×
17.06.2023
223.018.7d96

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ЭЛЕКТРОДВИГАТЕЛЯ ПОСТОЯННОГО ТОКА

Вид РИД

Изобретение

Аннотация: Изобретение относится к автоматизированному электроприводу и может быть использовано для построения адаптивных систем управления двигателями постоянного тока. Способ определения параметров электродвигателя постоянного тока заключается в том, что в течение пуска и работы электродвигателя одновременно измеряют мгновенные величины тока и напряжения в якорной обмотке и частоту вращения выходного вала, затем дифференцируют измеренные мгновенные величины тока в якорной обмотке и частоты вращения выходного вала, получая производные тока в якорной обмотке и частоты вращения выходного вала, выполняют две временные задержки мгновенных величин тока в якорной обмотке и частоты вращения выходного вала и одну временную задержку производных тока в якорной обмотке и частоты вращения выходного вала, а также мгновенных величин напряжения в якорной обмотке. Полученные текущие и задержанные единожды и дважды мгновенные величины тока и напряжения в якорной обмотке, частоты вращения выходного вала и производные тока в якорной обмотке и частоты вращения выходного вала используют для определения активного сопротивления якорной обмотки и индуктивности якорной обмотки электродвигателя постоянного тока в режиме реального времени. Для определения эквивалентного момента инерции, приведенного к валу электродвигателя, и момента сопротивления нагрузки на валу электродвигателя постоянного тока в режиме реального времени используют запомненные текущие и задержанные мгновенные величины тока и производную частоты вращения выходного вала. Техническим результатом при реализации заявленного решения является расширение арсенала средств аналогичного назначения. 4 ил., 1 табл.

Изобретение относится к автоматизированному электроприводу и может быть использовано для построения адаптивных систем управления двигателями постоянного тока.

Известен способ определения параметров электродвигателя постоянного тока [RU 2705939 С1, МПК G01R 31/34 (2006.01), СПК G01R 31/343 (2019.08), опубл. 12.11.2019], выбранный в качестве прототипа, заключающийся в том, что одновременно измеряют мгновенные величины тока и напряжения в якорной обмотке и частоту вращения выходного вала. Измеренные мгновенные величины тока и напряжения в якорной обмотке и частоту вращения выходного вала дифференцируют, получая производные тока и напряжения в якорной обмотке и частоты вращения выходного вала. Последовательно выполняют две временные задержки мгновенных величин и производных тока и напряжения в якорной обмотке, частоты вращения выходного вала. Полученные текущие и задержанные единожды и дважды мгновенные величины и производные тока и напряжения в якорной обмотке и частоты вращения выходного вала запоминают и используют для определения активного сопротивления якорной обмотки, индуктивности якорной обмотки, коэффициента, характеризующего связь между током и электромагнитным моментом электродвигателя постоянного тока в режиме реального времени следующим образом:

где R - активное сопротивление якорной обмотки, Ом; L - индуктивность якорной обмотки, Гн;

с - коэффициент, характеризующий связь между током и электромагнитным моментом электродвигателя постоянного тока, В⋅с/рад;

U, Uz1, Uz2 - мгновенные величины напряжения в якорной обмотке без задержки, единожды и дважды задерженные, В;

I, Iz1, Iz2 - мгновенные величины тока в якорной обмотке без задержки, единожды и дважды задерженные, А;

ω, ωz1, ωz2 - мгновенные величины частоты вращения выходного вала без задержки, единожды и дважды задерженные, рад/с;

- мгновенные величины производной тока в якорной обмотке без задержки, единожды и дважды задерженные, А/с.

Полученное значение коэффициента с, характеризующего связь между током и электромагнитным моментом электродвигателя постоянного тока и запомненные мгновенные величины и производные тока и напряжения в якорной обмотке и частоты вращения выходного вала используют для определения эквивалентного момента инерции, приведенного к валу электродвигателя и момента сопротивления нагрузки на валу электродвигателя постоянного тока в режиме реального времени следующим образом:

где J - эквивалентный момент инерции, приведенного к валу электродвигателя, кг⋅м2;

Мс - момент сопротивления нагрузки на валу электродвигателя постоянного тока, Н⋅м;

- мгновенные величины производной частоты вращения выходного вала без задержки и единожды задерженные, рад/с2.

