×
10.01.2013
216.012.1957

Результат интеллектуальной деятельности: СПОСОБ ПОДГОТОВКИ ПОПУТНОГО НЕФТЯНОГО ГАЗА

Вид РИД

Изобретение

Аннотация: Изобретение относится к подготовке попутного нефтяного газа для подачи его в газлифтную систему и в межпромысловый коллектор - транспортный трубопровод - и может быть использовано в нефтедобывающей, нефтегазоперерабатывающей и других отраслях промышленности. Обеспечивает повышение эффективности работы скважин, эксплуатируемых газлифтным способом, за счет исключения конденсации углеводородов путем дополнительного извлечения тяжелых углеводородов из нефтяного газа на компрессорной станции. Сущность изобретения: способ включает использование турбокомпрессорного агрегата со ступенью низкого и высокого давления, фильтра-сепараратора и входного сепаратора для отделения газа от конденсата, воды и механических примесей, которые устанавливают перед ступенью низкого давления, а за ступенью низкого давления - аппарата воздушного охлаждения газа, сепаратора для отделения газа от жидкости с патрубками входа газа, выхода газа и выхода жидкости, промежуточного и концевого аппарата воздушного охлаждения газа, который устанавливают за первой и второй ступенями высокого давления, промежуточного и концевого сепараторов для отделения газа от жидкости с патрубками входа газа, выхода газа, выхода конденсата и воды. Согласно изобретению предусматривают использование дополнительного аппарата воздушного охлаждения газа, который последовательно соединяют с выходом аппарата воздушного охлаждения газа, расположенным после промежуточного сепаратора высокой ступени сжатия турбокомпрессорного агрегата, и дополнительного насоса, которым подают смешанный поток конденсата и ингибиторов парафинообразования по трубопроводу в новый узел подачи конденсата и ингибитора гидратообразования между последовательно соединенными аппаратами воздушного охлаждения газа. 1 з.п. ф-лы, 1 ил.

Изобретение относится к установкам подготовки попутного нефтяного газа для подачи его в газлифтную систему и в межпромысловый коллектор (транспортный трубопровод), может быть использовано в нефтедобывающей, нефтегазоперерабатывающей и других отраслях промышленности.

Известна установка подготовки углеводородного газа (Берлин М.А., Гореченков В.Г. Переработка нефтяных и природных газов. - М.: Химия, 1981, с.315), включающая сырьевой компрессор, теплообменники для охлаждения газа, сепаратор для отделения газа от конденсата и воды, теплообменник для охлаждения конденсата, сепаратор для разгазирования конденсата, узел подготовки конденсата, дожимной компрессор для подачи газа в магистральный газопровод.

Известна установка компримирования углеводородного газа (RU 2073182), содержащая компрессор со ступенью низкого и высокого давления, установленный за ступенью низкого давления межступенчатый холодильник газа, сепаратор разделения конденсата и воды, сепаратор отделения газа от конденсата и воды с патрубками входа газа, выхода газа и выхода жидкости, последний из которых соединен с патрубком входа сепаратора разделения конденсата и воды, концевой холодильник газа, установленный за ступенью высокого давления компрессора, сепаратор отделения газа от жидкости с патрубками входа газа, выхода газа, выхода конденсата и выхода воды, узел осушки газа, соединенный с патрубком выхода газа из сепаратора отделения газа от жидкости.

Данные технические решения не позволяют обеспечить требуемое качество подготовки газа, используемого для газлифтной системы.

Признаками, совпадающими с существенными признаками заявляемого изобретения, являются следующие: турбокомпрессорный агрегат, включающий ступени сжатия низкого и высокого давления; входной сепаратор отделения газа от конденсата и воды, промежуточные сепараторы разделения конденсата и воды, соединенные с патрубком выхода жидкости сепараторов отделения газа от конденсата и воды, установленные после ступени сжатия высокого давления первой секции; сепаратор отделения газа от жидкости, установленный после ступени сжатия высокого давления второй секции, соединенный с патрубком выхода жидкости сепараторов отделения газа от конденсата и воды.

