×
17.06.2023
223.018.819f

Результат интеллектуальной деятельности: Приемный канал лазерного дальномера

Вид РИД

Изобретение

Аннотация: Изобретение относится к области лазерной техники и касается приемного канала лазерного дальномера. Приемный канал содержит приемный объектив и два фоточувствительных элемента с усилителями, на выходах которых введены схемы временной фиксации сигнала. Фоточувствительные элементы расположены на минимально возможном расстоянии один от другого, а перед ними введены две наклонные плоскопараллельные оптические пластинки. Ближайшая к фоточувствительным элементам пластинка расположена перпендикулярно плоскости, содержащей оси фоточувствительных элементов и наклонена к ним на угол θ. На ее поверхность, противоположную фоточувствительным элементам, нанесено дихроичное покрытие, отражающее принимаемое излучение с рабочей длиной волны. Вторая пластинка, установленная ближе к приемному объективу, наклонена на угол минус θ. Технический результат заключается в обеспечении высокой точности временной фиксации принимаемого сигнала в широком динамическом диапазоне при минимальном времени измерения и без увеличения габаритов аппаратуры. 2 з.п. ф-лы, 3 ил.

Изобретение относится к технике приема импульсного оптического излучения, преимущественно к приемникам импульсных лазерных дальномеров и других светолокационных устройств.

Известны приемники импульсного оптического излучения [1] для систем импульсной лазерной локации, предназначенные для преобразования в электрические сигналы отраженных удаленными объектами зондирующих импульсов лазерного излучения и временной привязки электрических импульсов для определения их задержки t3 относительно момента излучения лазерного зондирующего импульса. По этой задержке судят о дальности R до отражающего объекта по формуле R=с t3 /2, где с - скорость света. Подобным образом построены приемники импульсного излучения [2, 3], содержащие фоточувствительный элемент и схему обработки сигнала. Указанные устройства имеют недостаточный динамический диапазон, ограничивающий точность временной фиксации принимаемых сигналов и, тем самым, препятствующий применению таких приемников в измерителях дальности и другой аппаратуре с повышенными требованиями к точности. Известно фотоприемное устройство [4], в котором указанный недостаток устранен за счет введения перед чувствительной площадкой фотоприемника управляемого электрооптического ослабителя, однако такое решение приводит к существенному усложнению устройства и ухудшению отношения сигнал/шум.

Наиболее близким по технической сущности к предлагаемому изобретению является приемный канал лазерного дальномера, включающий фотоприемное устройство с приемным объективом, причем, фотоприемное устройство содержит фоточувствительный элемент и усилитель [5]. Для расширения динамического диапазона сигналов в приемном канале [5] введена управляемая полупрозрачная шторка, положение которой зависит от уровня принимаемого сигнала. Недостаток такого технического решения - необходимость повторного измерения с соответствующим расходом ресурса прибора, и потери времени на выведение шторки и второе измерение.

Задачей изобретения является обеспечение высокой точности временной фиксации принимаемого сигнала в предельно широком динамическом диапазоне при минимальном времени измерения и без увеличения габаритов аппаратуры.

