×
17.06.2023
223.018.8147

Результат интеллектуальной деятельности: Способ измерения дальности

Вид РИД

Изобретение

Аннотация: Использование: изобретение относится к лазерной технике, а именно к лазерной дальнометрии. Сущность: способ измерения дальности путем излучения на цель зондирующего лазерного импульса, приема отраженного целью сигнала U(t), дифференцирования его с постоянной времени дифференцирования τ≤t, где t - длительность фронта сигнала U(t), и определения задержки Τ отраженного импульса относительно зондирующего импульса в момент пересечения нуля продифференцированным сигналом U*(t), после чего судят об измеряемой дальности R по формуле R=сТ/2, где с - скорость света, параллельно принимают отраженный сигнал вторым независимым каналом, формируя сигнал U(t)=k U(t), где k≤1/D, D - линейный динамический диапазон первого канала; одновременно дифференцируют сигнал U(t) в таком же режиме, формируя сигнал U*(t); постоянно сравнивают сигнал U*(t) с пороговым уровнем U и, в случае непревышения порога U сигналом U*(t), продолжают обработку в указанном порядке, а в случае превышения - блокируют сигнал U (t), и определяют задержку Τ в момент пересечения нуля продифференцированным импульсом U*(t). Пороговый уровень U устанавливают как можно ближе к максимальной амплитуде сигнала U*(t). Технический результат: обеспечение потенциальной точности измерений в предельно широком рабочем диапазоне оптических сигналов. 1 з.п. ф-лы, 3 ил.

Предлагаемое изобретение относится к лазерной технике и может быть использовано в любой области, где необходимо определять расстояние до удаленного объекта с высокой точностью.

Известен способ определения дальности до удаленного объекта путем зондирования его лазерным импульсом, приема отраженного объектом импульса излучения и определения временного интервала между моментами излучения зондирующего импульса и приема отраженного объектом импульса, по задержке которого судят о дальности до объекта [1].

Недостатком этого способа является низкая точность временной фиксации отраженного импульса в широком амплитудном диапазоне.

В пределах линейного диапазона амплитуд высокая точность временной фиксации сигнала обеспечивается методом нуля производной [2], однако этот метод неэффективен за пределами линейного диапазона, а идеальное дифференцирование технически нереализуемо.

Известен способ измерения дальности, позволяющий сократить динамический диапазон принимаемых сигналов с помощью управляемого затвора в приемном канале [3]. Этот способ реализуется за счет существенного усложнения аппаратуры, которая при этом вносит значительные потери из-за введения в приемный тракт устройства задержки и управляемого затвора.

Наиболее близким по технической сущности к предлагаемому способу является способ измерения дальности путем излучения на цель зондирующего лазерного импульса, приема отраженного целью сигнала U(t) дифференцировании его с постоянной времени дифференцирования τ≤tфр, где tфр - длительность фронта сигнала U(t) и определения задержки Τ отраженного импульса относительно зондирующего импульса по моменту пересечения нуля продифференцированным импульсом U*(t), после чего судят об измеряемой дальности R по формуле R=сТ/2, где с - скорость света [4].

Данное техническое решение характеризуется остаточной погрешностью при значительных перегрузках за пределами линейного динамического диапазона.

Задачей изобретения является обеспечение потенциальной точности измерений в предельно широком рабочем диапазоне оптических сигналов.

Указанная задача решается за счет того, что в известном способе измерения дальности путем излучения на цель зондирующего лазерного импульса, приема отраженного целью сигнала U(t), дифференцирования его с постоянной времени дифференцирования τ≤tфр, где tфр - длительность фронта сигнала U(t), и определения задержки Τ отраженного импульса относительно зондирующего импульса в момент пересечения нуля продифференцированным сигналом U*(t), после чего судят об измеряемой дальности R по формуле R=сТ/2, где с -скорость света, параллельно принимают отраженный сигнал вторым независимым каналом, формируя сигнал U2(t)=k U(t), где k≤1/D1; D1 - линейный динамический диапазон первого канала, одновременно дифференцируют сигнал U2(t) в таком же режиме, формируя сигнал U2*(t); постоянно сравнивают сигнал U*(t) с пороговым уровнем Uпор и, в случае непревышения порога Uпор сигналом U*(t), продолжают обработку в указанном порядке, а в случае превышения - блокируют сигнал U (t), и определяют задержку Τ в момент пересечения нуля продифференцированным импульсом U2*(t).

Пороговый уровень Uпор устанавливают как можно ближе к максимальной амплитуде сигнала U*(t).