С помощью этого способа нельзя одновременно определять активное сопротивление и индуктивность якорной обмотки, эквивалентный момент инерции, приведенный к валу электродвигателя и момент сопротивления нагрузки на валу электродвигателя постоянного тока в режиме реального времени.

Техническим результатом изобретения является расширение арсенала средств аналогичного назначения.

Предложенный способ определения параметров электродвигателя постоянного тока, также как в прототипе, включает одновременное измерение в течение пуска и работы электродвигателя мгновенных величин тока и напряжения в якорной обмотке и частоты вращения выходного вала, дифференцирование измеренных мгновенных величин тока в якорной обмотке и частоты вращения выходного вала, получая производные тока в якорной обмотке и частоты вращения выходного вала, выполнение двух временных задержек мгновенных величин тока в якорной обмотке и частоты вращения выходного вала и выполнение одной временной задержки производных тока в якорной обмотке и частоты вращения выходного вала, а также мгновенных величин напряжения в якорной обмотке, запоминание полученных текущих и задержанных единожды и дважды мгновенных величин и производных тока и напряжения в якорной обмотке и частоты вращения выходного вала и их использование для определения активного сопротивления и индуктивности якорной обмотки, эквивалентного момента инерции, приведенного к валу электродвигателя и момента сопротивления нагрузки на валу электродвигателя постоянного тока в режиме реального времени.

Согласно изобретению полученные текущие и задержанные мгновенные величины тока и напряжения в якорной обмотке, частоты вращения выходного вала и производные тока в якорной обмотке и частоты вращения выходного вала используют для определения активного сопротивления якорной обмотки и индуктивности якорной обмотки электродвигателя постоянного тока в режиме реального времени следующим образом:

где а1=[I(k) DI(k)];

a2=[I(k) DI(k-n)];

R - активное сопротивление якорной обмотки, Ом;

L - индуктивность якорной обмотки, Гн;

с - коэффициент, характеризующий связь между током и электромагнитным моментом электродвигателя постоянного тока, определенный по паспортным данным, В⋅с/рад;

U(k), U(k-n) - мгновенные величины напряжения в якорной цепи без задержки и с задержанные на n шагов, соответственно, В;

I(k), I(k-n) - мгновенные величины тока в якорной обмотке без задержки и задержанные на n шагов, соответственно, А;

ω(k), ω(k-n) - мгновенные величины тока в якорной обмотке без задержки и задержанные на n шагов, соответственно, рад/с;

DI(k), DI(k-n), - мгновенные величины производной тока в якорной обмотке без задержки и задержанные на n шагов, соответственно, А/с;

Т - знак транспонирования;

р(k), р(k-n), р(k-2n) - матрица вычисленных значений на текущем шаге, предыдущем шаге и шаге до него, соответственно;

k - текущий шаг вычислений.

Запомненные текущие и задержанные мгновенные величины тока и производную частоты вращения выходного вала используют для определения эквивалентного момента инерции, приведенного к валу электродвигателя и момента сопротивления нагрузки на валу электродвигателя постоянного тока в режиме реального времени следующим образом:

где b1=[1Dω(k)];

b2=[1Dω(k -n)];

Мс - момент сопротивления нагрузки на валу электродвигателя постоянного тока, Н⋅м;

J - эквивалентный момент инерции, приведенного к валу электродвигателя, кг⋅м2;

Dω(k), Dω(k-n) - мгновенные величины производной частоты вращения выходного вала без задержки и единожды задерженные, соответственно, рад/с2;

s(k), s(k-n), s(k-2n) - матрица вычисленных значений на текущем шаге, предыдущем шаге и шаге до него, соответственно.