Эта задача решается за счет того, что в известном приемном канале лазерного дальномера, включающем фотоприемное устройство с приемным объективом, причем, фотоприемное устройство содержит фоточувствительный элемент и усилитель, введен второй фоточувствительный элемент со вторым усилителем, на выходах усилителей введены схемы временной фиксации сигнала, представляющие собой последовательное включение дифференцирующего звена и нуль-компаратора, их выходы подключены ко входу формирователя выходного сигнала через коммутатор, управляемый с выхода порогового устройства, введенного на выходе дифференцирующего звена, принадлежащего фотоприемному устройству с более высокой чувствительностью, при этом фоточувствительные элементы расположены на минимально возможном расстоянии b один от другого, а перед ними введены две наклонные плоскопараллельные оптические пластинки, ближайшая к фоточувствительным элементам пластинка расположена перпендикулярно плоскости, содержащей оси фоточувствительных элементов и наклонена к ним на угол θ, на ее поверхность, противоположную фоточувствительным элементам, нанесено дихроичное покрытие, отражающее принимаемое излучение с рабочей длиной волны, вторая пластинка, установленная ближе к приемному объективу, наклонена на угол минус θ, при этом толщина каждой пластинки d должна быть минимальной при условии d≥nb⋅cosθ, где n - коэффициент преломления материала пластинки, b - расстояние между фоточувствительными элементами в плоскости, перпендикулярной их оптическим осям, а разность положений фоточувствительных элементов Δh* вдоль оси приемного объектива удовлетворяет соотношению где dp - допустимый диаметр кружка рассеяния в плоскости фоточувствительного элемента фотоприемного устройства с меньшей чувствительностью; F - фокусное расстояние приемного объектива; D0 - световой диаметр приемного объектива.

Толщина d1 ближайшей к приемному объективу первой пластинки может вдвое превышать толщину d2=d второй пластинки.

Первая и вторая пластинки могут быть взаимно перпендикулярны.

На чертеже фиг. 1 представлена функциональная схема приемного канала лазерного дальномера. На фиг. 2 а) показана оптическая схема приемного канала. На фиг. 2 б) представлен реальный ход лучей во второй пластинке, а на фиги 2 в) - эквивалентный ход лучей во второй пластинке на ее развертке. dr=d/n - толщина редуцированной пластинки [7]. Фиг. 3 иллюстрирует форму сигналов U(t) на выходе усилителей (фиг 3а) и U'(t) на выходе первого дифференцирующего звена (фиг. 3б).

Приемный канал лазерного дальномера (фиг. 1) содержит первый фоточувствительный элемент 1 с первым усилителем 2, второй фоточувствительный элемент 3 с вторым усилителем 4, дифференцирующие звенья 5 и 6, нуль-компараторы 7 и 8, коммутатор 9, ко входам которого подключены выходы нуль-компараторов 7 и 8. Выход коммутатора связан со входом формирователя выходного сигнала 10. На выходе первого дифференцирующего звена 5 включено пороговое устройство 11, выход которого подключен к управляющему входу коммутатора 9.

Фоточувствительные элементы 1 и 2 конструктивно размещены в фокусе приемного объектива 12 (фиг. 2а). Между приемным объективом и фоточувствительными элементами введены две симметрично наклоненные на угол 9 оптические пластинки 13 и 14. На заднюю грань пластинки 14 нанесено дихроичное покрытие 15, прозрачное для видимого излучения и отражающее излучение с рабочей длиной волны в сторону фоточувствительных элементов.

Устройство работает следующим образом.

В исходном состоянии коммутатор 9 открыт для сигналов с выхода нуль-компаратора 7. Если сигналы на выходе усилителя 2 и дифференцирующего звена 5 находятся в пределах линейного диапазона, то формирователь выходного сигнала фиксирует положение их максимума в один и тот же момент времени t0 независимо от амплитуды (фиг. 3б). Из-за инерционности дифференцирующего звена момент t0 незначительно запаздывает относительно момента tмакс максимума сигнала U1(t). Это запаздывание не зависит от амплитуды сигналов U1(t) и U2(t) во всем их линейном диапазоне. Отклик дифференцирующего звена на сигналы максимальной амплитуды в линейном диапазоне превышает уровень Uпор срабатывания порогового устройства 8, вызывая тем самым, подачу на управляющий вход коммутатора 5 переключающего сигнала в интервале времени от tорг<t0 до tпор<t0, где tорг - момент срабатывания порогового устройства от реакции дифференцирующего звена 5 на ограниченный сигнал U'1орг; tпор момент срабатывания порогового устройства от реакции дифференцирующего звена 5 на сигнал U1макс максимальной амплитуды в пределах линейного диапазона. При этом коммутатор 9 закрывается для сигнала с фоточувствительного элемента 1 и открывается для сигнала с фоточувствительного элемента 3. Вследствие того, что максимум отклика дифференцирующего звена U'1max (фиг. 3б) опережает по времени максимум импульса U1орг, последний блокируется, и на выход коммутатора проходит импульс U'2(t) от фоточувствительного элемента 3, имеющий значительно меньшую амплитуду, лежащую в линейном диапазоне, благодаря чему временное положение входного сигнала фиксируется по-прежнему в момент времени t0 в практически неограниченном амплитудном диапазоне входных сигналов.