Вследствие охлаждения газа, содержащего высокое количество тяжелых углеводородов (УВ), в газлифтной системе нефтепромысла происходит конденсация УВ в газлифтных трубопроводах, что существенно снижает эффективную работу газлифтного комплекса нефтепромысла в целом, увеличивает эксплуатационные затраты на ликвидацию жидкостных пробок в трубопроводах. Следствием всех перечисленных осложнений является снижение добычи нефти и увеличение ее себестоимости.

Задачей заявляемого изобретения является повышение эффективности работы скважин, эксплуатируемых газлифтным способом за счет исключения конденсации УВ путем дополнительного извлечения конденсата из нефтяного газа на компрессорной станции.

Это достигается снижением температуры перед промежуточным сепаратором ниже температуры, чем в газлифтной системе промысла (+5°С ÷ -5°С). Ограничивающим фактором для максимально возможного снижения температуры в аппарате воздушного охлаждения (АВО) газа является вероятность отложений парафинов и гидратов в трубках секций АВО газа. Для этого необходима подача метанола и ингибитора парафинообразования перед АВО газа для исключения образования гидратных и парафиновых пробок. Как вариант, взамен ингибитора парфинообразования предлагается использовать конденсат, получаемый на установке компрессорной станции.

Охлаждение газа возможно осуществлять после любой из трех ступеней компримирования. На программной модели проведен расчет условий конденсации во всех сепараторах. Наиболее оптимальное давление конденсации (33-35 кгс/см2) получается в промежуточном сепараторе между второй и третей ступенями сжатия.

В нефтяном газе содержится незначительное количество парафинов, которые тем не менее при снижении температуры ниже 18°С будут постепенно откладываться в наиболее охлаждаемых участках трубок АВО.

Поверхностно-активные вещества, содержащиеся в углеводородных жидкостях, влияют на образование и отложение парафинов и гидратов, образуя на поверхности пленку, которая замедляет рост кристаллов и препятствуют их объединению.

Для предотвращения отложений парафинов и гидратов в трубках секций АВО газа предлагается оборудовать входной трубопровод АВО газа узлом ввода конденсата. Дополнительно предусмотреть возможность подачи ингибитора парафинообразования. Для получения наибольшего эффекта требуется, чтобы конденсат промывал нижние трубки АВО газа. Температура газа на входе в АВО составляет 100-120°С. При подаче конденсата в газ с такой температурой конденсат перейдет в газовую фазу и эффективность будет низкой. Предлагается разделить процесс охлаждения газа на два этапа. Для этого возможно задействовать дополнительный АВО газа, например с резервной линии компрессора. При этом на первом АВО газ будет охлаждаться до температуры начала выпадения парафинов (20-15°С), затем в поток газа подается конденсат, большая часть которого, без изменения фазового состояния, под действием сил гравитации распределится по нижним трубкам АВО газа.

Это достигается тем, что известная установка компримирования углеводородного газа, включающая турбокомпрессорный агрегат со ступенью низкого и высокого давления, фильтр-сепаратор и входной сепаратор для отделения газа от конденсата, воды и механических примесей, установленные перед ступенью низкого давления, за ступенью низкого давления - аппарат воздушного охлаждения для снижения температуры газа до температуры начала парафинообразования и гидратоотложения, сепаратор для отделения газа от жидкости с патрубками входа газа, выхода газа и выхода жидкости, промежуточный и концевой аппарат воздушного охлаждения газа, установленный за первой и второй ступенями высокого давления, промежуточный и концевой сепараторы для отделения газа от жидкости с патрубками входа газа, выхода газа, выхода конденсата и выхода воды, может быть снабжена узлом ввода конденсата (ингибитора парафинообразования), дополнительным АВО газа, последовательно соединенным с входом АВО газа, находящимся между промежуточными сепараторами высокой ступени сжатия ТКА, а также дополнительным насосом для подачи смешанного потока конденсата и ингибитора парафинообразования по трубопроводу в точку подачи конденсата и ингибитора парафинообразования между последовательно соединенными АВО газа. Ингибитор парафинообразования подается из отдельно стоящей емкости для его хранения, а конденсат подается из накопительной емкости.

На фиг.1 приведена принципиальная технологическая схема установки компримирования углеводородного газа.

