×
16.06.2023
223.018.7d15

Результат интеллектуальной деятельности: Гидродинамический демпфер подшипниковой опоры ротора турбомашины

Вид РИД

Изобретение

Аннотация: Изобретение относится к области машиностроения. Демпфер содержит внутренний корпус, образующий с корпусом радиальный зазор. На внутренней поверхности корпуса и наружной поверхности внутреннего корпуса выполнены проточки. В полости, образованной несквозными цилиндрическими проточками, установлено упругое кольцо. С двух сторон от несквозных цилиндрических проточек выполнены минимум две кольцевые проточки. В кольцевых проточках установлены кольцевые уплотнительные эластичные элементы. Внутренний корпус содержит фланец на уровне полости для непосредственного соединения с подшипником. Во внутреннем корпусе выполнено отверстие в полость для установки штифта с натягом. На одном из выступов внешней поверхности упругого кольца со стороны торца выполнен сквозной радиальный паз. На каждом из выступов упругого кольца поочередно выполнены одна и две окружные канавки. В промежутке между каждыми близлежащими выступами выполнены минимум два сквозных отверстия. Отверстия смещены друг относительно друга в окружном направлении и расположены на удалении от зоны влияния изгибных напряжений в упругом кольце. Изобретение позволяет снизить общий уровень вибраций и увеличить ресурс турбомашины в целом. 4 з.п. ф-лы, 5 ил.

Изобретение относится к области устройств для демпфирования опор роторов турбомашиностроения, преимущественно к авиадвигателестроению, а именно к конструкции гидродинамических демпферов, интегрированных в опору ротора турбомашин.

В качестве наиболее близкого аналога выбран гидродинамический демпфер опоры ротора турбомашины, содержащий корпус и установленное в нем упругое кольцо с равномерно чередующимися выступами на наружной и внутренней поверхностях. При этом кольцо в работе находится в смазке (авт. свид. SU №860566, F16F 15/04, 20.03.2001 г.).

Недостатками известного гидродинамического демпфера является недостаточное количество зазоров и каналов для перетечек смазки, что не обеспечивает должную эффективность демпфирования усилия и рассеивания энергии, приходящих с ротора турбомашины, что снижает ее ресурс.

Задачей заявленного изобретения является создание гидродинамического демпфера опоры ротора турбомашины без указанных недостатков, то есть с более высокой эффективностью демпфирования усилий и рассеивания энергии, приходящих с ротора турбомашины, относительно прототипа.

Техническим результатом, достигаемым при использовании заявленного устройства, является снижение амплитуды усилий и обеспечение большего рассеивания энергии, приходящих с ротора турбомашины, что снижает общий уровень вибраций и увеличивает ресурс турбомашины в целом.

Ожидаемый технический результат достигается тем, что гидродинамический демпфер опоры ротора турбомашины содержит внутренний корпус, образующий с корпусом радиальный зазор, на которых выполнены несквозные внутренняя цилиндрическая проточка на корпусе и наружная цилиндрическая проточка на внутреннем корпусе, и минимум два кольцевых уплотнительных эластичных элемента, при этом упругое кольцо установлено в полости, образованной несквозными цилиндрическими проточками, также на корпусе и/или внутреннем корпусе с двух сторон от несквозных цилиндрических проточек выполнены минимум две кольцевые проточки, в которых установлены кольцевые уплотнительные эластичные элементы, выступающие из них, при этом внутренний корпус содержит фланец на уровне полости для непосредственного соединения с подшипником, при этом во внутреннем корпусе выполнено отверстие в полость для установки штифта с натягом, выступающего в полость, а на одном из выступов внешней поверхности упругого кольца со стороны торца выполнен сквозной радиальный паз, соразмерный своей шириной с диаметром выступающей в полость части штифта, при том на каждом из выступов внутренней поверхности упругого кольца выполнена фаска со стороны одного из торцов упругого кольца, а на каждом из выступов внешней поверхности упругого кольца выполнена фаска с противоположного торца упругого кольца, а переход от любого выступа к кольцу на всей его длине выполнен в виде скругления, также на каждом из выступов внешней поверхности упругого кольца и отдельно на каждом из выступов внутренней поверхности упругого кольца поочередно выполнено одна и две окружные канавки, глубиной не более высоты выступа, а в промежутке между каждыми близлежащими выступами выполнены минимум два сквозных отверстия, смещенных друг относительно друга в окружном направлении и расположенных на удалении от зоны влияния изгибных напряжений в упругом кольце.