Согласно предлагаемому изобретению входное излучение разделяется второй оптической пластинкой 14 на два пучка разной интенсивности. Один пучок, отраженный от задней поверхности пластинки, поступает на основной фоточувствительный элемент 1. Более слабый пучок отражается от передней поверхности пластинки 14 и фокусируется на менее чувствительный фоточувствительный элемент 3 (фиг. 2а). Для коррекции вносимых пластинкой 14 аберраций введена аналогичная пластинка 13, наклоненная на противоположный угол минус θ. При этом, однако, пластинка 14, отражающая излучение от задней поверхности, действует как пластинка двойной толщины, и система из двух пластинок компенсирует аберрации в прямой ветви (в направлении к предполагаемому окуляру) но вносит искажения в плоскости фоточувствительных элементов - как одна эквивалентная пластинка.

При этом [7] смещение фокуса вдоль оси (фиг. 2в)

где d - толщина пластинки;

n - коэффициент преломления материала пластинки;

θ - угол падения луча на пластинку;

θ' - угол преломления по закону Снеллиуса

Поскольку [8] формула (1) с учетом (2) записывается в виде

При малых значениях 0 формула (4) принимает вид

Пример 1

θ=0; n=1,5; d=2 мм.

Пример 2

θ=45°; n=1,5; d=2 мм.

Несовпадение Δh фокальных плоскостей компенсируется размещением фоточувствительных элементов на разной высоте, соответствующей величине Δh (фиг. 2а). Следует учитывать допустимую дефокусировку ΔF одного или обоих фоточувствительных элементов в пределах глубины резкости объектива. В этом случае необходимая конструктивная разность высот фоточувствительных элементов

Δh*=Δh-ΔF,

где ΔF=dpF/D0,

dp - допустимый диаметр кружка рассеяния,

F - фокусное расстояние объектива,

D0 - световой диаметр объектива.

Таким образом, допустимая разность высот Δh* фоточувствительных элементов должна находиться в пределах

Пример 3

dp=0,3 мм; F=150 мм; D0=45 мм; Δh=0,93 мм (Пример 2).

ΔF=0,3⋅150/45=1 мм.

Δh*=0,93-1<0, следовательно, при параметрах примера 3 фоточувствительные элементы могут устанавливаться на одном уровне.

Одинаковые оптические пластинки, наклоненные в противоположные стороны взаимно, устраняют астигматизм и кому, вносимые каждой из пластинок [9]. Следует иметь в виду, что при отражении принимаемого излучения от задней поверхности пластинки, ее толщина эквивалентно удваивается. Если величина аберраций в прямом канале некритична, то для устранения аберраций в приемном канале толщина пластинки 13 может быть удвоена, благодаря чему аберрации второй пластинки 14 корректируются.

Величина астигматизма наклонной пластинки ΔhA [8]

Пример 4

В условиях примера 2 (θ=45°=π/4)

ΔhA ~ - d(n2-1)θ2/n3 - - 2(2,25 - 1) 9,86/(16⋅3,38) = -0,46 мм.

Меридиональная кома третьего порядка ΔhC [8]

Пример 5

В условиях примеров 3, 4

ΔhC ~ 3d(n2-1)(D0/F)2θ/2n3 ~ 6⋅1,25(45/150)20,785/(2⋅3,38)=0,08 мм.

