×
10.01.2013
216.012.19eb

Результат интеллектуальной деятельности: СПОСОБ СТАБИЛИЗАЦИИ ТОНКОПЛЕНОЧНОЙ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ ТЕНЗОРЕЗИСТОРНОГО ДАТЧИКА ДАВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии изготовления тензорезисторных датчиков давления на основе тонкопленочных нано- и микроэлектромеханических систем. Сущность: разогрев тензорезисторов импульсным электрическим током проводят после герметизации внутренней полости системы датчика при одновременном воздействии на его приемную полость давления, превышающего в 1,05 раза максимально допустимое перегрузочное давление, и минимально допустимой пониженной температуры при эксплуатации, а также давления, превышающего в 1,05 раза максимально допустимое перегрузочное давление, и повышенной температуры, превышающей в 1,05 раза максимально допустимую повышенную температуру при эксплуатации. Термостабилизацию проводят при температуре, превышающей в 1,05 раза максимально допустимую повышенную температуру при эксплуатации. Измерения начальных выходных сигналов при термостабилизации проводят при повышенном напряжении питания. Контроль скорости изменения начального выходного сигнала осуществляют по соотношениям скорости изменения приведенных значений начальных выходных сигналов при последнем и предпоследнем измерении начального выходного сигнала при термостабилизации. Технический результат: повышение стабильности начального и номинального выходного сигнала датчиков, выявление скрытых дефектов тензорезисторов на ранних стадиях изготовления.
Основные результаты: Способ стабилизации тонкопленочной нано- и микроэлектромеханической системы тензорезисторного датчика давления, заключающийся в термостабилизации с одновременным контролем выходного сигнала и циклическим разогревом, причем разогрев тензорезисторов проводят импульсным электрическим током до температур, обеспечивающих высокотемпературный отжиг перед его термостабилизацией при повышенной температуре с одновременным воздействием на тензорезисторы повышенного напряжения питания, и при этом осуществляют контроль по скорости изменения величины начального выходного сигнала, отличающийся тем, что разогрев тензорезисторов импульсным электрическим током проводят после герметизации внутренней полости нано- и микроэлектромеханической системы датчика при одновременном воздействии на его приемную полость давления, превышающего в 1,05 раза максимально допустимое перегрузочное давление, и минимально допустимой пониженной температуры при эксплуатации, а также давления, превышающего в 1,05 раза максимально допустимое перегрузочное давление, и повышенной температуры, превышающей в 1,05 раза максимально допустимую повышенную температуру при эксплуатации, а термостабилизацию проводят при температуре, превышающей в 1,05 раза максимально допустимую повышенную температуру при эксплуатации, при этом измерения начальных выходных сигналов при термостабилизации проводят при повышенном напряжении питания, а контроль скорости изменения начального выходного сигнала осуществляют по соотношениям где ΔY, ΔY - скорости изменения приведенных значений начальных выходных сигналов при последнем и предпоследнем измерениях начального выходного сигнала при термостабилизации соответственно, мВ/В·ч;U, U, U - значения начальных выходных сигналов при предпредпоследнем, предпоследнем и последнем измерениях начального выходного сигнала при термостабилизации соответственно, мВ;U, U, U - напряжения питания при измерении соответственно значений начальных выходных сигналов U, U, U, В;i=5 - количество измерений;t=t=1,5 - время между предпоследним и последним измерениями начального выходного сигнала при термостабилизации соответственно, ч, при этом, если разница скоростей изменения приведенных значений начальных выходных сигналов при предпоследнем и последнем измерениях (ΔY-ΔY) будет более 0,003 мВ/В·ч и по 0,005 мВ/В·ч, а скорость изменения приведенного значения начального выходного сигнала при последнем измерении ΔY - более 0,003 мВ/В·ч и по 0,005 мВ/В·ч, то нано- и микроэлектромеханическую систему датчика давления следует браковать.

