×
16.06.2023
223.018.7bde

Результат интеллектуальной деятельности: Способ определения напряженно-деформированного состояния образцов горных пород

Вид РИД

Изобретение

Аннотация: Изобретение относится к испытательной технике и может быть использовано для определения напряженно-деформированного состояния, а именно определения стадии развития деформационных процессов в образцах горных пород. Сущность: осуществляют подготовку образцов, определение их физико-механических характеристик, устанавливают датчики деформаций по периметру центральной части образцов, на их боковых поверхностях, нагружают образцы с соблюдением критериев геометрического подобия в соответствии с ранее выявленными физико-механическими характеристиками материала, и на основе характера деформаций образцов выявляют их предвестники разрушения. В качестве физико-механических характеристик образцов определяют модуль упругости, коэффициент Пуассона, критическую нагрузку P*, радиус очаговой области, сведения о которых используют в качестве исходных данных для математического моделирования, посредством которого определяют распределение компонент самоуравновешенных напряжений на боковой поверхности образца горной породы, форму и размеры околоочаговой области и измерительный интервал. Датчики деформаций на образцах устанавливают на расстоянии, не превышающем наименьший линейный размер околоочаговой области, после чего нагружают образцы и выявляют их предвестники разрушения. Технический результат: повышение эффективности определения предвестников разрушения при снижении трудоемкости. 2 з.п. ф-лы, 2 табл., 6 ил.

Изобретение относится к испытательной технике и может быть использовано для определения напряженно-деформированного состояния, а именно определения стадии развития деформационных процессов в образцах горных пород.

Известен способ акустико-деформационного метода определения предвестников разрушения образцов горных пород при одноосном сжатии, включающий подготовку образцов, определение их физико-механических характеристик, далее устанавливают датчики деформаций по периметру центральной части образцов, на их боковых поверхностях, нагружают образцы с соблюдением критериев геометрического подобия в соответствии с ранее выявленными физико-механическими характеристиками материала, и на основе характера деформаций образцов выявляют их предвестники разрушения (см. А.М. Голосов. Разработка акустико-деформационного метода определения предвестников разрушения образцов горных пород при одноосном сжатии // диссертация на соискание ученой степени кандидата технических наук, 2018 г.).

К недостаткам известного решения можно отнести повышенную трудоемкость процесса из-за использования двух методов исследования - акустического и деформационного.

В качестве ближайшего аналога принят способ определения напряженно-деформированного состояния массива материала, включающий подготовку образцов, определение их физико-механических характеристик, далее устанавливают датчики деформаций по периметру центральной части образцов, на их боковых поверхностях, нагружают образцы с соблюдением критериев геометрического подобия в соответствии с ранее выявленными физико-механическими характеристиками материала, и на основе характера деформаций образцов выявляют их предвестники разрушения (см. патент РФ № 2322657, МПК G01N 3/00, E21C 39/00, дата публикации 20.04.2008).

Недостатком ближайшего аналога является высокая трудоемкость технологии, а также более низкая вероятность выявления предвестников разрушения.

Задачей, на решение которой направлено заявленное изобретение, является разработка более точного способа определения стадии развития деформационных процессов в образцах горных пород.

Технический результат, получаемый при решении поставленной задачи, выражается в повышении эффективности определения предвестников разрушения при снижении трудоемкости.

Поставленная задача решается тем, что способ определения напряженно-деформированного состояния образцов горных пород, включающий подготовку образцов, определение их физико-механических характеристик, далее устанавливают датчики деформаций по периметру центральной части образцов, на их боковых поверхностях, нагружают образцы с соблюдением критериев геометрического подобия в соответствии с ранее выявленными физико-механическими характеристиками материала, и на основе характера деформаций образцов выявляют их предвестники разрушения, отличается тем, что в качестве физико-механических характеристик образцов определяют модуль упругости, коэффициент Пуассона, критическую нагрузку P*, радиус очаговой области, сведения о которых используют в качестве исходных данных для математического моделирования, посредством которого определяют распределение компонент самоуравновешенных напряжений на боковой поверхности образца горной породы, форму и размеры околоочаговой области и измерительный интервал Δ по формуле

где PКР - предел прочности на одноосное сжатие;

P* - критическая нагрузка, при которой при одноосном сжатии приращения линейных деформаций меняют свой знак хотя бы по одной паре датчиков;

датчики деформаций на образцах устанавливают на расстоянии, не превышающем наименьший линейный размер околоочаговой области, после чего нагружают образцы и выявляют их предвестники разрушения.