На фиг 1 представлены эпюры сигналов в текущем времени t. На фиг.1а) показана форма сигналов U (t) и U*(t) в пределах линейного диапазона и момента пересечения нуля сигналом U*(t). На фиг.1б) - характер сигналов в непосредственной близости от уровня ограничения Uогр, а также влияние ограничения сигнала U(t) на момент пересечения нуля сигналом U*(t). На фиг.2 представлена структура фотоприемного тракта, реализующего предложенный способ. На фиг.3 - схема устройства временной привязки.

Способ характеризуется тем, что отраженное целью зондирующее излучение одновременно принимают по двум каналам. Вольтовая чувствительность приемных каналов максимально различается, но не более, чем в D1 раз, где D1 - линейный динамический диапазон первого канала с более высокой чувствительностью. В каждом из каналов дифференцируют принятый сигнал с одинаковой постоянной времени τ≤tфр, где tфр - длительность фронта сигнала U(t). При этом продифференцированный сигнал U*(t) приобретает отрицательный выброс, пересекающий нулевой уровень с постоянной временной привязкой То к сигналу U(t) независимо от его амплитуды во всем линейном диапазоне, в котором сигнал U(t) сохраняет свою форму (фиг.1а).

Если амплитуда сигнала U(t) выходит за пределы линейного диапазона, превышая уровень ограничения Uогр (фиг.1б), то плоская вершина ограниченного импульса U(t) искажает форму отклика U*огр(t), и последний пересекает нулевой уровень с задержкой ΔΤ относительно момента То (фиг.1б).

Согласно предлагаемому способу первый приемный канал блокируют при достижении импульсом U*(t) порогового уровня Uпор. При этом продолжает действовать второй канал, осуществляющий такую же процедуру временной привязки сигнала, но с чувствительностью в к раз меньше, то есть в пределах линейного диапазона D2 второго канала. Таким образом, динамический диапазон принимаемых сигналов, в котором обеспечивается высокая точность метода пересечения нуля, расширяется до величины D=D1⋅D2. При равенстве D1 и D2 динамический диапазон предлагаемого способа D ~ D12.

Пример.

Диапазон измеряемых дальностей Rмин=0,1 км. Rмакс=10 км. Коэффициент затухания излучения в атмосфере при максимальной дальности τ=0,2. Диапазон амплитуд принимаемых сигналов по мощности

DP=(Rмакс/Rмин)2/τ=5⋅104.

Минимальный регистрируемый первым каналом сигнал равен Uмин=10 мВ. Порог ограничения U*огр=5 В. Линейный динамический диапазон D1=U*огр/Uмин=5⋅102.

D1<<Dp. При такой перегрузке ошибка временной фиксации отраженного сигнала может достигать 3 м по шкале дальностей [5].

Согласно предлагаемому способу эффективный линейный диапазон приемного тракта увеличивается до D ~ D12=2,5⋅105, то есть диапазон принимаемых сигналов перекрывается с запасом 5 раз. Ошибка временной фиксации определяется при этом техническими факторами второго порядка [6] и может составлять сотые доли метра.

Структура приемного тракта, реализующего способ, приведена на схеме фиг.2.

Первый фотоприемник 1 и второй фотоприемник 2 подключены соответственно ко входам первого устройства временной привязки 3 и аналогичного второго устройства временной привязки 4. Выходы устройств временной привязки параллельно подключены ко входам измерителя временных интервалов 5. Между выходом первого фото приемника и входом первого устройства временной привязки введен ключ 6, управляемый пороговым устройством 7, вход которого подключен к выходу дифференцирующего звена 8 в составе первого устройства временной привязки 3 (фиг.3).

Устройство временной привязки 3, 4 (фиг.3) состоит из дифференцирующего звена 8 в виде дифференцирующей RC-цепочки и включенного на ее выходе нуль-компаратора 9. Постоянная времени τ=RC дифференцирующей цепочки 8 должна быть как можно меньше, чтобы исключить влияние на точность временной привязки разброса параметров RC и их температурного дрейфа. С другой стороны, при слишком малой величине τ падает амплитуда сигнала U*(t) и, когда она становится соизмеримой с дрейфом нуля нуль-компаратора, возрастает не только ошибка временной фиксации, но и вероятность пропуска фиксации сигнала. В зависимости от характеристик нуль-компаратора и разброса параметров дифцепочки практически постоянную времени τ=RC выбирают равной (0,1-1)tфр, где tфр - длительность фронта сигнала U(t).

Предлагаемое изобретение позволяет эффективно согласовывать противоречивые требования к точности измерений и динамическому диапазону входных сигналов.

Тем самым, подтверждено выполнение поставленной задачи - обеспечение потенциальной точности измерений в предельно широком рабочем диапазоне оптических сигналов.

Источники информации

1. В.А. Смирнов «Введение в оптическую радиоэлектронику». Изд. «Советское радио», Москва, 1973 г., С.189.

2. Б.Н. Митяшев Определение временного положения импульсов при наличии помех. "Советское радио", М., 1962 г., стр. 120.