Установка компримирования углеводородного газа содержит блок редуцирования газа 2, снижающий давление попутного нефтяного газа, поступающего по трубопроводу 1, предохранительные клапаны 3 и 21, служащие для предотвращения повышения давления, входной сепаратор 4, фильтр-сепаратор тонкой очистки 5. В состав турбокомпрессорного агрегата (ТКА) 6 входят газотурбинный привод 7 и два корпуса сжатия: корпус низкого давления 8 (КНД) и корпус высокого давления 11 (КВД), обеспечивающие последовательное трехступенчатое компримирование попутного нефтяного газа. Технологические узлы замера газа 17, контролирующие работу ТКА 15, установлены перед каждой ступенью компримирования. Промежуточные аппараты воздушного охлаждения (АВО) газа 9 и 12, дополнительный АВО газа 14, соединенный последовательно с выходом АВО газа 12, а также конечный АВО газа 13, установленные после каждой ступени компримирования, обеспечивающие охлаждение попутного нефтяного газа. Промежуточные и конечный сепараторы 10, 15, 16 для очистки газа. Метанолопровод 34 предусмотренный для подачи ингибитора гидратообразования (метанола). Блок низкотемпературной сепарации газа 20, состоящий из рекуперативного теплообменника 18, регулятора давления 19 и низкотемпературного сепаратора 22. Трубопровод 25 для подачи подготовленного газа в МПК и трубопровод 24 для подачи газлифтного газа, а также блок замера газа 23. Для сбора жидких углеводородов от сепараторов 4, 5, 10, 15, 16, 22 предусмотрена накопительная емкость 27, полупогружной насос 30, перекачивающий жидкость в дренажную емкость 28, трубопровод 31. Насос 29, подающий смесь конденсата (из емкости 28) и ингибитора парафинообразования из отдельно стоящей емкости 32 по трубопроводу 26.

Установка компримирования углеводородного газа работает следующим способом.

Попутный нефтяной газ от центрального пункта сбора по трубопроводу 1 поступает в блок редуцирования газа 2, где производится снижение давления газа. На выходе из блока предусмотрены предохранительный клапан 3, служащий для предотвращения повышения давления на входе ТКА 6 выше номинального в случае отказа регуляторов давления в блоке редуцирования 2. После блока редуцирования 2 газ направляется во входной сепаратор 4, где производится улавливание капельной жидкости, содержащейся в нефтяном попутном газе, а также жидкостных пробок. Далее газ поступает на вход сепаратора тонкой очистки (фильтр-сепаратор) 5, где производится окончательная очистка газа от жидкости и механических примесей для входного газа ТКА 6 (по техническим условиям). После сепараторов тонкой очистки 5 газ направляется на вход, по меньшей мере, одного ТКА 6. В состав ТКА 6 входит газотурбинный привод 7 и два корпуса сжатия: корпус низкого давления 8 (КНД) и корпус высокого давления 11 (КВД). В корпусах сжатия газ последовательно сжимается до 1,16 МПа в первом корпусе КНД 8 и до давления 8,16 МПа - во втором КВД 11. После КНД 8 производится промежуточное охлаждение газа в АВО газа 9. Выделившаяся при охлаждении газа жидкость улавливается в промежуточном сепараторе 10. На выходе из первой секции сжатия КВД в поток газа подается по метанолопроводу 34 (предусмотренному проектом) ингибитор гидратообразования (метанол) с охлаждением в АВО газа 12, а в поток газа, вышедший из АВО газа 12 с температурой и давлением, определенными техническим регламентом работы компрессорной станции, дополнительным насосом 29 подается смесь конденсата (из емкости 28) и тем же дополнительным насосом 29 подается ингибитор парафинообразования (из отдельно стоящей емкости 32 для его хранения), далее газ поступает в АВО газа 14, где температура газа снижается до 5-6°С, что на 10-15 градусов ниже штатной, это снижение температуры дает возможность извлечь из газа (в сепараторе 15) дополнительное количество жидких углеводородов, что, в свою очередь, повышает общую добычу нефтепромысла и существенно снижает количество жидкости в газлифтном газе, подаваемом по трубопроводу 24. Подача метанола в поток газа предотвращает образование гидратов в нижних секциях АВО газа 12 и 14. Подача смеси конденсата и ингибитора парафинообразования предотвращает отложения парафинов в АВО газа 14, так как компрессорная станция компримирует попутный нефтяной газ с высоким содержанием парафинов. После второй секции сжатия КВД 11 газ охлаждается в концевых АВО газа 13. Выделившаяся после охлаждения газа жидкость, состоящая из воды и конденсата, улавливается в концевом сепараторе 16.

