×
20.04.2023
223.018.4d24

Результат интеллектуальной деятельности: Способ порогового приема оптических сигналов

Вид РИД

Изобретение

Аннотация: Использование: изобретение относится к приему сигналов, в частности к технике выделения сигналов из шума с помощью лавинных фотодиодов, и может быть использовано в локации, связи и любой области, где требуется обеспечение максимального отношения сигнал/шум. Сущность: способ порогового приема оптических сигналов с помощью лавинного фотодиода, включающий прием, усиление и пороговую обработку сигналов, а также формирование выходных импульсов при превышении сигналом заданного порога срабатывания, предварительную установку коэффициента лавинного умножения М фотодиода производят в наиболее критичных условиях температуры t° и мощности фоновой засветки Р, при этом на выходе фотодиода определяют среднеквадратическое значение выходного шума σ в безлавинном режиме, а затем увеличивают коэффициент лавинного умножения до величины М = М, при котором среднеквадратическое значение выходного шума увеличивается до величины σ = (1,7…1,8) σ, запоминают значение М, после чего в реальных условиях эксплуатации устанавливают коэффициент лавинного умножения , где - заранее заданный параметр, зависящий от окружающей температуры и яркости фона, и устанавливают порог срабатывания на уровне, при котором частота f ложных срабатываний от шумовых выбросов удовлетворяет условию f < f < f, где f и f - соответственно нижняя и верхняя границы допуска на частоту f, а после стабилизации частоты f в указанных пределах включают рабочий режим приема оптических сигналов. Технический результат: обеспечение предельной чувствительности во всех условиях эксплуатации. 2 з.п. ф-лы, 2 ил., 4 табл.

Предлагаемое изобретение относится к приему оптических сигналов, в частности к технике приема сигналов с помощью лавинных фотодиодов, и может быть использовано в локации, связи и других фотоэлектронных приложениях.

Известен способ приема оптических сигналов с помощью лавинных фотодиодов [1]. Известны также способы стабилизации лавинного режима фотодиода, например, путем термокомпенсации рабочей точки напряжения смещения [2].

Наиболее близким к предлагаемому техническому решению является способ приема импульсных оптических сигналов с помощью лавинного фотодиода, напряжение смещения которого поддерживают путем стабилизации частоты шумовых импульсов, возникающих при пороговой обработке смеси сигнала и шума [3].

Недостатком этого способа является зависимость лавинного режима от выставленного порога срабатывания. Это приводит к неправильному выбору рабочей точки фотодиода и ухудшению пороговой чувствительности [4]. Кроме того, в широком диапазоне условий эксплуатации коэффициент лавинного умножения может оказаться слишком высоким, что приводит к снижению помехоустойчивости и стойкости к перегрузкам.

Задачей изобретения является обеспечение наилучшей пороговой чувствительности во всех условиях эксплуатации.

Указанная задача решается за счет того, что в известном способе порогового приема оптических сигналов с помощью лавинного фотодиода, включающем прием, усиление и формирование выходных импульсов при превышении сигналом заданного порога срабатывания, предварительную установку коэффициента лавинного умножения М фотодиода производят в наиболее критичных условиях температуры t°кр и мощности фоновой засветки Рфкр, при этом на выходе фотодиода определяют среднеквадратическое значение выходного шума σ1 в безлавинном режиме, а затем увеличивают коэффициент лавинного умножения до величины М = Мкр, при котором среднеквадратическое значение выходного шума увеличивается до величины σM = (1,7…1,8) σ1, запоминают значение Мкр, после чего в реальных условиях эксплуатации устанавливают коэффициент лавинного умножения , где - заранее заданный параметр, зависящий от окружающей температуры и яркости фона, и устанавливают порог срабатывания на уровне, при котором частота f ложных срабатываний от шумовых выбросов удовлетворяет условию f1 < f < f2, где f1 и f2 - соответственно нижняя и верхняя границы допуска на частоту f, а после стабилизации частоты f в указанных пределах включают рабочий режим приема оптических сигналов.