Кроме того, одна или две окружные канавки каждого из выступов равноудалены от торцов упругого кольца.

Кроме того, между каждыми соседними выступами выполнено два сквозных отверстия, смещенных от уровня пары окружных канавок.

Кроме того, площадь поперечного сечения одной канавки на выступе соразмерна с суммарной площадью поперечных сечений двух канавок на выступе.

Кроме того, что во внутреннем корпусе с противоположных сторон от упругого кольца выполнены минимум по одному отверстию для подвода смазки в полость под давлением и слива смазки из полости.

Общеизвестно, что в процессе работы турбомашина является очень вибронагруженной. Основным источником возбуждения вибраций при работе турбомашины являются вращающиеся детали. Для снижения вибраций применяют различные демпфирующие устройства, в частности, гидродинамические демпферы. В основе их работы лежит способность смазочного слоя поглощать энергию колебаний ротора. При вращении ротора в демпфирующем слое происходит выдавливание смазки из зазора вследствие возникающего смещения поверхностей, образующих зазор. Как правило, продавливание смазки происходит по окружности. Ротор гонит условное подобие масляного клина или волны из смазки, постоянно продавливая последнюю через существующие в гидродинамическом демпфере зазоры. Эффективность демпфирования имеет зависимость от количества перетечек при выдавливании смазки и пути, которое проходит смазка, так как энергия расходуется в потери на трение при продавливании. Чем больше путь, пройденный смазкой, тем больше демпфирующий эффект. Таким образом, энергия колебаний рассеивается, что приводит к уменьшению амплитуды колебаний или уменьшению амплитуды усилия с ротора турбомашины, действующего на ее детали после гидродинамического демпфера, что приводит к уменьшению вибрации ротора и статора в целом.

Снабжение гидродинамического демпфера внутренним корпусом, образующим с корпусом радиальный зазор, на которых выполнены несквозные внутренняя цилиндрическая проточка на корпусе и наружная цилиндрическая проточка на внутреннем корпусе, и минимум двумя кольцевыми уплотнительными эластичными элементами позволяет реализовать улучшенные условия для работы гидродинамического демпфера за счет возможности смещения внутреннего корпуса относительно корпуса под действием усилия с ротора турбомашины, что приводит к изменению зазора между корпусами гидродинамического демпфера. За счет ограничения отдельной области данного зазора, включающей полость, между кольцевыми уплотнительными элементами, и, учитывая, что в данной ограниченной области находится смазка под давлением, оговоренное изменение зазора способствует продавливанию смазки, а значит реализации самого эффекта демпфирования. В то же время реализация внутреннего корпуса позволяет выполнить непосредственно на нем крепление подшипника опоры ротора. В этом случае усилие с ротора приходит на внутренний корпус, который является частью гидродинамического демпфера. То есть в данном варианте реализации конструкции гидродинамического демпфера опоры ротора минимум ее деталей подвергается воздействию незадемпфированной силы с ротора, что снижает общий уровень вибраций и увеличивает ресурс турбомашины в целом.

Установка упругого кольца в полость, образованную несквозными цилиндрическими проточками, позволяет за счет геометрической формы кольца и изменения зазора между корпусами гидродинамического демпфера изменять форму кольца в работе турбомашины и обеспечивать дополнительные перетечки при продавливании смазки внутри полости, которые способствуют увеличению эффекта демпфирования, что снижает общий уровень вибраций и увеличивает ресурс турбомашины в целом.

Выполнение на корпусе и/или внутреннем корпусе с двух сторон от несквозных цилиндрических проточек минимум две кольцевые проточки, в которых установлены кольцевые уплотнительные эластичные элементы, выступающие из них, позволяет обеспечить требуемую герметичность полости, а значит, и постоянное наличие смазки в последней, что обеспечивает непрерывное демпфирование усилия с ротора в процессе работы турбомашины, что снижает общий уровень вибраций и увеличивает ресурс последней в целом.