Для контроля работы ТКА 6 перед каждой ступенью компримирования предусмотрен узел замера газа 17. Замерные устройства располагаются в ангаре ТКА 6.

После концевого сепаратора 16 часть скомпримированного газа по трубопроводу 24 отбирается для циклической газлифтной системы промысла, остальная часть поступает в блок низкотемпературной сепарации газа (НТС) 20 для осушки. Замер газлифтного газа предусматривается в блоке 23.

В состав оборудования установки НТС 20 входят рекуперативный теплообменник 18, регулятор давления 19 и низкотемпературный сепаратор 22. Скомпримированный газ после отбора газлифтного газа поступает на вход рекуперативного теплообменника 18, где охлаждается потоком осушенного газа от низкотемпературного сепаратора 22, после чего поступает на регулятор давления 19, где давление газа снижается. Температура при этом снижается, обеспечивая необходимую температуру точки росы газа по воде и углеводородам до параметров СТО Газпром 089-2010 осушенного газа. На выходе низкотемпературного сепаратора 22 предусмотрен предохранительный клапан 21, служащий для предотвращения повышения давления выше рабочего в случае отказа регуляторов давления и рассчитанный на полную производительность сепаратора. После низкотемпературного сепаратора 22 осушенный газ направляется на коммерческий замер в блок замера газа 23 и используется для собственных нужд промысла.

Конденсат, выделившийся в сепараторах 4, 5, 10, 15, 16, 22, поступает в накопительную емкость 27, из нее полупогружным насосом 30 откачивается в емкость 28, далее по трубопроводу 31 на центральный пункт сбора.

Конденсат, подаваемый в поток газа по трубопроводу 26, используется циклически без привлечения дополнительной материальной базы, а именно насосом 29 забирается из емкости 28. В итоге, после всех ступеней сепарации конденсат возвращается в ту же емкость 28.

При подготовке газлифтного газа предлагаемым способом достигается температура ниже, чем в газлифтной системе, что изменяет технологический режим подготовки газа и дополнительно увеличивает выход конденсата на сепараторах 15 и 16, а также существенно снижает количество тяжелых углеводородов в паровой фазе газа, подаваемого в газлифтную систему нефтепромыслов по трубопроводу 24.


СПОСОБ ПОДГОТОВКИ ПОПУТНОГО НЕФТЯНОГО ГАЗА
Источник поступления информации: Роспатент

Показаны записи 31-40 из 43.
27.05.2019
№219.017.61ba

Способ измерения плотности среды

Изобретение относится к технологии прецизионных измерений плотности жидких, газожидкостных и газообразных сред при их перекачивании и хранении. Способ измерения плотности среды, включает взвешивание не заполненного пикнометра, выполненный в виде цилиндра с поршнем внутри и связанный при помощи...
Тип: Изобретение
Номер охранного документа: 0002689284
Дата охранного документа: 24.05.2019
13.06.2019
№219.017.80aa

Стенд для испытаний и зарядки газлифтных клапанов

Изобретение относится к нефтяной промышленности, предназначено для настройки и зарядки газлифтных клапанов азотом и их испытаний на герметичность повышенным давлением при помощи сжатого воздуха. Стенд для испытаний и зарядки газлифтных клапанов включает камеру давления с гнездом для установки...
Тип: Изобретение
Номер охранного документа: 0002691248
Дата охранного документа: 11.06.2019
19.06.2019
№219.017.83cd

Устройство (эталон) для измерения плотности жидких, газожидкостных и газообразных сред

Изобретение относится к эталонным средствам измерений для прецизионного измерения плотности жидких, газожидкостных и газообразных сред. Устройство (эталон) для измерения плотности жидкости, газожидкостных и газообразных сред включает пикнометр с фиксированным объемом подпоршневой полости,...
Тип: Изобретение
Номер охранного документа: 0002691671
Дата охранного документа: 17.06.2019
13.07.2019
№219.017.b368