3. Radiation receiver with active optical protection system. US patent No 6,548,807.

4. В.Г. Вильнер и др. Методы повышения точности импульсных лазерных дальномеров. Электроника. Наука, технология, бизнес. Москва, 2008, №3. С.118-123 - прототип.

5. В.Г. Вильнер и др. Устройство временной привязки лазерного дальномера. Патент РФ №2341770.

6. Е.А. Мелешко. Интегральные схемы в наносекундной ядерной электронике. Атомиздат, М., 1977 г., стр. 76-78.

Источник поступления информации: Роспатент

Showing 31-40 of 71 items.
24.10.2019
№219.017.d9b1

Лазер с поперечной диодной накачкой

Изобретение относится к лазерной технике, а именно к импульсным твердотельным лазерам. Лазер с поперечной диодной накачкой содержит активный элемент и параллельно расположенный источник накачки в виде линейки лазерных диодов. В состав введены два отражателя, установленных вдоль продольной оси...
Тип: Изобретение
Номер охранного документа: 0002703934
Дата охранного документа: 22.10.2019
09.02.2020
№220.018.0155

Способ проверки вероятности достоверных измерений

Изобретение относится к технике измерений при воздействии помех, например, в лазерной дальнометрии или в системах охранной сигнализации. Способ проверки вероятности р достоверных измерений прибора, заключающийся в n-кратном повторении измерений, определении количества m недостоверных измерений...
Тип: Изобретение
Номер охранного документа: 0002713720
Дата охранного документа: 06.02.2020
13.02.2020
№220.018.0251

Способ изготовления окисной пленки холодного катода газового лазера в тлеющем разряде постоянного тока

Изобретение относится к области квантовой электроники и может быть использовано при изготовлении газоразрядных приборов, в частности холодных катодов моноблочных газовых лазеров. Технический результат, заключающийся в расширении области применения способа с целью обеспечения повышенной...
Тип: Изобретение
Номер охранного документа: 0002713915
Дата охранного документа: 11.02.2020
23.02.2020
№220.018.0501

Активный элемент твердотельного лазера

Изобретение относится к лазерной технике, в частности, к твердотельным лазерам. Активный элемент твердотельного лазера представляет собой легированный активирующей примесью оптический стержень, на внешней поверхности стержня вдоль всей его длины выполнена канавка с минимально возможной шириной...
Тип: Изобретение
Номер охранного документа: 0002714863
Дата охранного документа: 19.02.2020
29.02.2020
№220.018.0723

Способ контроля вероятности достоверных измерений

Изобретение относится к технике обнаружения сигналов при воздействии помех, например, в лазерной дальнометрии или в системах охранной сигнализации. Техническим результатом является сокращение объема испытаний при обеспечении необходимой надежности оценки вероятности недостоверных измерений....
Тип: Изобретение
Номер охранного документа: 0002715167
Дата охранного документа: 25.02.2020
17.04.2020
№220.018.1517

Способ автоматической стабилизации частоты пересечения порогового уровня выбросами шумового процесса

Изобретение относится к приему сигналов, в частности к технике выделения сигналов из шума. Технический результат изобретения заключается в сокращении времени выхода на рабочий режим порогового обнаружителя сигналов при обеспечении максимальной вероятности обнаружения сигнала. Согласно...
Тип: Изобретение
Номер охранного документа: 0002718856
Дата охранного документа: 15.04.2020
20.05.2020
№220.018.1e1c

Пороговое устройство с шумовой стабилизацией порога

Изобретение относится к приему сигналов, в частности к технике выделения сигналов из шума. Технический результат изобретения заключается в сокращении времени выхода на рабочий режим. В пороговое устройство с шумовой стабилизацией порога, содержащее пороговое устройство с сигнальным и...
Тип: Изобретение
Номер охранного документа: 0002721174
Дата охранного документа: 18.05.2020
04.06.2020
№220.018.23e9

Способ измерения профиля поверхности оптических деталей с помощью лазерной фазосдвигающей интерферометрии

Изобретение относится к области бесконтактных оптических измерений и может быть использовано для измерения профиля поверхности оптических деталей. Способ заключается в том, что формируют пучок непрерывного одномодового излучения лазера с длиной волны λ, делят его в интерферометре по схеме Физо...
Тип: Изобретение
Номер охранного документа: 0002722631
Дата охранного документа: 02.06.2020
24.06.2020
№220.018.29b1

Система регулировки периметра зеемановского лазерного гироскопа

Изобретение относится к гироскопам и измерительной технике и может быть использовано для регулировки периметра зеемановского лазерного гироскопа. Система регулировки периметра зеемановского лазерного гироскопа дополнительно содержит включенные в кольцевой лазер второе зеркало с пьезоприводом и...
Тип: Изобретение
Номер охранного документа: 0002724242
Дата охранного документа: 22.06.2020
25.06.2020
№220.018.2b4f