Изобретение относится к электронной технике, в частности к технологии изготовления тонкопленочных тензорезисторных датчиков давления. Современные тонкопленочные тензорезисторные датчики давления относятся к изделиям нано- и микросистемной техники, использующим в качестве чувствительных элементов тонкопленочные тензорезисторные нано- и микроэлектромеханические системы [1, 2].

Известен способ температурной стабилизации мостовой схемы нано- и микроэлектромеханической системы тонкопленочного тензорезисторного датчика давления, заключающийся в циклической термостабилизации перепадом температур и последующим воздействием механической нагрузкой, превышающей максимально рабочую, охлаждении упругого элемента перед механическим нагруженном жидким азотом и контроле выходного сигнала, циклического разогрева упругого элемента постоянным током с одновременным действием механической нагрузки до момента становления постоянного выходного сигнала [3].

Недостатком этого способа является сложность, высокая трудоемкость процесса термостабилизации упругого элемента, заключающегося в циклическом воздействии температур, механической нагрузки и воздействии постоянного тока до установления постоянного выходного сигнала.

Наиболее близким по технической сущности является способ стабилизации нано- и микроэлектромеханической системы тонкопленочного тензорезисторного датчика давления, заключающийся в термостабилизации с одновременным контролем выходного сигнала и циклическим разогревом, причем разогрев тензорезисторов проводят импульсным электрическим током до температур, обеспечивающих высокотемпературный отжиг перед его термостабилизацией при повышенной температуре с одновременным воздействием на тензорезисторы повышенного напряжения питания, и при этом осуществляют контроль по скорости изменения величины начального выходного сигнала согласно формуле

где ΔVi - скорость изменения величины начального выходного сигнала через каждый час, мВ/ч;

U0ti - начальный выходной сигнал при напряжении Un=(6,0±0,05) В, температуре 80°С после термостабилизации за время ti, мВ;

U0ti+1 - начальный выходной сигнал при напряжении Un=(6,0±0,05) В, температуре 80°С после термостабилизации за время ti+1, мВ;

i=1…5 - количество измерений;

Т=1 ч;

при этом, если ΔVi>0,1 мВ/ч, нано- и микроэлектромеханическую систему датчика давления следует браковать [4].

Недостатком этого способа является низкая эффективность стабилизации, заключающаяся в том, что не все потенциально нестабильные по начальному выходному сигналу нано- и микроэлектромеханические системы отбраковываются. Это связано как с неоптимальными режимами способа стабилизации, так и недостаточно жестким критерием отбраковки, а также с недостаточной точностью определения критерия отбраковки. Недостатком известного способа является также необходимость изменения напряжения питания при измерении начального выходного сигнала.

Целью изобретения является повышение стабильности начального и номинального выходного сигнала тонкопленочного тензорезисторного датчика давления на основе нано- и микроэлектромеханической системы и выявление скрытых дефектов тензорезисторов на ранних стадиях изготовления за счет повышения эффективности стабилизации, оптимизации режимов стабилизации, повышения температуры воздействующей на нано- и микроэлектромеханическую систему при определении начального выходного сигнала, ужесточения критериев отбраковки, а также повышения точности определения критерия отбраковки.

Поставленная цель достигается тем, что в способе стабилизации нано- и микроэлектромеханической системы тонкопленочного тензорезисторного датчика давления, заключающемся в термостабилизации с одновременным контролем выходного сигнала и циклическим разогревом, причем разогрев тензорезисторов проводят импульсным электрическим током до температур, обеспечивающих высокотемпературный отжиг перед его термостабилизацией при повышенной температуре с одновременным воздействием на тензорезисторы повышенного напряжения питания, и при этом осуществляют контроль по скорости изменения величины начального выходного сигнала, в соответствии с заявляемым решением разогрев тензорезисторов импульсным электрическим током проводят после герметизации внутренней полости нано- и микроэлектромеханической системы датчика при одновременном воздействии на его приемную полость давления, превышающего в 1,05 раза максимально допустимое перегрузочное давление, и минимально допустимой пониженной температуры при эксплуатации, а также давления, превышающего в 1,05 раза максимально допустимое перегрузочное давление, и повышенной температуры, превышающей в 1,05 раза максимально допустимую повышенную температуру при эксплуатации, а термостабилизацию проводят при температуре, превышающей в 1,05 раза максимально допустимую повышенную температуру при эксплуатации, при этом измерения начальных выходных сигналов при термостабилизации проводят при повышенном напряжении питания, а контроль скорости изменения начального выходного сигнала осуществляют по соотношениям