Кроме того, в качестве долгосрочного предвестника разрушения образца используют порог дилатансии, фиксируемый в момент, когда приращения объемной деформации хотя бы по одной паре датчиков в течение двух измерительных интервалов не превышают ноля.

Кроме того, в качестве среднесрочного предвестника разрушения образца используют момент возникновения мезотрещинной структуры, фиксируемый в момент одновременного в течение хотя бы двух измерительных интервалов появления как минимум по двум парам датчиков реверсивных продольных и поперечных деформаций в одной части образца и аномально больших деформаций обычного типа в соседней его части.

Сравнение признаков заявленного решения с признаками аналогов и прототипа свидетельствует о его соответствии критерию «новизна».

При этом отличительные признаки формулы изобретения решают следующие функциональные задачи.

Признаки «в качестве физико-механических характеристик образцов определяют модуль упругости, коэффициент Пуассона, критическую нагрузку P*, радиус очаговой области» описывают определяемые физико-механические характеристики образцов.

Признаки «сведения о модуле упругости, коэффициенте Пуассона, критической нагрузке P*, радиусе очаговой области используют в качестве исходных данных для математического моделирования» позволяют обработать, собрать и систематизировать данные разных базовых образцов без проведения дополнительных исследований.

Признаки «посредством [математического моделирования] определяют распределение компонент самоуравновешенных напряжений на боковой поверхности образца горной породы, форму и размеры околоочаговой области и измерительный интервал Δ по формуле

где PКР - предел прочности на одноосное сжатие;

P* - критическая нагрузка, при которой при одноосном сжатии приращения линейных деформаций меняют свой знак хотя бы по одной паре датчиков» описывают результаты математического моделирования.

Признаки «датчики деформаций на образцах устанавливают на расстоянии, не превышающем наименьший линейный размер околоочаговой области, после чего нагружают образцы и выявляют их предвестники разрушения» обеспечивают нахождение минимум одной пары датчиков в околоочаговой области, тем самым значительно повышая вероятность определения предвестников разрушения.

Признаки зависимых пунктов формулы описывают предвестники разрушения и методики их регистрации.

На фиг. 1 изображено сравнение результатов математического моделирования и деформационных измерений в центральной части образца.

На фиг. 2 изображено распределение компонент самоуравновешенных напряжений на боковой поверхности образца горной породы:

а - по высоте образца;

б - по периметру образца, в одной поперечной плоскости.

На фиг. 3 показан график линейных деформаций при одноосном сжатии для определения измерительного интервала.

На фиг. 4 изображена фиксация порога дилатансии на графике зависимости объемных деформаций от напряжений.

На фиг. 5 приведен график зависимости линейных деформаций от напряжений, превышающих напряжение, при котором был достигнут порог дилатансии:

а - фиксация резкого увеличения линейных деформаций;

б - фиксация изменения знака приращения линейных деформаций.

На фиг. 6 показан образец с очаговой областью разрушения и установленными датчиками деформаций: красным цветом обозначена пара датчиков, по которой зафиксировано резкое увеличение линейных деформаций; зеленым цветом обозначены пары датчиков, по которым зафиксировано изменение знака приращения линейных деформаций.

Заявляемый способ осуществляют на стандартном оборудовании по стандартной технологии.

1. На первом этапе подготавливают базовые (для математического моделирования) и испытуемые образцы горных пород.

Отбор проб для изготовления образцов горных пород производят по ГОСТ 21153.0-75, при этом размеры и объем пробы должны обеспечить изготовление образцов необходимых размеров и количества, удовлетворяющих условиям статистической представительности.

Далее изготавливают не менее 10 цилиндрических образцов одинаковой породы и размеров, торцевые поверхности которых должны быть плоскими, параллельными друг другу и перпендикулярными к боковой поверхности.