Наличие на внутреннем корпусе фланца на уровне полости для непосредственного соединения с подшипником обеспечивает то, что усилие с ротора приходит на внутренний корпус максимально близко к гидродинамическому демпферу. То есть в данном варианте реализации конструкции опоры ротора минимум ее деталей подвергается воздействию незадемпфированной силы с ротора, что снижает общий уровень вибраций и увеличивает ресурс турбомашины в целом.

Выполнение во внутреннем корпусе отверстия в полость для установки штифта с натягом, выступающего в полость, а на одном из выступов внешней поверхности упругого кольца со стороны торца, а также выполнение сквозного радиального паза, соразмерного своей шириной с диаметром выступающей в полость части штифта, позволяет исключить возможность проворачивания упругого кольца в полости. Нагрузка с ротора представляет собой вращающуюся нагрузку. При этом продавливание смазки происходит в большей степени в окружном направлении, тем самым вызывает нагрузки на упругое кольцо, стремящиеся его провернуть. В случае проворачивания кольца внутри полости снижается сопротивление протечкам внутри полости, что снижает эффект демпфирования. По этой причине фиксация упругого кольца от возможности проворота внутри полости увеличивает эффект демпфирования, что снижает общий уровень вибраций и увеличивает ресурс турбомашины в целом.

Выполнение фаски на каждом из выступов внутренней поверхности упругого кольца со стороны одного из торцов упругого кольца и на каждом из выступов внешней поверхности упругого кольца фаска с противоположного торца упругого кольца позволяет осуществлять дополнительную перетечку смазки через соответствующий выступ в месте ее продавливания и за счет этого прижимать упругое кольцо противоположным торцом от фаски к смежной детали. При этом чередование выступов внутренней поверхности с выступами наружной поверхности вынуждает смазку перетекать от одного торца к другому при прокатывании места продавливания по окружности за ротором. Это увеличивает количество перетечек и путь течения смазки в гидродинамическом демпфере, а также создает им дополнительное сопротивление в виде трения, что увеличивает эффект демпфирования, снижает общий уровень вибраций и увеличивает ресурс турбомашины в целом.

Выполнение перехода от любого выступа по всей его длине к кольцу в виде скругления снижает концентрацию напряжений, возникающих вокруг выступа, в области которого действует сила с ротора турбомашины при ее работе, что увеличивает ресурс упругого кольца и турбомашины в целом.

Выполнение на каждом из выступов внешней поверхности упругого кольца и отдельно на каждом из выступов внутренней поверхности упругого кольца поочередно одной и двух окружных канавок глубиной не более высоты выступа, а в промежутке между каждыми близлежащими выступами выполнены минимум два сквозных отверстия, смещенных друг относительно друга в окружном направлении и расположенных на удалении от зоны влияния изгибных напряжений в упругом кольце, позволяет увеличить количество перетечек и путь течения смазки в гидродинамическом демпфере, а также создает им дополнительное сопротивление в виде трения, что увеличивает эффект демпфирования, снижает общий уровень вибраций и увеличивает ресурс турбомашины в целом.

Кроме того, выполнение окружных канавок таким образом, что одна или две окружные канавки каждого из выступов равноудалены от торцов упругого кольца, позволяет максимально увеличить смещение между окружными перетечками в гидродинамическом демпфере, что увеличивает путь течения смазки при продавливании и снижает общий уровень вибраций и увеличивает ресурс турбомашины в целом.

Кроме того, выполнение между каждыми соседними выступами по два сквозных отверстия, смещенных от уровня пары окружных канавок, позволяет увеличить путь течения смазки между окружными и радиальными перетечками при продавливании, что увеличивает эффект демпфирования, снижает общий уровень вибраций и увеличивает ресурс турбомашины в целом.