где ΔYi, ΔYi-1 - скорости изменения приведенных значений начальных выходных сигналов при последнем и предпоследнем измерении начального выходного сигнала при термостабилизации, соответственно, мВ/(В·ч);

U0ti-2, U0ti-1, U0ti, - начальных выходных сигналов при предпредпоследнем, предпоследнем и последнем измерении начального выходного сигнала при термостабилизации соответственно, мВ;

UWti-2, UWti-1, UWti - напряжения питания при измерении соответственно значений начальных выходных сигналов U0ti-2, U0ti-1, U0ti, B;

i=5 - количество измерений;

ti-1=ti=1,5 - время между предпоследним и последним измерением начального выходного сигнала при термостабилизации соответственно, ч, при этом, если разница скоростей изменения приведенных значений начальных выходных сигналов при предпоследнем и последнем измерении(ΔYi-1-ΔYi) будет более 0,003 мВ/(В·ч) и по 0,005 мВ/(В·ч), а скорость изменения приведенного значения начального выходного сигнала при последнем измерении ΔYi - более 0,003 мВ/(В·ч) и по 0,005 мВ/(В·ч), то нано- и микроэлектромеханическую систему датчика давления следует браковать.

Способ осуществляют следующим образом. В случае отсутствия (вследствие конструктивных особенностей конкретного исполнения нано- и микроэлектромеханической системы) возможности подачи давления на приемную полость помещают нано- и микроэлектромеханическую систему в технологическое приспособление, обеспечивающее такую возможность. Герметизируют внутреннюю полость нано- и микроэлектромеханической системы датчика для исключения в последующем дестабилизирующего влияния внешней окружающей среды. Импульсным током кратковременно разогревают обрабатываемую пленку тонкопленочных тензорезисторов до высоких температур, добиваясь высокотемпературного отжига тензорезисторов. Высокотемпературный отжиг приводит к изменению структуры тонкой пленки в первую очередь в местах наибольшей дефектности пленки и, таким образом, выявляются потенциально нестабильные тензорезисторы.

Одновременно воздействуют на приемную полость нано- и микроэлектромеханической системы давлением, превышающим в 1,05 раза максимально допустимое перегрузочное давление, и минимально допустимой пониженной температуры при эксплуатации. Например, при максимально допустимом перегрузочном давлении, равном 100 МПа, воздействуют давлением 105 МПа, при минимально допустимой пониженной температуре при эксплуатации минус 196°С воздействуют температурой минус 196°С и при максимально допустимой повышенной температуре при эксплуатации +100°С воздействуют температурой +105°С. Одновременное воздействие на приемную полость нано- и микроэлектромеханической системы давления, превышающего в 1,05 раза максимально допустимое перегрузочное давление, и минимально допустимой пониженной температуры при эксплуатации, а также давления, превышающего в 1,05 раза максимально допустимое перегрузочное давление, и повышенной температуры, превышающей в 1,05 раза максимально допустимую повышенную температуру при эксплуатации, позволяет улучшить выявление потенциально нестабильных тензорезисторов. Совместное воздействие импульсной токовой обработки, повышенного давления и широкого диапазона температур позволяет достичь контролируемого упорядочения структуры пленки тензорезисторов и образования устойчивых мостиков проводимости между отдельными зернами тонкопленочных тензорезисторов. Кроме того, совместное воздействие импульсной токовой обработки, повышенного давления и широкого диапазона температур стабилизирует начальный и номинальный выходной сигнал датчика.