Предложенный способ, в отличие от прототипа, позволяет определять в режиме реального времени активное сопротивление якорной обмотки, индуктивность якорной обмотки, эквивалентный момент инерции, приведенный к валу электродвигателя и момент сопротивления нагрузки на валу электродвигателя постоянного тока. Для этого не нужно проводить вторую временную задержку мгновенных величин напряжения, и вычислять их производные, требуется хранить в памяти только по одному значению задержанных значений производных тока в якорной обмотке и частоты вращения выходного вала двигателя вместо двух значений, как в прототипе, что в совокупности обеспечивает лучшее быстродействие и меньшие затраты вычислительных ресурсов.

На фиг. 1 показана схема устройства для определения параметров электродвигателя постоянного тока.

На фиг. 2 представлены графики переходных процессов тока I(t) и напряжения U(t) в якорной обмотке и частоты вращения выходного вала ω(t). Эксперимент проводили в различных режимах работы: I - пуск и работа двигателя на холостом ходу; II - «наброс» нагрузки и работа двигателя под нагрузкой; III - «сброс» нагрузки и работа двигателя на холостом ходу; IV - реверс двигателя и работа на холостом ходу.

На фиг. 3 представлены графики переходных процессов тока, где I(t) - экспериментальная кривая тока в якорной обмотке, - расчетная кривая тока в якорной обмотке (I - пуск и работа двигателя на холостом ходу; II - «наброс» нагрузки и работа двигателя под нагрузкой; III - «сброс» нагрузки и работа двигателя на холостом ходу; IV - реверс двигателя и работа на холостом ходу).

На фиг. 4 приведены графики переходных процессов частоты вращения выходного вала, где ω(t) - экспериментальная кривая частоты вращения выходного вала; - расчетная кривая частоты вращения выходного вала (I - пуск и работа двигателя на холостом ходу; II - «наброс» нагрузки и работа двигателя под нагрузкой; III - «сброс» нагрузки и работа двигателя на холостом ходу; IV - реверс дивгателя и работа на холостом ходу).

В таблице 1 представлены параметры двигателя постоянного тока, определенные с помощью предложенного способа.

Способ определения параметров электродвигателя постоянного тока осуществлен с помощью устройства (фиг. 1), которое содержит датчик напряжения 1 (ДН) и датчик тока 2 (ДТ), подключенные к якорной обмотке электродвигателя постоянного тока, а также датчик частоты вращения выходного вала 3 (ДЧВ), который установлен на валу электродвигателя. К датчику тока 2 (ДТ), и датчику частоты вращения выходного вала 3 (ДЧВ) подключен блок дифференцирования 4 (БД). К датчику напряжения 1 (ДН), датчику тока 2 (ДТ), датчику частоты вращения выходного вала 3 (ДЧВ) и к блоку дифференцирования 4 (БД) последовательно подключены первый блок временной задержки 5 (БВ31), второй блок временной задежки 6 (БВ32), блок памяти 7 (БП), блок определения электрических параметров 8 (БОЭП). К блоку памяти 7 (БП) подключен блок определения механических параметров 9 (БОМП). Датчик напряжения 1 (ДН), датчик тока 2 (ДТ), датчик частоты вращения выходного вала 3 (ДЧВ), блок дифференцирования 4 (БД), первый блок временной задержки 5 (БВ31) и второй блок временной задержки 6 (БВ32) подключены к блоку памяти 7 (БП). Управляющие входы блока памяти 7 (БП), блока определения электрических параметров 8 (БОЭП) и блока определения электромеханических параметров 9 (БОМП) соединены с системой управления электродвигателя постоянного тока (не показана на фиг. 1). Блок определения электрических параметров 8 (БОЭП) и блок определения электромеханических параметров 9 (БОМП) связаны с устройством вывода информации 10 (УВИ).