Кроме того, выполнение окружных канавок таким образом, что площадь поперечного сечения одной окружной канавки на выступе соразмерна с суммарной площадью поперечных сечений двух окружных канавок на выступе, позволяет избегать ситуации запирания смазки выступом, что может привести к недостаточному количеству смазки за выступом, что снижает эффект демпфирования, а также к перегреву смазки перед выступом, что может привести к ее коксованию, что будет снижать суммарную площадь возможных перетечек при продавливании и, как следствие, приведет к снижению эффекта демпфирования с увеличением наработки турбомашины. Поэтому оговоренное конструктивное решение обеспечивает увеличение эффекта демпфирования, снижает общий уровень вибраций и увеличивает ресурс турбомашины в целом.

Кроме того, выполнение во внутреннем корпусе с противоположных сторон от упругого кольца минимум по одному отверстию для подвода масла в полость под давлением и слива масла из полости позволяет обеспечить постоянное присутствие смазки в месте ее продавливания, что обеспечивает увеличение эффекта демпфирования, снижает общий уровень вибраций и увеличивает ресурс турбомашины в целом.

Сущность настоящего изобретения поясняется чертежами.

На фиг. 1 представлен продольный разрез упругодемпферной опоры с гидродинамическим демпфером ротора турбомашины, а именно, опоры компрессора высокого давления.

На фиг. 2 представлен вариант конструкции упругого кольца гидродинамического демпфера.

На фиг. 3 представлен разрез А-А упругого кольца гидродинамического демпфера.

На фиг. 4 представлен разрез Б-Б упругого кольца гидродинамического демпфера.

На фиг. 5 представлен продольный разрез внутреннего корпуса в месте установки штифта, исключающего проворот упругого кольца при работе турбомашины.

В частном случае реализации гидродинамический демпфер упругодемпферной опоры ротора турбомашины содержит корпус 1 и внутренний корпус 2, образующие между собой зазор 3 (фиг. 1). Со стороны данного зазора 3 на корпусе 1 выполнена несквозная цилиндрическая внутренняя проточка 4 и на внутреннем корпусе 2 выполнена несквозная цилиндрическая наружная проточка 5 под установку упругого кольца 6, образующие полость 7. На внутреннем корпусе 2 с двух сторон от полости 7 выполнены проточки 8 под установку кольцевых уплотнительных эластичных элементов 9, герметизирующих полость 7. Притом во внутреннем корпусе 2 выполнено радиальное отверстие 10 в полость 7 для установки штифта 11, выступающего в последнюю (фиг. 5) и исключающего возможность проворота упругого кольца 6 в процессе работы турбомашины. Также во внутреннем корпусе 2 выполнены одно сквозное отверстие 12 для подвода смазки в полость 7 под давлением и сквозное сливное отверстие 13 для отвода смазки из гидродинамического демпфера (фиг. 1). Смазкой в последнем может являться любое масло из номенклатуры масел, применяемых для уменьшения трения в подшипниках качения или скольжения в турбомашиностроении.

Упругое кольцо 6 содержит по десять равномерно чередующиеся друг с другом в окружном направлении выступов 14 наружной поверхности и выступов 15 внутренней поверхности, которые выполнены во всю ширину упругого кольца 6. При этом со стороны одного из его торцов на уровне одного из выступов 14 наружной поверхности упругого кольца 6 выполнен сквозной радиальный паз 16, сопоставимый по своей ширине с размером выступающей в полость 7 части штифта 11. Переходы от каждого из выступов 14 и 15 к основной части упругого кольца 6 в окружном направлении выполнены в виде радиусов скругления 17. Также со стороны торца упругого кольца 6, где расположен радиальный паз 16, на каждом из выступов 14 наружной поверхности выполнена фаска 18. На них же поочередно выполнены одна окружная канавка 19 и две окружные канавки 20. Со стороны противоположного от паза 16 торца на каждом из выступов 15 внутренней поверхности также выполнена фаска 21. И аналогичным образом поочередно одна окружная канавка 22 и две окружные канавки 23. Все окружные канавки (19, 20, 22, 23) выполнены равноудаленными от торцов упругого кольца 6 и так, что их глубина не превышает высоту соответствующих им выступов 14 наружной поверхности и выступов 15 внутренней поверхности упругого кольца 6. А площадь поперечного сечения каждой одинарной канавки (19, 22) сопоставима с площадью поперечного сечения двух парных окружных канавок (20, 23). При этом на упругом кольце 6 в промежутке между каждыми соседними выступом 14 наружной поверхности и выступом 15 внутренней поверхности выполнены два радиальных отверстия 24, смещенные в окружном направлении друг относительно друга.

