа: 17.01.2019
07.02.2019
№219.016.b7d5

Способ дезодорации углеводородов нефти

Изобретение относится к способам дезодорации, удаления специфически неприятного запаха, присущего легким дистиллятам нефти (бензину, керосину, растворителю и продуктам, получаемым при переработке углеводородов нефти) и может быть использовано в лакокрасочной, газонефтедобывающей,...
Тип: Изобретение
Номер охранного документа: 0002678995
Дата охранного документа: 05.02.2019
01.03.2019
№219.016.cedc

Способ и устройство для измерения плотности жидкости

Изобретение относится к измерительной технике и может быть использовано для измерения плотности жидкостей в нефтяной, химической, пищевой промышленности и в других областях. Техническое решение реализуется с помощью изготовления поплавка с эластичными стенками и с воздухом внутри. Поплавок...
Тип: Изобретение
Номер охранного документа: 0002457461
Дата охранного документа: 27.07.2012
Показаны записи 11-20 из 20.
10.05.2018
№218.016.400c

Вращающаяся печь для обжига цементного клинкера

Изобретение относится к промышленности строительных материалов и может быть использовано во вращающихся печах при обжиге цементного клинкера для интенсификации процесса нагрева путем подачи дополнительного питания печи. Вращающаяся печь содержит корпус, шламовую трубу для подачи исходного...
Тип: Изобретение
Номер охранного документа: 0002648734
Дата охранного документа: 28.03.2018
10.05.2018
№218.016.4027

Способ сжигания твёрдого топлива во вращающейся печи (варианты)

Изобретение относится к способу обжига цементного клинкера во вращающейся печи, содержащей зоны декарбонизации, спекания и отбеливания, при сжигании твердого топлива (варианты). Способ включает дробление твердого топлива-нефтяного кокса с последующим грохочением, разделением измельченного...
Тип: Изобретение
Номер охранного документа: 0002648732
Дата охранного документа: 28.03.2018
09.06.2018
№218.016.5de7

Способ утилизации отработанного комплекса на основе хлористого алюминия

Изобретение относится к способу утилизации отработанных каталитического и очистного комплексов на основе хлористого алюминия, включающему нагрев и конденсацию образовавшихся паров нефтяных фракций и хлористого алюминия. Для утилизации хлористого алюминия и получения углекаркаса-наполнителя для...
Тип: Изобретение
Номер охранного документа: 0002656336
Дата охранного документа: 05.06.2018
19.01.2019
№219.016.b217

Способ и устройство для контроля состояния динамического оборудования

Изобретение относится к измерительной технике и может быть использовано в нефтяной, автомобильной, авиационной, машиностроительной и других отраслях промышленности. Заявленное устройство содержит магнитную ловушку и датчик массы частиц износа, дополнительно оно содержит датчик температуры и...
Тип: Изобретение
Номер охранного документа: 0002677490
Дата охранного документа: 17.01.2019
07.02.2019
№219.016.b7d5

Способ дезодорации углеводородов нефти

Изобретение относится к способам дезодорации, удаления специфически неприятного запаха, присущего легким дистиллятам нефти (бензину, керосину, растворителю и продуктам, получаемым при переработке углеводородов нефти) и может быть использовано в лакокрасочной, газонефтедобывающей,...
Тип: Изобретение
Номер охранного документа: 0002678995
Дата охранного документа: 05.02.2019
01.03.2019
№219.016.cedc

Способ и устройство для измерения плотности жидкости

Изобретение относится к измерительной технике и может быть использовано для измерения плотности жидкостей в нефтяной, химической, пищевой промышленности и в других областях. Техническое решение реализуется с помощью изготовления поплавка с эластичными стенками и с воздухом внутри. Поплавок...
Тип: Изобретение
Номер охранного документа: 0002457461
Дата охранного документа: 27.07.2012
08.03.2019
№219.016.d461

Способ получения электроизоляционного масла

Изобретение относится к области нефтепереработки и касается способа получения электроизоляционного масла, предназначенного для использования в качестве теплоотводящей и электроизолирующей среды в маслонаполненном оборудовании: трансформаторах, конденсаторах, кабелях и т.д. Сущность: нефтяную...
Тип: Изобретение
Номер охранного документа: 0002287553
Дата охранного документа: 20.11.2006
08.03.2019
№219.016.d56c

Способ получения битума

Изобретение относится к нефтепереработке, а именно получению окисленных битумов. Изобретение касается способа получения битума предварительным окислением исходного сырья воздухом при температуре окисления в выносном пленочном диспергирующем устройстве с последующим окислением газожидкостной...
Тип: Изобретение
Номер охранного документа: 0002400520
Дата охранного документа: 27.09.2010
02.05.2019
№219.017.4848

Способ совместного получения цементного клинкера и сернистого газа

Изобретение относится к технологии совместного получения портландцементного клинкера и сернистого газа путем использования в качестве кальций- и сульфатсодержащего компонента природного ангидрита или отходов производства фосфорной - фосфогипс - или борной - борогипс - кислоты. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002686759
Дата охранного документа: 30.04.2019
06.06.2019
№219.017.73df

Тепловой агрегат для совместного получения цементного клинкера, сернистого газа, тепловой и электроэнергии

Изобретение относится к тепловому агрегату для производства строительных материалов, в частности цементного клинкера, и безотходного производства тепловой и электрической энергии. Тепловой агрегат содержит паровой энергетический котел, работающий на твердом топливе горючих промышленных и...
Тип: Изобретение
Номер охранного документа: 0002690553
Дата охранного документа: 04.06.2019
+ добавить свой РИД