В качестве датчика тока 1 (ДТ) использован промышленный прибор КЭИ-0,1. В качестве датчика напряжения 2 (ДН) использован датчик напряжения LEM. В качестве датчика частоты вращения выходного вала 3 (ДЧВ) может быть использован тахогенератор. Блок дифференцирования 4 (БД), первый блок временной задержки 5 (БВ31), второй блок временной задержки 6 (БВ32), блок памяти 7 (БП), блок определения электрических параметров 8 (БОЭП), блок определения электромеханических параметров 9 (БОМП) и система управления двигателем постоянного тока выполнены на базе микроконтроллера типа TMS320C28346 фирмы Texas Instruments.

Для проверки работоспособности предложенного способа определения параметров электродвигателя постоянного тока датчик напряжения 1 (ДН) и датчик тока 2 (ДТ) были подключены к якорной обмотке электродвигателя постоянного тока (Uн=220 В, ωн=157 рад/с, с=1,312 В⋅с/рад). Датчик частоты вращения выходного вала 3 (ДЧВ) был установлен на валу электродвигателя постоянного тока. В течение пуска и работы электродвигателя постоянного тока одновременно измерили мгновенные величины тока и напряжения в якорной обмотке и частоту вращения выходного вала (фиг. 2). Мгновенные величины тока в якорной обмотке и частоту вращения выходного вала передали в блок пямяти 7 (БП) и в блок дифференцирования 4 (БД), где получили производные тока в якорной обмотке и частоты вращения выходного вала. Мгновенные величины с датчиков напряжения 1 (ДН), тока 2 (ДТ) и частоты вращения выходного вала 3 (ДЧВ), производные тока в якорной обмотке и частоты вращения выходного вала с блока дифференцирования 4 (БД) передали в первый блок временной задержки 5 (БВ31), а затем задержанные мгновенные величины тока и частоты вращения вала передали во второй блок временной задержки 6 (БВ32), где последовательно выполнили две временные задержки мгновенных величин тока в якорной обмотке и частоты вращения выходного вала и одну временную задержку производных тока в якорной обмотке и частоты вращения выходного вала, мгновенной величины напряжения в якорной обмотке на 300-10-6 секунд. В результате получили текущие, задержанные единожды и дважды значения мгновенных величин тока в якорной обмотке и частоты вращения выходного вала, текущие и единожды задержанные значения мгновенных величин напряжения в якорной цепи и производных тока якорной обмотке и частоты вращения выходного вала.

Полученные текущие, задержанные единожды и дважды мгновенные величины тока в якорной обмотке и частоты вращения выходного вала I(k), I(k-n), ω(k), ω(k-n), текущие и задержанные единожды мгновенные величины напряжения в якорной обмотке U(k), U(k-n) и производные тока в якорной обмотке DI(k), DI(k-n) передали в блок памяти 7 (БП).

В момент включения в сеть электродвигателя постоянного тока система управления подавала на управляющий вход блока памяти 7 (БП) сигнал о пуске электродвигателя постоянного тока. По этому сигналу в течение пуска и работы электродвигателя постоянного тока с временной задержкой начали запись мгновенных величин и производных тока в якорной обмотке и частоты вращения выходного вала. Одновременно в момент включения в сеть электродвигателя постоянного тока система управления подала сигнал на управляющие входы блока определения электрических параметров 8 (БОЭП) и на управляющие входы блока определения механических параметров 9 (БОМП). Передачу сигналов от блока памяти 7 (БП) в блок определения электрических параметров 8 (БОЭП) осуществили с временной задержкой равной 300-10-6. В блоке определения электрических параметров 8 (БОЭП) произвели определение активного сопротивления якорной обмотки, индуктивности якорной обмотки в режиме

где a1=[I(k) DI(k)];

a2=[I(k) DI(k-n)];

R - активное сопротивление якорной обмотки, Ом;

L - индуктивность якорной обмотки, Гн;

с - коэффициент, характеризующий связь между током и электромагнитным моментом электродвигателя постоянного тока, определенный по паспортным данным, В⋅с/рад;

U(k), U(k-n) - мгновенные величины напряжения в якорной цепи без задержки и задержанные на n шагов, соответственно, В;

I(k), I(k-n) - мгновенные величины тока в якорной обмотке без задержки и задержанные на n шагов, соответственно, А;

ω(k), ω(k-n) - мгновенные величины тока в якорной обмотке без задержки и задержанные на n шагов, соответственно, рад/с;

DI(k), DI(k-n) - мгновенные величины производной тока в якорной обмотке без задержки и задержанные на n шагов, соответственно, А/с;

Т - знак транспонирования;

p(k), р(k-n), р(k-2n) - матрица вычисленных значений на текущем шаге, предыдущем и шаге до него, соответственно;

k - текущий шаг вычислений.