Притом на внутреннем корпусе 2 в области полости 7 выполнен фланец 25 для непосредственного соединения с подшипником опоры ротора.

Сборка гидродинамического демпфера опоры ротора турбомашины осуществляется в следующем порядке.

На внутренний корпус 2 последовательно устанавливают штифт 11, упругое кольцо 6, кольцевые уплотнительные эластичные элементы 9. После чего заводят внутренний корпус 2 в корпус 1 и фиксируют на последнем.

Гидродинамический демпфер опоры ротора турбомашины работает следующим образом.

В процессе работы в гидродинамический демпфер подается масло под давлением через отверстие 12 в полость 7. Это необходимо для постоянного присутствия масла в полости 7 вокруг упругого кольца 6. Под действием радиальных усилий с ротора, приходящих на фланец 25, внутренний корпус 2 перемещается относительно корпуса 1, изменяя зазор 3 и форму упругого кольца 6, что приводит к продавливанию масла через окружные канавки (19, 20, 22, 23), фаски (18, 21), радиальные отверстия 24 и другие существующие зазоры в гидродинамическом демпфере. За счет вязкого трения в смазке при его продавливании происходит демпфирование усилия с ротора. Это приводит к нагреву масла, которое отводится из гидродинамического демпфера через сливное отверстие 13.

Применение изобретения позволяет за счет своих конструктивных особенностей, а именно, конструкции упругого кольца 6 и правильной организации подвода и прокачки масла через гидродинамический демпфер, эффективно демпфировать нагрузки с ротора, чем достигается снижение общего уровня вибраций и увеличивается ресурс турбомашины в целом.

Источник поступления информации: Роспатент

Showing 31-40 of 71 items.
15.12.2018
№218.016.a7db

Устройство для закрепления рабочей лопатки турбомашины с замковым элементом при усталостных испытаниях

Изобретение относится к конструированию приспособлений для закрепления рабочих лопаток турбомашины на вибростенде при усталостных испытаниях. Устройство для закрепления рабочей лопатки турбомашины с замковым элементом при усталостных испытаниях содержит корпус, жестко закрепленный на вибростоле...
Тип: Изобретение
Номер охранного документа: 0002675078
Дата охранного документа: 14.12.2018
26.12.2018
№218.016.aaae

Газоперекачивающий агрегат (гпа), способ охлаждения газотурбинного двигателя (гтд) гпа и система охлаждения гтд гпа, работающая этим способом, направляющий аппарат системы охлаждения гтд гпа

Группа изобретений относится к нефтегазовой области. В способе охлаждения ГТД ГПА двигатель снабжают защитным кожухом, к которому подводят нагнетающий и отводящий воздуховоды. Воздух забирают из атмосферы через воздухозаборник и подают снизу в кожух. Через распределительный короб до 20%...
Тип: Изобретение
Номер охранного документа: 0002675729
Дата охранного документа: 24.12.2018
26.12.2018
№218.016.abc1

Газоперекачивающий агрегат (гпа), газоход тракта выхлопа гпа и входной узел газохода тракта выхлопа гпа

Газоперекачивающий агрегат (ГПА), газоход тракта выхлопа ГПА и входной узел газохода тракта выхлопа ГПА. Группа изобретений относится к нефтегазовой области. ГПА содержит последовательно сообщенные по рабочему телу: тракт всасывания воздуха, включающий КВОУ, всасывающий воздуховод и камеру...
Тип: Изобретение
Номер охранного документа: 0002675969
Дата охранного документа: 25.12.2018
24.01.2019
№219.016.b2f3

Ручной ударный инструмент

Изобретение относится к ручным ударным инструментам. Ручной ударный инструмент содержит полый корпус, подпружиненный ударник, концентрично расположенный относительно корпуса, устройство фиксации и сброса ударника. Ручной ударный инструмент снабжен ограничителем, выполненным в виде пружины и...
Тип: Изобретение
Номер охранного документа: 0002677900
Дата охранного документа: 22.01.2019
07.02.2019
№219.016.b7f4