Способ утилизации газа из газопровода-шлейфа при подготовке к ремонту или проведению внутритрубной диагностики

Изобретение относится к области газодобывающей промышленности и может быть использовано для перекачки газа при проведении ремонтных и профилактических работ на газопроводах-шлейфах и газосборных коллекторах в системах сбора скважинной продукции на газовых и газоконденсатных месторождениях....
Тип: Изобретение
Номер охранного документа: 0002694266
Дата охранного документа: 11.07.2019
02.10.2019
№219.017.cb4f

Способ подготовки углеводородного газа к транспорту

Изобретение относится к газовой промышленности, в частности к обработке углеводородного газа с использованием низкотемпературного процесса, и может быть использовано в процессах промысловой подготовки к транспорту продукции газоконденсатных месторождений. В способе подготовки углеводородного...
Тип: Изобретение
Номер охранного документа: 0002701020
Дата охранного документа: 24.09.2019
02.10.2019
№219.017.cec3

Способ очистки насоса передвижной парогенераторной установки и устройство для его реализации

Изобретение относится к нефтегазодобыче, касается ремонта скважин и может применяться для очистки гидравлической части водяного насоса, используемого в составе передвижной парогенераторной установки. Устройство для очистки гидравлической части водяного насоса передвижной установки установлено...
Тип: Изобретение
Номер охранного документа: 0002700483
Дата охранного документа: 17.09.2019
30.10.2019
№219.017.dbc7

Устройство для выполнения двойной п-образной отбортовки на заготовках круглой формы

Изобретение относится к обработке металлов давлением и может быть использовано для выполнения двойной П-образной отбортовки на заготовках круглой формы. Устройство содержит корпус, смонтированную на основании планшайбу, прижим и раскатную головку в виде цилиндра с буртом, нижняя часть которой...
Тип: Изобретение
Номер охранного документа: 0002704342
Дата охранного документа: 28.10.2019
07.06.2020
№220.018.2509

Способ бесперебойной эксплуатации газовых и газоконденсатных скважин, обеспечивающий вынос скапливающейся забойной жидкости

Изобретение относится к газодобывающей промышленности, в частности к эксплуатации газовых и газоконденсатных скважин. В заявляемом способе определяют диапазоны давлений в скважине при статическом режиме с последующим расчетом давлений открытия газлифтных клапанов, настраивают газлифтные клапаны...
Тип: Изобретение
Номер охранного документа: 0002722897
Дата охранного документа: 04.06.2020
07.06.2020
№220.018.252d

Способ прогнозирования длительности регистрации кривой восстановления давления скважины

Изобретение относится к нефтегазовой промышленности, а именно к способам прогнозирования длительности регистрации кривой восстановления давления (КВД) при первичных и текущих исследованиях вертикальных и субгоризонтальных скважин, вскрывающих газоконденсатные залежи низкопроницаемых ачимовских...
Тип: Изобретение
Номер охранного документа: 0002722900
Дата охранного документа: 04.06.2020
07.06.2020
№220.018.2555

Способ эксплуатации газовой скважины

Изобретение относится к эксплуатации газовых скважин на завершающей стадии разработки и, в частности, к эксплуатации газовых скважин, в которых скорость газового потока недостаточна для выноса жидкости с забоя. По способу газовую скважину снабжают основной лифтовой колонной и концентрично...
Тип: Изобретение
Номер охранного документа: 0002722899
Дата охранного документа: 04.06.2020
Показаны записи 31-40 из 41.
29.03.2019
№219.016.f1c5

Устройство для очистки асфальтеносмолопарафиновых отложений с внутренней поверхности насосно-компрессорных труб

Изобретение относится к нефтегазодобывающей промышленности и предназначено для удаления асфальтеносмолопарафиновых отложений с внутренней поверхности насосно-компрессорных труб. Обеспечивает повышение надежности и эффективности работы устройства. Сущность изобретения: устройство содержит...
Тип: Изобретение
Номер охранного документа: 0002317402
Дата охранного документа: 20.02.2008
29.03.2019
№219.016.f251