Проводят термостабилизацию при температуре, превышающей в 1,05 раза максимально допустимую повышенную температуру при эксплуатации. Например, при максимально допустимой повышенной температуре при эксплуатации +100°С воздействуют температурой +105°С. Превышение воздействующих давлений и температур, превышающих в 1,05 раза максимально допустимые при эксплуатации обеспечивает исключение воздействий на датчик при эксплуатации, сочетаний факторов, которые могли бы повлиять на стабильность. В то же время дальнейшее ужесточение режимов нецелесообразно в связи с ухудшением долговременной стабильности тензорезисторов вследствие появления значительных термомеханических напряжений.

Измерения начальных выходных сигналов при термостабилизации проводят при повышенном напряжении питания, что повышает точность определения критерия отбраковки за счет увеличения величины выходного сигнала при повышенном напряжении питания. Например, при номинальном напряжении питания 6В измерение начальных выходных сигналов проводят при повышенном напряжении 9В, что увеличивает величину выходного сигнала в 1,5 раза. Кроме того, повышение напряжения питания приводит к повышению тока через тензорезисторы, повышая тем самым качество стабилизации. Точность определения критерия отбраковки дополнительно увеличивается за счет учета напряжения питания в соотношениях скорости изменения приведенных значений начальных выходных сигналов. Учитывая, что в прототипе измерение начального выходного сигнала проводится при напряжении питания Un=(6,0±0,05), учет напряжения питания в соответствии с предлагаемым решением позволяет уменьшить погрешность измерения начального выходного сигнала не менее чем на ±0,83%.

Увеличение времени между предпоследним и последним измерением начального выходного сигнала при термостабилизации также увеличивает точность определения критерия отбраковки за счет повышения точности определения скорости изменения начального выходного сигнала. Введение дополнительного критерия по скорости изменения начального выходного сигнала при предпоследнем измерении повышает объективность контроля стабильности. Ужесточение критериев отбраковки повышает стабильность начального и номинального выходного сигнала нано- и микроэлектромеханической системы за счет более тщательного выявления скрытых дефектов тензорезисторов. В то же время дальнейшее ужесточение критерия нецелесообразно вследствие увеличения в этом случае погрешности измерения наиболее распространенных цифровых вольтметров.

Предлагаемое решение по сравнению с прототипом по результатам тестовых испытаний позволяет повысить стабильность начального выходного сигнала не менее чем в 1,3 раза, а стабильность номинального выходного сигнала не менее чем в 1,1 раза. Таким образом, техническим результатом заявляемого решения является повышение стабильности начального и номинального выходного сигнала тензорезисторных датчиков давления на основе тонкопленочных нано- и микроэлектромеханических систем и выявление скрытых дефектов тензорезисторов на ранних стадиях изготовления за счет повышения эффективности стабилизации, оптимизации режимов стабилизации, повышения температуры, воздействующей на нано- и микроэлектромеханическую систему при определении начального выходного сигнала, ужесточения критериев отбраковки, а также повышения точности определения критерия отбраковки.

Источники информации

1. Белозубов Е.М., Белозубова Н.Е. Тонкопленочные тензорезисторные датчики давления - изделия нано- и микросистемной техники // Нано- и микросистемная техника - 2007. - №. 12. - С.49 - 51.

2. Белозубов Е.М., Васильев В.А., Громков Н.В. Тонкопленочные нано- и микроэлектромеханические системы - основа современных и перспективных датчиков давления для ракетной и авиационной техники // Измерительная техника. - М., 2009.- №7. - С.35-38.