Газоперекачивающий агрегат (гпа), газотурбинная установка (гту), входное устройство гту гпа (варианты), опорный комплекс входного устройства гту гпа

Группа изобретений относится к нефтегазовой области. Газоперекачивающий агрегат (ГПА) содержит последовательно сообщенные по рабочему телу: тракт всасывания воздуха, газотурбинную установку с входным устройством для подачи воздуха из камеры всасывания воздуха на вход в ГТД, тракт выхлопа...
Тип: Изобретение
Номер охранного документа: 0002678793
Дата охранного документа: 05.02.2019
17.03.2019
№219.016.e24b

Узел крепления трубопровода на корпусе турбомашины

Изобретение относится к конструированию узлов крепежной арматуры трубопроводов в машиностроении, преимущественно в турбомашиностроении. Узел крепления трубопровода на корпусе турбомашины содержит хомут, охватывающий участок трубопровода и закрепленный при помощи средства фиксации на корпусе...
Тип: Изобретение
Номер охранного документа: 0002682232
Дата охранного документа: 15.03.2019
17.03.2019
№219.016.e260

Способ регулирования авиационного турбореактивного двигателя с изменяемой геометрией выходного устройства

Способ регулирования авиационного турбореактивного двигателя (ТРД) с изменяемой геометрией выходного устройства относится к способам регулирования, оптимизирующим работу ТРД в зависимости от условий полета. При осуществлении способа создают на входе в двигатель и на выходе из него условия,...
Тип: Изобретение
Номер охранного документа: 0002682221
Дата охранного документа: 15.03.2019
17.03.2019
№219.016.e293

Способ испытаний авиационного турбореактивного двигателя

Изобретение относится к области авиадвигателестроения, а именно к способам испытаний авиационных турбореактивных двигателей (ТРД). Способ испытаний авиационного ТРД осуществляется с подогревом и наддувом воздуха на входе в двигатель. Согласно изобретению для двигателя, содержащего систему...
Тип: Изобретение
Номер охранного документа: 0002682225
Дата охранного документа: 15.03.2019
17.03.2019
№219.016.e2a8

Способ работы газотурбинной установки

Изобретение относится к области эксплуатации газотурбинных двигателей, в частности к двигателям, применяемым в качестве привода газоперекачивающих агрегатов и энергоустановок. Способ работы газотурбинной установки, включающий подачу топлива в дежурные и основные горелочные устройства на...
Тип: Изобретение
Номер охранного документа: 0002682218
Дата охранного документа: 15.03.2019
29.03.2019
№219.016.ed9b

Сопловый аппарат турбины высокого давления (твд) газотурбинного двигателя (варианты), сопловый венец соплового аппарата твд и лопатка соплового аппарата твд

Группа изобретений относится к авиадвигателестроению, а именно к конструкциям сопловых аппаратов ТВД и трактам воздушного охлаждения сопловых лопаток авиационных газотурбинных двигателей ГПА. Сопловый аппарат включает сопловый венец. Сопловый венец выполнен из 14 сопловых блоков. Каждый блок...
Тип: Изобретение
Номер охранного документа: 0002683053
Дата охранного документа: 26.03.2019
Showing 31-40 of 52 items.
04.04.2018
№218.016.33ca

Узел соединения агрегата внешней обвязки с корпусом турбомашины

Изобретение относится к области турбомашиностроения, а именно к авиадвигателестроению. Техническим результатом является увеличение жесткости соединения, что приводит к повышению прочности и надежности узла соединения в случае динамической нагруженности, а именно при воздействии вибраций, а...
Тип: Изобретение
Номер охранного документа: 0002645831
Дата охранного документа: 28.02.2018
10.05.2018
№218.016.392b

Устройство для сочленения наружной поверхности поворотного реактивного сопла турбореактивного двигателя и мотогондолы самолета