Способ распределения отбора нефти между фонтанными и газлифтными скважинами

Изобретение относится к газонефтяной промышленности, в частности к процессу оптимального отбора продукции из скважин, эксплуатируемых фонтанным и газлифтным способами. Обеспечивает повышение эффективности способа за счет оптимизации режимов работы фонтанных и газлифтных скважин. Сущность...
Тип: Изобретение
Номер охранного документа: 0002350739
Дата охранного документа: 27.03.2009
29.03.2019
№219.016.f252

Способ ограничения подошвенных вод и заколонных перетоков в эксплуатационных скважинах

Изобретение относится к способам ограничения подошвенных вод и заколонных перетоков в эксплуатационных скважинах. В способе, включающем закачку в скважину воды, раствора нафтената натрия, повторение процедуры не менее 3 раз, осуществляют закачку цементного раствора с добавлением нафтената...
Тип: Изобретение
Номер охранного документа: 0002350737
Дата охранного документа: 27.03.2009
29.03.2019
№219.016.f2a6

Комплексная автоматизированная система распределения и дозирования ингибитора гидратообразования

Изобретение относится к газодобывающим отраслям и предназначается для управления расходом подаваемого ингибитора в потоки природного газа для предупреждения в них процесса гидратообразования. Техническим результатом является расширение функциональных возможностей системы управления потоками...
Тип: Изобретение
Номер охранного документа: 0002376451
Дата охранного документа: 20.12.2009
29.03.2019
№219.016.f3d9

Способ определения объема водной фазы в промысловом газопроводе

Изобретение относится к горному делу и может быть использовано при исследовании промысловых газопроводов (шлейфов) на наличие и определение объема жидкости в них. Техническим результатом изобретения является повышение эффективности работ по определению объема водной фазы в промысловом...
Тип: Изобретение
Номер охранного документа: 0002369802
Дата охранного документа: 10.10.2009
29.03.2019
№219.016.f446

Присадка к дизельному топливу, дизельное топливо

Использование: в области нефтехимии. Сущность: присадка к дизельному топливу содержит в % мас.: алкил(С-С)нитрат до 50, полимер этилена или его сополимер с альфа-олефинами С-С с мол. массой 50.000-100.000 до 30, непредельная жирная кислота, выбранная из группы олеиновая, линолевая, линоленовая,...
Тип: Изобретение
Номер охранного документа: 0002320705
Дата охранного документа: 27.03.2008
29.03.2019
№219.016.f447

Присадка к дизельному топливу, дизельное топливо

Использование: в области нефте- и газохимии. Сущность: присадка к дизельному топливу содержит в мас.%: алкил(С-С)нитрат не более 75, алкил(С-С)сукцинимид 0,1-15, сополимер этилена с альфа-олефинами с мол. массой 500-30000 не более 50, непредельная жирная кислота, выбранная из группы олеиновая,...
Тип: Изобретение
Номер охранного документа: 0002320707
Дата охранного документа: 27.03.2008
29.03.2019
№219.016.f44a

Присадка к дизельному топливу, дизельное топливо

Использование: в области нефте- и газохимии. Сущность: присадка к дизельному топливу содержит, мас.%: алкил(С-С)нитрат до 55, алкил(С-С) сукцинимид 0,1-10, сополимер высших эфиров С-С акриловой или метакриловой кислоты с этиленненасыщенным мономером до 60, непредельная жирная кислота, выбранная...
Тип: Изобретение
Номер охранного документа: 0002320706
Дата охранного документа: 27.03.2008
29.03.2019
№219.016.f585

Десорбер

Изобретение относится к химическому машиностроению, в частности к конструкциям установок для взаимодействия систем газ (пар) - жидкость, предназначенных для процессов абсорбции, ректификации, промывки газов, и может найти применение в химической, нефтехимической, газовой и в других смежных...
Тип: Изобретение
Номер охранного документа: 0002452557
Дата охранного документа: 10.06.2012
29.03.2019
№219.016.f826

Способ определения удельного и общего количества жидкой водной фазы, поступающей из скважины в промысловый газосборный коллектор

Изобретение относится к горному делу и может быть использовано при исследовании промысловых газосборных коллекторов по определению количества поступающей в них жидкой водной фазы. Способ основан на закачке в начальный участок газосборного коллектора водорастворимого реагента-индикатора заданной...
Тип: Изобретение
Номер охранного документа: 0002460879
Дата охранного документа: 10.09.2012
+ добавить свой РИД