Способ десинхронизации динамических зон на частотной характеристике лазерного гироскопа

Изобретение относится к лазерной технике, а именно к лазерной гироскопии. Способ десинхронизации динамических зон на частотной характеристике лазерного гироскопа включает создание быстрой знакопеременной частотной подставки с амплитудой, многократно превышающей ширину зоны захвата, и периодом...
Тип: Изобретение
Номер охранного документа: 0002724306
Дата охранного документа: 22.06.2020
Showing 31-40 of 97 items.
25.08.2017
№217.015.ce0e

Лазерный дальномер

Изобретение относится к лазерной технике, а именно к лазерной дальнометрии. Лазерный дальномер содержит приемное устройство, включающее приемный объектив и фотоприемник, и передающее устройство, включающее объектив и два лазерных излучателя, выходные пучки излучения которых поляризованы и...
Тип: Изобретение
Номер охранного документа: 0002620765
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.ceda

Лазерный дальномер с оптическим сумматором излучения

Изобретение относится к лазерной дальнометрии. Лазерный дальномер с оптическим сумматором излучения содержит приемное устройство и передающее устройство, включающее объектив и два излучателя в виде полупроводниковых лазерных диодов, выходные пучки излучения которых поляризованы и совмещены с...
Тип: Изобретение
Номер охранного документа: 0002620768
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.d351

Лазерный дальномер с сумматором зондирующих пучков

Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии. Лазерный дальномер с сумматором зондирующих пучков содержит приемное устройство и передающее устройство, включающее объектив и два лазерных излучателя со взаимно параллельными излучающими площадками, выходные...
Тип: Изобретение
Номер охранного документа: 0002621476
Дата охранного документа: 06.06.2017
26.08.2017
№217.015.d48d

Дальномер с комбинированным лазерным полупроводниковым излучателем

Изобретение относится к лазерной дальнометрии. Лазерный дальномер с комбинированным лазерным полупроводниковым излучателем содержит приемное устройство и передающее устройство, включающее объектив и раздельно размещенные лазерные излучатели, выполненные в виде полупроводникового лазерного...
Тип: Изобретение
Номер охранного документа: 0002622229
Дата охранного документа: 13.06.2017
26.08.2017
№217.015.da1b

Лазер с продольной накачкой

Изобретение относится к лазерной технике. Лазер с продольной накачкой содержит источник излучения накачки, активный элемент, установленный внутри резонатора, включающего глухое и полупрозрачное зеркала. Активный элемент выполнен в виде стержня, по крайней мере один из торцов которого скошен...
Тип: Изобретение
Номер охранного документа: 0002623688
Дата охранного документа: 28.06.2017
26.08.2017
№217.015.da32

Лазер

Изобретение относится к лазерной технике. Лазер содержит активный элемент, выполненный в виде стержня, по крайней мере один из торцов которого скошен относительно его продольной оси так, что угол между нормалью к торцу и продольной осью активного элемента превышает предельный угол полного...
Тип: Изобретение
Номер охранного документа: 0002623810
Дата охранного документа: 29.06.2017
29.12.2017
№217.015.f680

Твердотельный лазер

Изобретение относится к лазерной технике. Твердотельный лазер содержит источник излучения накачки, активный элемент, установленный внутри резонатора, включающего глухое и полупрозрачное зеркала. Активный элемент выполнен в виде стержня, по крайней мере один из торцов которого скошен так, что...
Тип: Изобретение
Номер охранного документа: 0002635400
Дата охранного документа: 13.11.2017
19.01.2018
№218.016.00bc

Лазерный измеритель дальности с оптическим сумматором

Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии. Лазерный измеритель дальности с оптическим сумматором содержит приемное устройство и передающее устройство, включающее объектив и два излучателя в виде полупроводниковых лазерных диодов, выходные пучки...
Тип: Изобретение
Номер охранного документа: 0002629684
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.00cd

Импульсный твердотельный лазер

Изобретение относится к лазерной технике. Импульсный твердотельный лазер содержит активный элемент, выполненный в виде стержня, оба торца которого скошены так, что угол между нормалью к поверхности торца и продольной осью активного элемента превышает предельный угол полного внутреннего...
Тип: Изобретение
Номер охранного документа: 0002629685
Дата охранного документа: 31.08.2017
20.01.2018
№218.016.19ab

Твердотельный лазер с модуляцией добротности

Изобретение относится к лазерной технике. Твердотельный лазер с модуляцией добротности содержит источник излучения накачки в виде лазерной диодной матрицы, активный элемент, первое и второе зеркала резонатора, а также электрооптический элемент и поляризатор, активный элемент выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002636260
Дата охранного документа: 21.11.2017
+ добавить свой РИД