Изобретение относится к области авиадвигателестроения, а именно к конструкции поворотных сопел турбореактивных двигателей в месте сочленения поворотного устройства сопла с мотогондолой самолета. Устройство для сочленения наружной поверхности поворотного реактивного сопла турбореактивного...
Тип: Изобретение
Номер охранного документа: 0002647018
Дата охранного документа: 13.03.2018
09.06.2018
№218.016.5cf9

Штифтовое соединение для вала турбомашины

Изобретение относится к области турбомашиностроения, преимущественно к авиадвигателестроению, а именно к штифтовым соединениям частей вала турбины низкого давления (ТНД) газотурбинного двигателя. Штифтовое соединение для вала турбомашины, состоящее по меньшей мере из двух соосно расположенных...
Тип: Изобретение
Номер охранного документа: 0002656166
Дата охранного документа: 31.05.2018
14.06.2018
№218.016.61e9

Разъемный корпус турбомашины

Изобретение относится к области турбомашиностроения, преимущественно к авиадвигателестроению, а именно к разъемным корпусам турбомашин. Разъемный корпус турбомашины содержит торцевые фланцы, продольные фланцы, выполненные в местах разъема частей корпуса, колодки с продольным пазом и отверстиями...
Тип: Изобретение
Номер охранного документа: 0002657404
Дата охранного документа: 13.06.2018
06.07.2018
№218.016.6d4c

Упругодемпферная опора ротора турбомашины

Изобретение относится к области турбомашиностроения, преимущественно к авиадвигателестроению, а именно к конструкции упругодемпферных опор роторов турбомашин. Упругодемпферная опора ротора турбомашины содержит вал, опирающийся на радиальный подшипник, статорный элемент с выполненными в нем...
Тип: Изобретение
Номер охранного документа: 0002660107
Дата охранного документа: 04.07.2018
09.11.2018
№218.016.9b59

Промежуточный корпус компрессора двухконтурного турбореактивного двигателя

Изобретение относится к области турбомашиностроения, а именно к элементам конструкции промежуточных корпусов газотурбинных двигателей. Указанный технический результат достигается тем, что промежуточный корпус турбомашины с разделителем потока, содержащий силовые стойки, размещенные между...
Тип: Изобретение
Номер охранного документа: 0002672015
Дата охранного документа: 08.11.2018
15.12.2018
№218.016.a7b0

Узел соединения трубопроводов турбомашины

Изобретение относится к конструированию узлов соединительной арматуры трубопроводов в машиностроении, преимущественно турбомашиностроении. Узел соединения трубопроводов турбомашины содержит хомут, закрепленный на по меньшей мере двух трубопроводах и выполненный в виде пары колодок с выемками...
Тип: Изобретение
Номер охранного документа: 0002675024
Дата охранного документа: 14.12.2018
15.12.2018
№218.016.a7db

Устройство для закрепления рабочей лопатки турбомашины с замковым элементом при усталостных испытаниях

Изобретение относится к конструированию приспособлений для закрепления рабочих лопаток турбомашины на вибростенде при усталостных испытаниях. Устройство для закрепления рабочей лопатки турбомашины с замковым элементом при усталостных испытаниях содержит корпус, жестко закрепленный на вибростоле...
Тип: Изобретение
Номер охранного документа: 0002675078
Дата охранного документа: 14.12.2018
24.01.2019
№219.016.b2f3

Ручной ударный инструмент

Изобретение относится к ручным ударным инструментам. Ручной ударный инструмент содержит полый корпус, подпружиненный ударник, концентрично расположенный относительно корпуса, устройство фиксации и сброса ударника. Ручной ударный инструмент снабжен ограничителем, выполненным в виде пружины и...
Тип: Изобретение
Номер охранного документа: 0002677900
Дата охранного документа: 22.01.2019
26.01.2019
№219.016.b4af

Кронштейн крепления агрегата на обечайке корпуса турбомашины

Изобретение относится к области турбомашиностроения, преимущественно к авиадвигателестроению, а именно к узлам соединения агрегатов с обечайкой корпуса турбомашины. Кронштейн крепления агрегата на обечайке корпуса турбомашины содержит бобышку, расположенную между обечайкой корпуса и агрегатом,...
Тип: Изобретение
Номер охранного документа: 0002678187
Дата охранного документа: 24.01.2019
+ добавить свой РИД