Из блока памяти 7 (БП) запомненные текущие задержанные единожды и дважды мгновенные величины тока в якорной обмотке, текущие и задержанные единожды производные частоты вращения выходного вала Dω(k), Dω(k-n) передали на блок определения электромеханических параметров 9 (БОМП), где определили эквивалентный момент инерции, приведенный к валу электродвигателя и момент сопротивления нагрузки на валу электродвигателя постоянного тока в режиме реального времени следующим образом:

где b1=[1Dω(k)];

b2=[lDω(k-n)];

Мс - момент сопротивления нагрузки на валу электродвигателя постоянного тока, Н⋅м;

J - эквивалентный момент инерции, приведенного к валу электродвигателя, кг⋅м2;

Dω(k), Dω(k - n) - мгновенные величины производной частоты вращения выходного вала без задержки и единожды задерженные, соответственно, рад/с2;

s(k), s(k-n), s(k-2n) - матрица вычисленных значений на текущем шаге, предыдущем шаге и шаге до него, соответственно.

Результаты определения электрических и электромеханических параметров, поступившие в устройство вывода информации 10 (УВИ) показаны в таблице 1.

Проверку правильности определения параметров электродвигателя постоянного тока осуществляли:

1. Путем сравнения определенных значений параметров двигателя постоянного тока с реальными значениями параметров, указанных в паспортных данных двигателя постоянного тока (таблица 1). Определили относительную погрешность между реальными значениями параметров асинхронного электродвигателя и параметрами, найденными заявленным способом. Относительная погрешность каждого из параметров составила менее 1%, что является допустимым в электроприводах общего назначения.

2. Путем сравнения переходных процессов расчетного тока и экспериментального тока I(t) в якорной обмотке (фиг. 3), сравнения переходных процессов расчетной частоты вращения выходного вала и экспериментальной частотой вращения выходного вала ω(t) (фиг. 4). Для расчета переходных процессов использовали математическую модель электродвигателя постоянного тока [Проектирование и исследование автоматизированных электроприводов. Часть 3. Электрические машины постоянного тока в системах автоматизированного электропривода / Л.С. Удут, О.П. Мальцева, Н.В. Кояин. - Томск: Изд. ТПУ, 2007. - С. 17-37]. После расчета переходных процессов тока в якорной обмотке и частоты вращения выходного вала электродвигателя постоянного тока с идентифицированными параметрами были определены критерии соответствия, которые показали относительные отклонения оценок тока в якорной обмотке σI=1,14% и частоты вращения выходного вала σω=1,05% от экспериментальных значений. Из приведенного сравнения видно, что расчетные графики переходных процессов тока в якорной обмотке и частоты вращения выходного вала соответствуют экспериментальным, следовательно, погрешность определения параметров незначительна.

3. Момент сопротивления нагрузки на валу электродвигателя постоянного тока Мс невозможно измерить, и данная величина имеет переменный характер, связанный с режимом работы двигателя. Однако Мс влияет на внешний вид переходных характеристик тока в якорной обмотке и частоты вращения выходного вала электродвигателя постоянного тока.