Как показывают приведенные примеры, в зависимости от параметров оптической системы можно подобрать такое их сочетание, при котором отрицательное влияние оптических пластинок может быть несущественным, в первую очередь для высокочувствительного фотоприемного устройства.

Описанное техническое решение обеспечивает практически неограниченное расширение линейного динамического диапазона во всем рабочем динамическом диапазоне первого и второго фоточувствительных элементов. При этом обеспечивается предельно достижимая точность временной фиксации сигнала при однократных замерах, то есть без ухудшения быстродействия. Аппаратура имеет минимальные габариты и размещается в том же корпусе, что и предыдущая модель.

В соответствии с предлагаемым изобретением был разработан макетный образец приемника. Проведенные исследования подтвердили выполнение заданных технических требований - как в одиночном, так и в частотном режиме работы.

Таким образом, предлагаемое техническое решение обеспечивает высокую точность временной фиксации принимаемого сигнала в предельно широком динамическом диапазоне при минимальном времени измерения и без увеличения габаритов аппаратуры.

Источники информации

1. В.А. Волохатюк и др. Вопросы оптической локации. - М.: Советское радио, 1971. - с. 213.

2. В.Г. Вильнер и др. Анализ входной цепи фотоприемного устройства с лавинным фотодиодом и противошумовой коррекцией. «Оптико-механическая промышленность». №9, 1981 г. - с. 593.

3. В.А. Афанасьев и др. Порог чувствительности приемника импульсного оптического излучения с большим входным импедансом. Электронная техника. Серия 11. «Лазерная техника и оптоэлектроника». 1988, в.З. - с. 78 - 83.

4. Radiation receiver with active optical protection system. US patent No 6,548,807.

5. В.Г. Вильнер и др. Лазерный дальномер. Патент РФ №2655003 по заявке на изобретение №2017123345 от 03 июля 2017 г. - прототип.

6. Г.И. Цуканова. Прикладная оптика. Часть 1. Университет ИТМО - СПб: 2008. - с. 16-18.

7. В.А. Панов и др. Справочник конструктора оптико-механических приборов. - Л.; Машиностроение, 1980. - с. 127-128.

8. Г.Б. Двайт. Таблицы интегралов и другие математические формулы. - М.; Наука, 1973. - с. 83.

9. Т.С. Воропай и др. Коррекция астигматизма в спектральных приборах с помощью наклонной плоскопараллельной пластинки. «Вестник БГУ». Сер. 1. 2007, №3. - с. 12-17.

Источник поступления информации: Роспатент

Showing 71-71 of 71 items.
17.06.2023
№223.018.819e

Лазерный дальномер

Лазерный дальномер, содержащий основной и пробный излучатели разной мощности со схемами питания, фотоприемник с объективом, пороговое устройство с задатчиком переменного порога, включенное на выходе фотоприемника и по выходу связанное со схемой управления и измерителем временных интервалов,...
Тип: Изобретение
Номер охранного документа: 0002756381
Дата охранного документа: 29.09.2021
Showing 71-80 of 97 items.
22.07.2020
№220.018.3562

Способ лечения открытоугольной формы глаукомы, устройство для его осуществления и рабочий инструмент

Группа изобретений относится к офтальмологии. Способ лечения открытоугольной формы глаукомы путем обеспечения оттока водянистой влаги через склеру в проекции цилиарного тела посредством серии лазерных аппликаций по его периметру. В месте каждой конкретной аппликации с помощью рабочего...
Тип: Изобретение
Номер охранного документа: 0002727036
Дата охранного документа: 17.07.2020
12.04.2023
№223.018.436d

Способ формирования и наведения лазерного излучения излучателей с оптоволоконными выводами на цель