3. RU, А.с. №1182289, МПК G01L 7/08, Бюл. №28. 30.09.85.

4. RU, Патент №2301977, МПК G01L 7/02, Бюл. №18. 27.06.2007.

Способ стабилизации тонкопленочной нано- и микроэлектромеханической системы тензорезисторного датчика давления, заключающийся в термостабилизации с одновременным контролем выходного сигнала и циклическим разогревом, причем разогрев тензорезисторов проводят импульсным электрическим током до температур, обеспечивающих высокотемпературный отжиг перед его термостабилизацией при повышенной температуре с одновременным воздействием на тензорезисторы повышенного напряжения питания, и при этом осуществляют контроль по скорости изменения величины начального выходного сигнала, отличающийся тем, что разогрев тензорезисторов импульсным электрическим током проводят после герметизации внутренней полости нано- и микроэлектромеханической системы датчика при одновременном воздействии на его приемную полость давления, превышающего в 1,05 раза максимально допустимое перегрузочное давление, и минимально допустимой пониженной температуры при эксплуатации, а также давления, превышающего в 1,05 раза максимально допустимое перегрузочное давление, и повышенной температуры, превышающей в 1,05 раза максимально допустимую повышенную температуру при эксплуатации, а термостабилизацию проводят при температуре, превышающей в 1,05 раза максимально допустимую повышенную температуру при эксплуатации, при этом измерения начальных выходных сигналов при термостабилизации проводят при повышенном напряжении питания, а контроль скорости изменения начального выходного сигнала осуществляют по соотношениям где ΔY, ΔY - скорости изменения приведенных значений начальных выходных сигналов при последнем и предпоследнем измерениях начального выходного сигнала при термостабилизации соответственно, мВ/В·ч;U, U, U - значения начальных выходных сигналов при предпредпоследнем, предпоследнем и последнем измерениях начального выходного сигнала при термостабилизации соответственно, мВ;U, U, U - напряжения питания при измерении соответственно значений начальных выходных сигналов U, U, U, В;i=5 - количество измерений;t=t=1,5 - время между предпоследним и последним измерениями начального выходного сигнала при термостабилизации соответственно, ч, при этом, если разница скоростей изменения приведенных значений начальных выходных сигналов при предпоследнем и последнем измерениях (ΔY-ΔY) будет более 0,003 мВ/В·ч и по 0,005 мВ/В·ч, а скорость изменения приведенного значения начального выходного сигнала при последнем измерении ΔY - более 0,003 мВ/В·ч и по 0,005 мВ/В·ч, то нано- и микроэлектромеханическую систему датчика давления следует браковать.
СПОСОБ СТАБИЛИЗАЦИИ ТОНКОПЛЕНОЧНОЙ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ ТЕНЗОРЕЗИСТОРНОГО ДАТЧИКА ДАВЛЕНИЯ
СПОСОБ СТАБИЛИЗАЦИИ ТОНКОПЛЕНОЧНОЙ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМЫ ТЕНЗОРЕЗИСТОРНОГО ДАТЧИКА ДАВЛЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 104.
20.11.2014
№216.013.0854

Способ контролируемого роста квантовых точек из коллоидного золота

Изобретение относится к области прецизионной наноэлектроники. Способ контролируемого роста квантовых точек (КТ) из коллоидного золота в системе совмещенного АСМ/СТМ заключается в выращивании КТ при отрицательном приложенном напряжении между иглой кантилевера совмещенного АСМ/СТМ и проводящей...
Тип: Изобретение
Номер охранного документа: 0002533533
Дата охранного документа: 20.11.2014
20.12.2014
№216.013.1158

Смеситель-электрокоалесцентор

Изобретение относится к смесителям-электрокоалесценторам и может использоваться для получения водонефтяных эмульсий на установках электрообессоливания нефти. Смеситель-электрокоалесцентор представляет собой вертикальный заземленный корпус, выполненный в виде трубы Вентури, соосно которому...
Тип: Изобретение
Номер охранного документа: 0002535863
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.1238