2. На втором этапе для базовых образцов по стандартной методике определяют модуль упругости, коэффициент Пуассона, критическую нагрузку P* и наименьший радиус очаговой области.

3. Сведения о физико-механических характеристиках базовых образцов, полученные на втором этапе, используют в качестве исходных данных для математического моделирования.

В качестве примера можно привести метод математического моделирования состояния предразрушения образцов горных пород и массивов с применением неевклидовой модели сплошной среды с дефектами, предоставляющий адекватное описание мезотрещинных структур, возникающих при нагружении (см. Guzev M. A. Non-Euclidean models of elastoplastic materials with structure defects. - Saarbrücken, Germany: Lambert Academic Publishing. - 2010. - 128 p. ISBN 9783843373913).

4. По итогам математического моделирования строят распределение компонент самоуравновешенных напряжений на боковой поверхности образца горной породы (см. фиг.2), определяют форму и размеры околоочаговой области - на основе предположения, что она находится в зоне, где осевое напряжение по периметру образца отрицательное (на фиг.2а закрашена синим цветом) и измерительный интервал Δ по формуле

где PКР - предел прочности на одноосное сжатие;

P* - критическая нагрузка, при которой при одноосном сжатии приращения линейных деформаций меняют свой знак хотя бы по одной паре датчиков (см. фиг.3).

На фиг.1 видно, что несмотря на расхождения в значениях деформаций, результаты математического моделирования могут быть использованы и при исследовании испытуемых образцов.

5. На боковой поверхности испытуемого образца устанавливают датчики деформаций на расстоянии, не превышающем наименьший линейный размер околоочаговой области.

Датчики могут быть установлены в несколько рядов как по периметру, так и по высоте образца.

6. Нагружают испытуемый образец осевой сжимающей нагрузкой до его разрушения, строят графики зависимости объемных и линейных деформаций от напряжений для каждой пары датчиков.

7. Определяют предвестники разрушения образца.

Долгосрочный предвестник, в качестве которого используют порог дилатансии, фиксируют в момент, когда приращения объемной деформации хотя бы по одной паре датчиков в течение двух измерительных интервалов не превышают ноля (см. фиг.4).

Среднесрочный предвестник, в качестве которого используют момент возникновения мезотрещинной структуры, фиксируют в момент одновременного в течение хотя бы двух измерительных интервалов появления как минимум по двум парам датчиков реверсивных продольных и поперечных деформаций в одной части образца (см. фиг. 5б) и аномально больших деформаций обычного типа в соседней его части (см. фиг. 5а).

Пример осуществления способа

Использовали 10 базовых и 5 испытуемых образцов из дацита высотой 10 см и диаметром 5 см.

Физико-механические характеристики базовых образцов приведены в таблице 1.

Таблица 1

Физико-механические характеристики базовых образцов

№ базового образца Модуль упругости, МПа Коэффициент Пуассона Критическая нагрузка P*, МПа Радиус очаговой области, мм
К12 41 000 0,18 235,22 29,0
К13 33 100 0,12 178,315 19,7
К14 42 500 0,21 213,75 25,5
К15 50 100 0,16 187,245 42,6
К16 44 000 0,19 150,385 37,7
К17 42 000 0,16 171,475 31,6
К18 50 500 0,19 194,845 48,1
К19 39 400 0,21 152,475 39,6
К20 39 400 0,13 159,505 42,8
К21 52 000 0,15 209,285 25,6

На основе сведений, приведенных в табл.1, провели математическое моделирование, по итогам которого определили наименьший линейный размер околоочаговой области, который составил 19,7 мм, а с помощью графиков зависимости линейных деформаций от напряжений по формуле определили измерительный интервал, который составил 1,8 МПа.

Датчики деформаций установили на боковой поверхности испытуемого образца на расстоянии 19,7 мм.

Далее нагружали испытуемые образцы осевой сжимающей нагрузкой до их разрушения.

Физико-механические характеристики испытуемых образцов приведены в таблице 2.