Проверку правильности определения момента сопротивления нагрузки на валу электродвигателя постоянного тока осуществили путем сравнения переходных процессов расчетного тока и экспериментального тока I(t) в якорной обмотке (фиг. 3) и сравнения переходных процессов расчетной частоты вращения выходного вала и экспериментальной частотой вращения выходного вала ω(t) (фиг. 4) в различных режимах работы двигателя: пуск и работа двигателя на холостом ходу; «наброс» нагрузки и работа двигателя под нагрузкой; «сброс» нагрузки и работа двигателя на холостом ходу; реверс двигателя и работа на холостом ходу. Из приведенного сравнения видно, что расчетные графики переходных процессов тока в якорной обмотке и частоты вращения выходного вала соответствуют экспериментальным как по значениям, так и по знаку, следовательно, момент сопротивления нагрузки на валу электродвигателя постоянного тока Мс определен верно на всех участках работы двигателя.

Источник поступления информации: Роспатент

Showing 1-10 of 255 items.
10.07.2015
№216.013.606e

Способ получения поливинилацетата

Настоящее изобретение относится к способу получения поливинилацетата. Описан способ получения поливинилацетата суспензионной полимеризацией с использованием инициатора, отличающийся тем, что процесс суспензионной полимеризации винилацетата проводят в присутствии кристаллического глиоксаля и в...
Тип: Изобретение
Номер охранного документа: 0002556227
Дата охранного документа: 10.07.2015
20.10.2015
№216.013.8320

Устройство виброструйной магнитной активации жидкостей и растворов

Изобретение относится к устройствам для получения механических колебаний с использованием электромагнитизма и может быть использовано в различных технологических процессах для обработки жидкостей и растворов путем виброструйного магнитного воздействия, сопровождаемого изменением свойств...
Тип: Изобретение
Номер охранного документа: 0002565171
Дата охранного документа: 20.10.2015
10.11.2015
№216.013.8ab4

Вакуумный выключатель тока

Изобретение относится к силовой коммутационной аппаратуре и предназначено для использования в вакуумных выключателях и контакторах постоянного и переменного тока. Вакуумный выключатель тока содержит дугогасительную камеру с аксиальными подвижным и неподвижным электродами, снабженными кольцевыми...
Тип: Изобретение
Номер охранного документа: 0002567115
Дата охранного документа: 10.11.2015
27.11.2015
№216.013.94b1

Способ получения мета-хлорбензгидрилмочевины(галодифа) с использованием магнитных наночастиц, модифицированных сульфогруппами

Изобретение относится к способу получения мета-хлорбензгидрилмочевины(галодифа) с использованием магнитных наночастиц, модифицированных сульфогруппами. Способ включает конденсацию мета-хлорбензгидриламина, закрепленного на магнитных наночастицах FeO@SOH, с цианатами щелочных металлов при...
Тип: Изобретение
Номер охранного документа: 0002569684
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.959c

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: проводят испытание на изменение величины исходного параметра от...
Тип: Изобретение
Номер охранного документа: 0002569920
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9734

Устройство для максимальной токовой защиты

Изобретение относится к электротехнике и может быть использовано для максимальной токовой защиты закрытых токопроводов от токов коротких замыканий. Техническим результатом является упрощение конструкции. Устройство содержит пластину, один конец которой закреплен в прорези планки, прикрепленной...
Тип: Изобретение
Номер охранного документа: 0002570328
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9740

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: проводят испытание на изменение величины исходного параметра от...
Тип: Изобретение
Номер охранного документа: 0002570340
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.975b

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: осуществляют проведение испытания на изменение величины...
Тип: Изобретение
Номер охранного документа: 0002570367
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.97cf

Солнечная установка

Изобретение относится к гелиоэнергетике, в частности к солнечным энергетическим установкам с датчиками слежения за Солнцем, и может быть использовано в солнечных электростанциях для преобразования солнечной энергии в электрическую, а также в качестве энергетической установки индивидуального...
Тип: Изобретение
Номер охранного документа: 0002570483
Дата охранного документа: 10.12.2015
20.01.2016
№216.013.a351

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: осуществляют проведение испытания на изменение величины...
Тип: Изобретение
Номер охранного документа: 0002573451
Дата охранного документа: 20.01.2016
Showing 1-9 of 9 items.
10.10.2015
№216.013.8147