Сейсмический локатор наземных объектов

Заявленное изобретение относится к области технических средств охраны и может быть использовано для определения азимута на обнаруженный объект и расстояния до него по сейсмическому сигналу при охране протяженных участков местности, территорий и подступов к различным объектам. Устройство...
Тип: Изобретение
Номер охранного документа: 0002536087
Дата охранного документа: 20.12.2014
10.01.2015
№216.013.179a

Тензорезисторный датчик давления на основе тонкопленочной нано- и микроэлектромеханической системы

Датчик давления предназначен для использования при воздействии повышенных виброускорений и широкого диапазона нестационарных температур окружающей и измеряемой среды. Техническим результатом изобретения является уменьшение погрешности датчика давления при воздействии повышенных виброускорений и...
Тип: Изобретение
Номер охранного документа: 0002537470
Дата охранного документа: 10.01.2015
20.01.2015
№216.013.2018

Способ изготовления наноструктурированного чувствительного элемента датчика вакуума и датчик вакуума

Изобретение относится к измерительной технике и может использоваться при изготовлении датчиков вакуума для измерения давления разреженного газа в вакуумных установках различного назначения. Предложен способ изготовления наноструктурированного чувствительного элемента датчика вакуума,...
Тип: Изобретение
Номер охранного документа: 0002539657
Дата охранного документа: 20.01.2015
20.02.2015
№216.013.2811

Высокоточный датчик давления на основе нано- и микроэлектромеханической системы

Изобретение относится к измерительной технике и может быть использовано для измерения давления жидких и газообразных средств. Датчик содержит корпус, установленную в нем нано- и микроэлектромеханическую систему (НиМЭМС), состоящую из упругого элемента - мембраны с жестким центром, с...
Тип: Изобретение
Номер охранного документа: 0002541714
Дата охранного документа: 20.02.2015
20.03.2015
№216.013.344d

Способ изготовления тонкопленочной нано- и микроэлектромеханической системы датчика механических величин

Изобретение относится к измерительной технике и может быть использовано в технологии изготовления малогабаритных тонкопленочных датчиков механических величин, работоспособных в широком диапазоне температур. Изобретение позволяет расширить температурный диапазон работы датчика на основе...
Тип: Изобретение
Номер охранного документа: 0002544864
Дата охранного документа: 20.03.2015
27.03.2015
№216.013.3606

Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС) с мостовой измерительной цепью. Техническим результатом изобретения является повышение временной стабильности, ресурса, срока...
Тип: Изобретение
Номер охранного документа: 0002545314
Дата охранного документа: 27.03.2015
10.04.2015
№216.013.3b16

Способ маскирования аналоговых речевых сигналов

Изобретение относится к средствам маскирования аналоговый речевых сигналов и может быть использован в системах связи силовых ведомств. Технический результат заключается в сокращении времени выполнения преобразования. Аналоговый речевой сигнал дискретизируется со стандартной частотой 8000 Гц....
Тип: Изобретение
Номер охранного документа: 0002546614
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3ccb

Способ получения наноструктурированного слоя на поверхности металлов в условиях звукокапиллярного эффекта

Изобретение относится к способу получения наноструктурированного слоя на поверхности металлов в условиях звукокапиллярного эффекта. На первом этапе осуществляют горизонтальное перемещение детали со скоростью υ=(10÷100) мм/мин с обработкой алмазным кругом с заданной зернистостью...
Тип: Изобретение
Номер охранного документа: 0002547051
Дата охранного документа: 10.04.2015
Показаны записи 31-40 из 125.
20.05.2014
№216.012.c5b8

Датчик давления на основе нано- и микроэлектромеханической системы для прецизионных измерений

Изобретение относится к измерительной технике и может быть использовано для прецизионных измерений давления жидких и газообразных сред. Сущность: датчик содержит корпус, установленную в нем нано- и микроэлектромеханическую систему (НиМЭМС), состоящую из упругого элемента в виде мембраны с...
Тип: Изобретение
Номер охранного документа: 0002516375
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c80e