Таблица 2

Физико-механические характеристики испытуемых образцов

№ испытуемого образца Модуль упругости, МПа Коэффициент Пуассона Предел прочности, МПа Критическая нагрузка P*, МПа Радиус очаговой области (факт), мм Тип выявленного предвестника разрушения
А1 41 200 0,13 192,1 178,6 49,1 среднесрочный
А2 47 800 0,18 185,2 175,9 21,4 среднесрочный
А3 35 600 0,17 222,7 191,522 20,6 среднесрочный
А4 40 600 0,21 175,5 164,97 23,4 среднесрочный
А5 47 900 0,13 201,2 187,1 18,97 долгосрочный

С помощью математического моделирования можно выявить околоочаговые области даже небольших размеров, за счет этого более точно и рационально расставить датчики деформаций на боковой поверхности испытуемого образца и тем самым повысить эффективность определения предвестников разрушения.

Заявляемый способ может быть использован при испытаниях образцов различных горных пород, включая дацит, гранодиорит, риолит и туфобрекчию.

Источник поступления информации: Роспатент

Showing 151-160 of 171 items.
13.11.2019
№219.017.e09d

Реактор для контроля гидратообразования

Изобретение относится к области автоматического контроля условий гидратообразования природного газа и может быть использовано для изучения условий гидратообразования на различных материалах в условиях залежей углеводородов и магистральных трубопроводов. Заявлен реактор для контроля...
Тип: Изобретение
Номер охранного документа: 0002705707
Дата охранного документа: 11.11.2019
13.11.2019
№219.017.e0a5

Реактор для контроля гидратообразования

Изобретение относится к области автоматического контроля условий гидратообразования природного газа и может быть использовано для изучения условий гидратообразования на различных материалах в условиях залежей углеводородов и магистральных трубопроводов. Заявлен реактор для контроля...
Тип: Изобретение
Номер охранного документа: 0002705709
Дата охранного документа: 11.11.2019
15.11.2019
№219.017.e291

Реактор для контроля гидратообразования

Изобретение относится к области автоматического контроля условий гидратообразования природного газа и может быть использовано для изучения условий гидратообразования на различных материалах в условиях залежей углеводородов и магистральных трубопроводов. Реактор для контроля гидратообразования...
Тип: Изобретение
Номер охранного документа: 0002705935
Дата охранного документа: 12.11.2019
08.12.2019
№219.017.ea97

Способ исследования ротовой жидкости

Изобретение относится к исследованию ротовой жидкости. Способ исследования ротовой жидкости включает ее сбор и центрифугирование, приготовление препарата и последующее его изучение. При этом кроме секрета слюнных желез отбирают микрофлору и продукты их жизнедеятельности, содержимое...
Тип: Изобретение
Номер охранного документа: 0002708241
Дата охранного документа: 05.12.2019
08.12.2019
№219.017.eae8

Способ получения каротиноидов из гидробионтов

Изобретение относится к рыбной промышленности, в частности к способам выделения жирорастворимых каротиноидов. Способ получения каротиноидов из гидробионтов включает подготовку сырья, его экстракцию полярным органическим растворителем, фильтрацию экстракта, соединение с маслом и реэкстракцию в...
Тип: Изобретение
Номер охранного документа: 0002708157
Дата охранного документа: 04.12.2019
27.01.2020
№220.017.fa9c

Способ проведения цитологического исследования при дифференциальной диагностике узловых образований щитовидной железы

Изобретение относится к медицине, а именно к эндокринологии, и может быть использовано для проведения цитологического исследования при дифференциальной диагностике узловых образований щитовидной железы. Проводят тонкоигольную аспирационную биопсию узловых образований под контролем УЗИ с...
Тип: Изобретение
Номер охранного документа: 0002712080
Дата охранного документа: 24.01.2020
27.01.2020
№220.017.fabd

Способ оценки загрязнения территорий пестицидами путем биоиндикации

Группа изобретений относится к охране окружающей среды и рациональному природопользованию, а именно к способам оценки экологического состояния окружающей среды с помощью биоиндикации. Для этого отбирают членистоногих насекомых из отряда прямокрылых, которых отлавливают на территории, кроме...
Тип: Изобретение
Номер охранного документа: 0002712100
Дата охранного документа: 24.01.2020
01.02.2020
№220.017.fc78