Способ определения параметров асинхронного электродвигателя

Изобретение относится к электротехнике и может быть использовано для определения параметров асинхронных электродвигателей. Способ заключается в том, что в течение пуска и работы асинхронного электродвигателя одновременно измеряют мгновенные величины токов и напряжений на двух фазах статора...
Тип: Изобретение
Номер охранного документа: 0002564692
Дата охранного документа: 10.10.2015
10.12.2015
№216.013.9757

Способ определения параметров асинхронного электродвигателя

Изобретение относится к электротехнике и может быть использовано для определения параметров асинхронных электродвигателей. Способ определения параметров электродвигателя заключается в том, что в течение пуска и работы асинхронного электродвигателя одновременно измеряют мгновенные величины токов...
Тип: Изобретение
Номер охранного документа: 0002570363
Дата охранного документа: 10.12.2015
27.02.2016
№216.014.c0ac

Электропривод переменного тока

Изобретение относится к области электротехники и может быть использовано для регулирования частоты вращения ротора асинхронных электроприводов с тиристорным преобразователем напряжения. Технический результат: обеспечение определения оценки частоты вращения асинхронного двигателя во всем...
Тип: Изобретение
Номер охранного документа: 0002576330
Дата охранного документа: 27.02.2016
19.01.2018
№218.016.00fb

Способ диагностики витковых замыканий в обмотке ротора синхронного генератора

Изобретение относится к электротехнике и может быть использовано для диагностирования виткового замыкания в обмотке ротора синхронных генераторов. Сущность: способ заключается в определении процента замкнутых витков на основе измеренных в рабочем режиме синхронного генератора мгновенных величин...
Тип: Изобретение
Номер охранного документа: 0002629708
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.0168

Способ измерения реактивной мощности в трехфазной симметричной электрической цепи

Изобретение относится к электроизмерительной технике и может быть использовано в измерительных преобразователях реактивной мощности для трехфазных цепей с симметричной нагрузкой. Способ измерения реактивной мощности в трехфазной симметричной электрической цепи включает измерение мгновенных...
Тип: Изобретение
Номер охранного документа: 0002629907
Дата охранного документа: 04.09.2017
15.11.2019
№219.017.e27c

Способ определения параметров электродвигателя постоянного тока

Изобретение относится к автоматизированному электроприводу и может быть использовано для определения параметров электродвигателей постоянного тока. Способ определения параметров двигателя постоянного тока заключается в том, что одновременно измеряют мгновенные величины тока и напряжения в...
Тип: Изобретение
Номер охранного документа: 0002705939
Дата охранного документа: 12.11.2019
15.04.2020
№220.018.1482

Устройство для определения параметров электродвигателя постоянного тока

Изобретение относится к области автоматизированных электроприводов и может быть использовано для построения адаптивных систем управления двигателями постоянного тока. Техническим результатом является определение в режиме реального времени ряда параметров электродвигателя. Устройство для...
Тип: Изобретение
Номер охранного документа: 0002718708
Дата охранного документа: 14.04.2020
03.06.2020
№220.018.23b2

Способ диагностики психофизического состояния человека

Изобретение относится к области медицины и может быть использовано в психиатрии, психосоматической и профилактической медицине, психологии для оценки психофизического состояния индивида. Предъявляют испытуемому на экране сенсорного дисплея тестовые задачи, ответы на которые испытуемый даёт...
Тип: Изобретение
Номер охранного документа: 0002722453
Дата охранного документа: 01.06.2020
16.05.2023
№223.018.6282

Способ определения электромагнитных параметров асинхронной машины с фазным ротором

Изобретение относится к электротехнике, а именно к определению электромагнитных параметров асинхронных машин с фазным ротором. Сущность: сначала соединяют в звезду статорные и роторные обмотки при неподвижном выходном вале. Затем измеряют активное сопротивление двух последовательно включенных...
Тип: Изобретение
Номер охранного документа: 0002785209
Дата охранного документа: 05.12.2022
+ добавить свой РИД