Способ определения литогенности желчи

Изобретение относится к медицине и может быть использовано для определения оптимальных сроков дренирования желчных протоков у больных с патологией билиарного тракта различной этиологии. Описан способ определения литогенности желчи, заключающийся в определении ее физико-химических свойств, при...
Тип: Изобретение
Номер охранного документа: 0002516973
Дата охранного документа: 20.05.2014
27.05.2014
№216.012.cb40

Тензорезисторный датчик давления на основе тонкопленочной нано- и микроэлектромеханической системы

Тензорезисторный датчик давления на основе тонкопленочной нано- и микроэлектромеханической системы. Датчик давления предназначен для использования при воздействии повышенных виброускорений и широкого диапазона нестационарных температур окружающей и измеряемой среды. Технический результат:...
Тип: Изобретение
Номер охранного документа: 0002517798
Дата охранного документа: 27.05.2014
27.06.2014
№216.012.d74c

Способ получения пористых отливок

Изобретение относится к литейному производству. Водорастворимый наполнитель нагревают в печи и засыпают в нагретую металлическую форму. После заливки металла в форму осуществляется пропитка наполнителя расплавом под действием центробежных сил. Частота вращения формы определяется по формуле ,...
Тип: Изобретение
Номер охранного документа: 0002520894
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d77d

Датчик давления на основе нано- и микроэлектромеханической системы балочного типа

Изобретение относится к измерительной технике и может быть использовано для измерения давлений жидких и газообразных агрессивных сред в условиях воздействия широкого диапазона стационарных и нестационарных температур. Устройство содержит корпус, установленную в нем нано- и...
Тип: Изобретение
Номер охранного документа: 0002520943
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d8e1

Способ и устройство для демодуляции канального кода

Группа изобретений относится к вычислительной технике и связи и может быть использована в локальных вычислительных сетях и внешних запоминающих устройствах. Техническим результатом является повышение достоверности приема. Устройство содержит блок синхронизации, блок выработки тактовых...
Тип: Изобретение
Номер охранного документа: 0002521299
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.dd26

Способ выделения начала реполяризации желудочков сердца

Изобретение относится к медицине, в частности к электрокардиографии. Непрерывный электрокардиосигнал (ЭКС) фильтруют, представляют в виде дискретных отсчетов. После чего сглаживают путем усреднения амплитуд соседних отсчетов электрокардиосигнала. Затем выделяют R-R интервал и кардиоцикл,...
Тип: Изобретение
Номер охранного документа: 0002522392
Дата охранного документа: 10.07.2014
20.07.2014
№216.012.de98

Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС) с мостовой измерительной цепью, предназначенных для использования в системах управления, контроля и диагностики объектов...
Тип: Изобретение
Номер охранного документа: 0002522770
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e3d7

Штамм бактерий lactobacillus acidophilus используемый для приготовления кисломолочного продукта

Изобретение относится к биотехнологии. Штамм Lactobacillus acidophilus №9-ПС обладает биохимической активностью и высокой кислотностью. Штамм депонирован в Ведомственной коллекции полезных микроорганизмов сельскохозяйственного назначения Россельхозакадемии (RCAM) под регистрационным номером...
Тип: Изобретение
Номер охранного документа: 0002524117
Дата охранного документа: 27.07.2014
27.08.2014
№216.012.ef68

Способ получения покрытий

Изобретение относится к области обработки поверхностей стальных деталей и может быть использовано в машиностроении и других отраслях промышленности. Способ включает оксидирование деталей в безыскровом режиме в кислом растворе, дальнейшую выдержку в кипящем водном растворе едкого натра 0,2-0,4...
Тип: Изобретение
Номер охранного документа: 0002527107
Дата охранного документа: 27.08.2014
+ добавить свой РИД