Параметр может быть постоянным во всем диапазоне условий эксплуатации.

Параметр может изменяться в зависимости от условий эксплуатации в виде где I02=4kTΔf/R - квадрат неумножаемого шумового тока; k - постоянная Больцмана; Т - абсолютная окружающая температура; Δf - полоса пропускания линейного тракта до входа порогового устройства; R - сопротивление нагрузки фотодиода; IM2=2eI1Δf - квадрат умножаемого шумового тока; е - заряд электрона; I1 = Iт + Iф - первичный обратный ток фотодиода, включающий темновой ток Iт и фототок фона Iф; α - коэффициент, определяемый материалом фотодиода.

На фиг. 1 представлены примеры зависимостей M(t°). На фиг. 2 показаны графики относительных зависимостей отношения сигнал/шум η для германиевого Ge (фиг. 2а) и кремниевого Si (фиг. 2б) лавинных фотодиодов при критической температуре 50°С, а также при отсутствии фона iф=0 и уровне фототока фона Iф=Iт.

Способ осуществляется следующим образом.

В процессе настройки систему помещают в наиболее критичные условия, например, при максимальной температуре t°макс и при воздействии максимального фонового излучения Рф. Напряжение смещения фотодиода уменьшают до минимума, при котором коэффициент лавинного умножения М = 1. Непосредственно на выходе фотодиода или после линейного усиления измеряют среднеквадратическое значение шума σ1. После этого увеличивают напряжение смещения фотодиода, соответственно увеличивая коэффициент лавинного умножения до тех пор, пока среднеквадратическое значение шума в той же точке не увеличится до уровня σМ = 1,73 сл. Достигнутый уровень напряжения смещения, соответствующий этому значению коэффициента лавинного умножения Мкр, сохраняют в настройках системы.

В рабочем режиме при работе в реальных условиях окружающей температуры и яркости фона воспроизводят величину Мкр с поправкой В условиях применения, где требуется постоянство характеристик приемной системы, устанавливают (фиг. 1 - режим постоянной чувствительности). Такой режим бывает необходим в системах передачи данных с высокими требованиями к точности привязки сигналов по времени. В этом случае требуется соблюдать постоянство усиления при обработке сигналов.

При обнаружении слабых оптических сигналов, когда требуется максимальная чувствительность во всех эксплуатационных условиях, поддерживают оптимальный коэффициент лавинного умножения (фиг. 1 - режим наилучшей чувствительности).

После установки лавинного режима устанавливают пороговый уровень так, чтобы частота шумовых превышений этого уровня находилась в заданных пределах. По истечении подготовительного периода приступают к приему сигналов в рабочем режиме.

Оптимальное значение коэффициента лавинного умножения М можно определить следующим образом. На выходе лавинного фотодиода действует эквивалентный квадрат шумового тока

I02 - квадрат неумножаемого шумового тока

е - заряд электрона;

I1 = IT + Iф - первичный обратный ток фотодиода;

IT - темновой ток;

Iф - фототок фона;

Δf - полоса пропускания линейного тракта до входа порогового устройства;

М - коэффициент лавинного умножения;

Мα - шум-фактор лавинного умножения;

α - коэффициент, определяемый материалом фотодиода [4].

Квадрат W отношения шум/сигнал, приведенного к величине М,

JM2=2eI1Δf.

Условие нуля производной

Или

Формула (6) означает, что во всех условиях эксплуатации, влияющих на параметры I02 и JM2 существует соответствующее им значение Мопт, реализуемое данным способом.

Пример 1 (Фиг. 2а).

Германиевый фотодиод. I1=10-7 A. JM2=3,2⋅10-19 А2. α = 1. Оптимальный коэффициент лавинного умножения М = Мопт = 3. Отношение сигнал/шум ц отличается от максимального не более чем на 2% при поддержании коэффициента лавинного умножения в пределах 2,5<М<3,5,

Пример 2 (Фиг. 2б).