Изобретение относится к оптико-электронному приборостроению, к лазерным комплексам формирования и наведения лазерного излучения на удаленные цели. Способ формирования и наведения лазерного излучения излучателей с оптоволоконными выводами на цель отличается от известного тем, что для каждого...
Тип: Изобретение
Номер охранного документа: 0002793612
Дата охранного документа: 04.04.2023
12.04.2023
№223.018.43ad

Система формирования и наведения лазерного излучения излучателей с оптоволоконными выводами на цель

Использование: изобретение относится к оптико-электронному приборостроению и может использоваться при разработке лазерных комплексов в части формирования и наведения лазерного излучения на удаленные цели. Сущность: система формирования и наведения лазерного излучения излучателей с...
Тип: Изобретение
Номер охранного документа: 0002793613
Дата охранного документа: 04.04.2023
20.04.2023
№223.018.4cd5

Способ порогового обнаружения оптических сигналов

ИИзобретение относится к технике выделения сигналов из шума с помощью лавинных фотодиодов. Технический результат изобретения заключается в обеспечении максимального отношения сигнал/шум. Способ порогового обнаружения оптических сигналов с помощью лавинного фотодиода, включающий пороговую...
Тип: Изобретение
Номер охранного документа: 0002755602
Дата охранного документа: 17.09.2021
20.04.2023
№223.018.4cd8

Способ обнаружения оптических сигналов

Изобретение относится к приему сигналов, в частности к технике выделения сигналов из шума с помощью лавинных фотодиодов. Технический результат изобретения заключается в обеспечении максимального отношения сигнал/шум во всех условиях эксплуатации. Изобретение представляет способ обнаружения...
Тип: Изобретение
Номер охранного документа: 0002755601
Дата охранного документа: 17.09.2021
20.04.2023
№223.018.4ce7

Способ приема импульсных оптических сигналов

Изобретение относится к области приема сигналов и касается способа приема импульсных оптических сигналов с помощью лавинного фотодиода. Способ включает в себя прием, усиление и формирование стандартных импульсов при превышении усиленным сигналом заданного порога срабатывания. При этом...
Тип: Изобретение
Номер охранного документа: 0002750444
Дата охранного документа: 28.06.2021
20.04.2023
№223.018.4cf7

Способ приема оптических сигналов

Изобретение относится к технике выделения сигналов из шума с помощью лавинных фотодиодов и может быть использовано в областях, где требуется обеспечение максимального отношения сигнал/шум. Способ приема оптических сигналов с помощью лавинного фотодиода включает пороговую обработку сигналов и...
Тип: Изобретение
Номер охранного документа: 0002750442
Дата охранного документа: 28.06.2021
20.04.2023
№223.018.4cfb

Способ приема сигналов

Использование: изобретение относится к приему сигналов, в частности к технике выделения сигналов из шума с помощью лавинных фотодиодов, и может быть использовано в любой области, где требуется обеспечение максимального отношения сигнал/шум. Сущность: способ приема сигналов, включающий прием,...
Тип: Изобретение
Номер охранного документа: 0002750443
Дата охранного документа: 28.06.2021
20.04.2023
№223.018.4d24

Способ порогового приема оптических сигналов

Использование: изобретение относится к приему сигналов, в частности к технике выделения сигналов из шума с помощью лавинных фотодиодов, и может быть использовано в локации, связи и любой области, где требуется обеспечение максимального отношения сигнал/шум. Сущность: способ порогового приема...
Тип: Изобретение
Номер охранного документа: 0002756384
Дата охранного документа: 29.09.2021
23.04.2023
№223.018.5196

Система регулировки периметра зеемановского лазерного гироскопа

Изобретение относится к гироскопам. Система регулировки периметра зеемановского лазерного гироскопа включает первое зеркало с пьезоприводом, включенное в кольцевой лазер, содержащий отражающее зеркало, а также блок частотной подставки, катушки которого включены в плечи кольцевого лазера, и...
Тип: Изобретение
Номер охранного документа: 0002736737
Дата охранного документа: 19.11.2020
+ добавить свой РИД