Смесь почвенная для рекультивации нарушенных земель

Изобретение относится к области рекультивации нарушенных земель. Смесь содержит буровой шлам, песок, торф, гипсосодержащие добавки, включающие цеолит, и органоминеральное удобрение. Компоненты использованы в составе смеси при следующем содержании, об.%: буровой шлам 50-60%, песок 10-15%, торф...
Тип: Изобретение
Номер охранного документа: 0002712523
Дата охранного документа: 29.01.2020
09.02.2020
№220.018.015b

Способ когерентной разнесенной передачи сигнала

Изобретение относится к области радиотехники и может использоваться в системах радиосвязи. Технический результат состоит в повышении эффективности передачи в системе многоканальной радиосвязи с применением широкополосных сигналов. Для этого в передающей части первой стороны формируют N каналов...
Тип: Изобретение
Номер охранного документа: 0002713750
Дата охранного документа: 07.02.2020
17.04.2020
№220.018.14dc

Состав для производства хлебобулочных изделий

Изобретение относится к пищевой промышленности. Состав для производства хлебобулочных изделий содержит муку пшеничную высшего сорта, соевую полуобезжиренную муку, кунжутную муку, соль поваренную пищевую, дрожжи быстродействующие, сахар-песок и воду питьевую. Муку используют при соотношении...
Тип: Изобретение
Номер охранного документа: 0002718987
Дата охранного документа: 15.04.2020
Showing 1-6 of 6 items.
13.01.2017
№217.015.6773

Технология системно-комплексной электрокоагуляционной подготовки питьевой воды и модульная станция "водопад" для ее осуществления

Изобретение относится к технологии системно-комплексной электрокоагуляционной подготовки питьевой воды из природных подземных и поверхностных водоисточников, характеризующихся высоким содержанием и сезонными колебаниями содержания минеральных и органических загрязняющих веществ в широком...
Тип: Изобретение
Номер охранного документа: 0002591937
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.8b10

Термическая печь

Термическая печь может быть использована для формирования композиционных материалов и изделий путем диффузионной сварки стеклянного и металлического узлов заготовок. В полости несущего корпуса печи размещена камера, выполненная из термостойкого материала, со средством электрического...
Тип: Изобретение
Номер охранного документа: 0002604083
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8bb7

Камера термической печи для высокотемпературной обработки стержневых деталей

Изобретение может быть использовано для высокотемпературной обработки стержневых деталей, в том числе для формирования композиционных, например стеклометаллических, материалов и изделий путем диффузионной сварки стеклянного и металлического узлов-заготовок. Корпус для обрабатываемых деталей...
Тип: Изобретение
Номер охранного документа: 0002604078
Дата охранного документа: 10.12.2016
19.01.2018
№218.016.0e41

10-(5-иодванилил-5,15-бис(пентафторфенил)коррол, проявляющий свойства потенциального сенсибилизатора для фотодинамической терапии антибактериальных инфекций и онкологических заболеваний

Изобретение относится к химической промышленности, а именно к получению нового коррола, в частности 10-(5-иодванилил)-5,15-бис(пентафторфенил)коррола, который может быть использован в качестве сенсибилизатора для фотодинамической терапии инфекционных и онкологических заболеваний. 7 ил., 1 пр.
Тип: Изобретение
Номер охранного документа: 0002633371
Дата охранного документа: 12.10.2017
10.05.2018
№218.016.3a42

Способ определения относительного размера синхронного кластера в сети по ее макропараметрам

Изобретение относится к области цифровой обработки и анализа данных. Технический результат заключается в расширении арсенала технических средств определения относительных размеров отдельных синхронных кластеров сложной сети. Способ определения относительных размеров синхронных кластеров сетей...
Тип: Изобретение
Номер охранного документа: 0002647677
Дата охранного документа: 16.03.2018
29.04.2019
№219.017.43c4

Способ извлечения воды из воздуха, устройство для извлечения воды из воздуха и конденсатор

Способ извлечения воды из воздуха включает формирование потока атмосферного воздуха и охлаждение сформированного потока воздуха в канале конденсатора. Потоком воздуха сдувают конденсирующую воду вдоль канала конденсатора. При этом создают турбулентность в потоке воздуха и распыляют в нем часть...
Тип: Изобретение
Номер охранного документа: 0002426839
Дата охранного документа: 20.08.2011
+ добавить свой РИД