Кремниевый фотодиод. I1=10-9 A. JM2=3,2⋅10-21 А2. α = 0,5. Рабочую точку фотодиода поддерживают при М = 25…40. При этом максимальное отношение сигнал/шум, отличается от максимального значения, обеспечиваемого при М = Мопт = 30, не более чем на 2%. На фиг. 2б) пунктиром показана зависимость η(М) при IT = Iф. Видно, что при этом Мопт снижается до уровня Мопт = 20.

Необходимая точность поддержания коэффициента лавинного умножения в окрестности Мопт определяется допустимым ухудшением отношения шум/сигнал следующим из расчетов по формулам (3), (6), относительные результаты которых приведены в таблицах 1-3 для разных значений α и I02.

Из приведенных данных видно, что при постоянном коэффициенте α ухудшение отношения сигнал/шум η = М/σ зависит только от неточности выставления Мопт. и не зависит от соотношения умножаемой и неумножаемой компонент шума. Это упрощает как заводскую регулировку системы, так и осуществление способа в широком диапазоне условий эксплуатации. Из фиг. 2 видно также, что правая часть зависимости W(M) имеет более пологий характер, что позволяет вдвое увеличить допуск на положительное отклонение М при тех же требованиях к стабильности W.

Применение формул (1) и (6) с учетом результатов таблиц 1-3 позволяет установить значения λ = σM1, необходимые для установки оптимального коэффициента лавинного умножения. Эти результаты приведены в таблице 4.

Подстановка в выражение (7) оптимального значения Мопт (6) с учетом неравенства I02 >> JM2 дает значение

которое выполняется во всех реальных условиях (см. табл. 4).

Принципиальное постоянство λ, независимо от типа фотодиода и соотношения неумножаемой и умножаемой составляющих шума обеспечивает методическую состоятельность способа и надежность его реализации.

Таким образом, способ обеспечивает решение поставленной задачи - достижение предельной чувствительности во всех условиях эксплуатации.

Источники информации

1. Росс М. Лазерные приемники. - «Мир», М., 1969 г. - 520 с.

2. Патент РФ №2 248670. Устройство включения лавинного фотодиода в приемнике оптического излучения. 2005 г.

3. US pat. 4,077,718. Receiver for optical radar. 1978. - прототип.

4. Вильнер В.Г., Лейченко Ю.А., Мотенко Б.Н. Анализ входной цепи фотоприемного устройства с лавинным фотодиодом и противошумовой коррекцией. Оптико-механическая промышленность, 1981, №9. - С. 59.

5. Вильнер В. Г. Проектирование пороговых устройств с шумовой стабилизацией порога. - Оптико-механическая промышленность, 1984, №5, с. 39-41.

Источник поступления информации: Роспатент

Showing 1-10 of 71 items.
12.01.2017
№217.015.5ad6

Система регулировки периметра зеемановского лазерного гироскопа

Изобретение относится к гироскопам и измерительной технике и может быть использовано для регулировки периметра зеемановского лазерного гироскопа. Система содержит фотоприемник излучения кольцевого лазера, вход которого является входом излучения кольцевого лазера, оснащенного пьезоприводом и...
Тип: Изобретение
Номер охранного документа: 0002589756
Дата охранного документа: 10.07.2016
25.08.2017
№217.015.bf5e

Устройство для удаления растворенных газов из изоляционного компаунда

Изобретение относится к области герметизирующих составов для электронной техники. Устройство для удаления растворенных газов из изоляционного компаунда состоит из контейнера (3) и соединенных с ним вибраторов (1,2). Вибраторы выполнены с возможностью передачи вибрационных воздействий в...
Тип: Изобретение
Номер охранного документа: 0002617164
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.c1e5

Способ упрочнения оптического контакта диэлектрических поверхностей лазерного гироскопа и генератор струи плазмы для его реализации

Изобретение относится к способу и устройству для низкотемпературного упрочнения оптического контакта диэлектрических поверхностей газоразрядных приборов, в частности резонаторов моноблочных газовых лазеров, в процессе их технологической сборки. Заявленное устройство содержит диэлектрический...
Тип: Изобретение
Номер охранного документа: 0002617697
Дата охранного документа: 26.04.2017
25.08.2017
№217.015.cd67

Способ контроля состояния конструкции инженерно-строительного сооружения

Изобретение относится к измерительной технике и может быть использовано для автоматизированного контроля состояния конструкции здания или инженерно-строительного сооружения в процессе его эксплуатации. Согласно способу в местах диагностирования контролируемой конструкции размещают датчики,...
Тип: Изобретение
Номер охранного документа: 0002619822
Дата охранного документа: 18.05.2017
26.08.2017
№217.015.da1b

Лазер с продольной накачкой

Изобретение относится к лазерной технике. Лазер с продольной накачкой содержит источник излучения накачки, активный элемент, установленный внутри резонатора, включающего глухое и полупрозрачное зеркала. Активный элемент выполнен в виде стержня, по крайней мере один из торцов которого скошен...
Тип: Изобретение
Номер охранного документа: 0002623688
Дата охранного документа: 28.06.2017
26.08.2017
№217.015.da32

Лазер

Изобретение относится к лазерной технике. Лазер содержит активный элемент, выполненный в виде стержня, по крайней мере один из торцов которого скошен относительно его продольной оси так, что угол между нормалью к торцу и продольной осью активного элемента превышает предельный угол полного...
Тип: Изобретение
Номер охранного документа: 0002623810
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.ea9f

Способ определения толщины окисной плёнки алюминия в процессе анодного окисления холодного катода в тлеющем разряде кислорода

Использование: для определения толщины окисной пленки алюминия в процессе анодного окисления холодного катода в тлеющем разряде кислорода. Сущность изобретения заключается в том, что способ определения средней толщины окисной пленки в процессе анодного окисления холодного катода в тлеющем...
Тип: Изобретение
Номер охранного документа: 0002627945
Дата охранного документа: 14.08.2017
29.12.2017
№217.015.f680

Твердотельный лазер

Изобретение относится к лазерной технике. Твердотельный лазер содержит источник излучения накачки, активный элемент, установленный внутри резонатора, включающего глухое и полупрозрачное зеркала. Активный элемент выполнен в виде стержня, по крайней мере один из торцов которого скошен так, что...
Тип: Изобретение
Номер охранного документа: 0002635400
Дата охранного документа: 13.11.2017
19.01.2018
№218.016.00cd

Импульсный твердотельный лазер

Изобретение относится к лазерной технике. Импульсный твердотельный лазер содержит активный элемент, выполненный в виде стержня, оба торца которого скошены так, что угол между нормалью к поверхности торца и продольной осью активного элемента превышает предельный угол полного внутреннего...
Тип: Изобретение
Номер охранного документа: 0002629685
Дата охранного документа: 31.08.2017
20.01.2018
№218.016.19ab

Твердотельный лазер с модуляцией добротности

Изобретение относится к лазерной технике. Твердотельный лазер с модуляцией добротности содержит источник излучения накачки в виде лазерной диодной матрицы, активный элемент, первое и второе зеркала резонатора, а также электрооптический элемент и поляризатор, активный элемент выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002636260
Дата охранного документа: 21.11.2017
Showing 1-10 of 97 items.
20.01.2013
№216.012.1d80

Лазерный измеритель дальности (варианты)

Лазерный измеритель дальности содержит передающий канал для формирования пучка зондирующего излучения и направления его на цель. Передающий канал включает лазерный излучатель и передающую оптическую систему. Параллельный ему приемный канал для приема отраженного целью сигнала включает...
Тип: Изобретение
Номер охранного документа: 0002473046
Дата охранного документа: 20.01.2013
20.02.2013
№216.012.27c6

Лазерный дальномер (варианты)

Лазерный дальномер содержит передающий канал для формирования пучка зондирующего излучения и направления его на цель, включающий лазерный излучатель и передающую оптическую систему. Параллельный ему приемный канал для приема отраженного целью сигнала включает фотоприемное устройство и приемный...
Тип: Изобретение
Номер охранного документа: 0002475702
Дата охранного документа: 20.02.2013
27.09.2013
№216.012.70d1

Генератор импульсов тока

Изобретение относится к технике формирования импульсов тока, в частности к устройствам питания импульсных газонаполненных ламп накачки твердотельных лазеров с разрядом через лампу накопительного конденсатора. Достигаемый технический результат - повышение надежности и сокращение массо-габаритных...
Тип: Изобретение
Номер охранного документа: 0002494532
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.70d2

Способ оптической накачки лазера

Изобретение относится к технике формирования импульсов тока в устройствах оптической накачки лазеров, например в источниках светодиодной накачки или в источниках питания импульсных газонаполненных ламп накачки с разрядом через лампу накопительного конденсатора. Достигаемый технический результат...
Тип: Изобретение
Номер охранного документа: 0002494533
Дата охранного документа: 27.09.2013
10.02.2014
№216.012.9f87

Приемник импульсных оптических сигналов

Изобретение относится к технике приема импульсного оптического излучения, преимущественно к приемникам импульсных лазерных дальномеров и подобных устройств для измерения временных интервалов между оптическими импульсами. Приемник импульсных оптических сигналов, содержащий фотоприемник с...
Тип: Изобретение
Номер охранного документа: 0002506547
Дата охранного документа: 10.02.2014
10.04.2014
№216.012.b12a

Приемник импульсного оптического излучения

Изобретение относится к технике приема импульсного оптического излучения, преимущественно к приемникам импульсных лазерных дальномеров и подобных устройств для измерения временных интервалов между оптическими импульсами. Приемник импульсного оптического излучения, содержащий фотоприемник с...
Тип: Изобретение
Номер охранного документа: 0002511069
Дата охранного документа: 10.04.2014
20.05.2014
№216.012.c4e6

Лазерный дальномер

Изобретение относится к лазерной технике к аппаратуре лазерной дальнометрии. Лазерный дальномер содержит приемное устройство и передающее устройство, включающее объектив излучателя и лазерный излучатель, эквивалентное тело свечения которого габаритами А×В расположено в фокальной плоскости...
Тип: Изобретение
Номер охранного документа: 0002516165
Дата охранного документа: 20.05.2014
10.06.2014
№216.012.ce51

Лазерный дальномер

Изобретение относится к лазерной дальнометрии. Лазерный дальномер содержит приемное устройство и передающее устройство, включающее объектив излучателя и лазерный излучатель, эквивалентное тело свечения которого габаритами А×В расположено в фокальной плоскости объектива излучателя. Объектив...
Тип: Изобретение
Номер охранного документа: 0002518588
Дата охранного документа: 10.06.2014
10.05.2015
№216.013.49b1

Твердотельный лазер

Изобретение относится к лазерной технике. Твердотельный лазер содержит активный элемент и лампу накачки, установленные в осветителе, включающем отражатель, а также резонатор, образованный глухим и полупрозрачным зеркалами. Осветитель выполнен монолитным из высокоотражающего материала и имеет...
Тип: Изобретение
Номер охранного документа: 0002550372
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4afa

Лазер с модуляцией добротности резонатора

Изобретение относится к лазерной технике. Лазер с модуляцией добротности резонатора содержит корпус с отражателем, внутри которого размещены лампа накачки и активный элемент. На его оптической оси с противоположных торцов активного элемента установлены неподвижно закрепленное полупрозрачное...
Тип: Изобретение
Номер охранного документа: 0002550701
Дата охранного документа: 10.05.2015
+ добавить свой РИД