×
03.06.2023
223.018.7687

Результат интеллектуальной деятельности: ХИМИЧЕСКИЙ РЕАКТОР РАДИАЛЬНОГО ИЛИ АКСИАЛЬНО-РАДИАЛЬНОГО ТИПА С МЕЛКОЗЕРНИСТЫМ КАТАЛИЗАТОРОМ

Вид РИД

Изобретение

№ охранного документа
0002796531
Дата охранного документа
25.05.2023
Аннотация: Изобретение относится к каталитическим реакторам. Описан реактор для каталитических химических реакций, содержащий слой катализатора, имеющий форму цилиндрического кольца и радиальное или комбинированное аксиально-радиальное направление пересекающего потока; по меньшей мере первую цилиндрическую стенку и вторую цилиндрическую стенку, которые определяют границы слоя катализатора и находятся с катализатором в непосредственном контакте, и вторая стенка проходит внутри первой стенки коаксиально с ней; причем первая стенка и вторая стенка имеют проходы, делающие эти стенки газопроницаемыми; проходы представляют собой щели, имеющие вытянутую форму в продольном направлении щелей и соответствующий поперечный размер в поперечном направлении, которое перпендикулярно продольному направлению; слой катализатора состоит из частиц катализатора, имеющих номинальный минимальный размер, такой что: отношение поперечного размера щелей и номинального минимального размера частиц катализатора равно или меньше 0,6; слой катализатора содержит не более 3 мас. % частиц, размеры которых меньше номинального размера, при этом минимальный размер частиц катализатора определяют как квадратный корень из максимальной площади живого сечения квадратной ячейки сита, которое задерживает катализатор. Описан способ загрузки катализатора в описанный выше реактор. Технический результат - возможность использования в каталитическом химическом реакторе с радиальным или аксиально-радиальным потоком катализатора с очень малым размером частиц без неблагоприятного влияния на работу и надежность перфорированных стенок. 2 н. и 9 з.п. ф-лы, 3 ил., 1 пр.

Область техники

Настоящее изобретение относится к каталитическим химическим реакторам. В частности, изобретение относится к реакторам с каталитическим слоем, в который сырье подают в радиальном или в аксиально-радиальном направлении.

Уровень техники

Реактор радиального или аксиально-радиального типа с каталитическим слоем содержит слой катализатора, имеющий форму цилиндрического кольца, заключенного между по меньшей мере первой и второй газопроницаемыми цилиндрическими стенками. Такие реакторы широко используются, например, для синтеза аммиака.

Вышеуказанные стенки предназначены для удерживания частиц катализатора и для распределения газового потока, содержащего реагенты и, соответственно, для сбора газового потока, содержащего продукты реакции. Поэтому эти стенки также указывают как распределитель и коллектор.

Газопроницаемость обеспечивается подходящими отверстиями, обеспечиваемыми в стенках. Обычно такие стенки изготавливают из перфорированных металлических листов.

Катализатор обычно используется в форме гранул. Поэтому катализатор характеризуется определенным размером частиц, которые могут быть более или менее мелкими.

Известно, что катализатор с мелкими частицами более эффективен для осуществления химической реакции. Для одного и того же объема слоя катализатора более мелкий катализатор обеспечивает более плотный и однородный контакт с реагентами и повышает выход продукта по сравнению с катализатором, состоящим из более крупных частиц.

Однако использование более мелкого катализатора влечет за собой ряд проблем. Для того чтобы удерживать более мелкие частицы катализатора, необходимо уменьшать размеры отверстий или щелей в перфорированных стенках. Однако уменьшение размеров отверстий и щелей сопряжено с различными проблемами. Первая проблема заключается в повышении вероятности засорения отверстий перфорированных стенок катализаторной пылью. Вторая проблема заключается в ослаблении стенок, поскольку уменьшение размеров проходов приводит к необходимости обеспечивать несколько проходов, расположенных рядом друг с другом, чтобы поперечное сечение потока оставалось неизменным. Металлический лист с близко расположенными перфорациями ослабляется, так что он подвержен поломкам, и его форма может изменяться.

Одно из решений этой проблемы заключается в обшивке стенок металлической сеткой с соответствующими мелкими ячейками. Однако было обнаружено, что такая сетка легко повреждается, особенно в условиях высоких температур и давлений и/или химически агрессивной среды в реакторе. Поэтому такое решение не является удовлетворительным.

По этой причине наблюдается тенденция к использованию катализатора, сформированного частицами размерами, превышающими 1,5 мм. Реакторы предшествующего уровня не предлагают удовлетворительного решения для использования катализатора с более мелкими частицами.

Раскрытие изобретения

Изобретение направлено на устранение недостатков существующих технических решений и обеспечивает возможность использования в каталитическом химическом реакторе с радиальным или аксиально-радиальным потоком катализатора с очень малым размером частиц без неблагоприятного влияния на работу и надежность перфорированных стенок, которые определяют границы слоя и удерживают частицы катализатора.

Эта цель достигается в каталитическом химическом реакторе, содержащем: слой катализатора, имеющий форму цилиндрического кольца и радиальное или комбинированное аксиально-радиальное направление пересекающего потока; по меньшей мере первую цилиндрическую стенку и вторую цилиндрическую стенку, которые определяют границы слоя катализатора и находятся с катализатором в непосредственном контакте, и вторая стенка проходит внутри первой стенки коаксиально с ней;

причем первая стенка и вторая стенка имеют проходы, делающие эти стенки газопроницаемыми;

проходы представляют собой щели, имеющие вытянутую форму в продольном направлении щелей и соответствующий поперечный размер в поперечном направлении, которое перпендикулярно продольному направлению;

слой катализатора состоит из частиц катализатора, имеющих номинальный минимальный размер, такой что:

а) отношение поперечного размера щелей и номинального минимального размера частиц катализатора равно или меньше 0,6;

б) слой катализатора содержит не более 3 мас. % частиц, размеры которых меньше номинального размера,

при этом минимальный размер частиц катализатора определяют как квадратный корень из максимальной площади живого сечения квадратной ячейки сита, которое задерживает катализатор.

Размер гранул катализатора может быть определен как диаметр в случае гранул, имеющих сферическую форму, или эквивалентный диаметр в случае гранул, имеющих другую или неправильную форму. Эквивалентный диаметр несферической частицы может быть определен как диаметр сферы, имеющей такой же объем, как и у несферической частицы.

Размер гранул катализатора может быть также эффективно определен путем просеивания катализатора через одно или несколько проволочных сит, имеющих подходящую площадь живого сечения квадратных ячеек. В этом случае речь идет о ситах с квадратными ячейками, то есть, о ситах с квадратными проходами для потока. Гранулы неправильной формы могут быть определены как частицы, имеющие размер между d1 и d2 (где d2 больше d1), когда частицы задерживаются ситом с квадратными ячейками, имеющими площадь живого сечения, равную d12, и могут проходить (то есть, не задерживаются) через сито с квадратными ячейками, имеющими площадь живого сечения, равную d22.

Минимальный размер d1 частиц катализатора может быть определен по максимальной площади А* живого сечения квадратной ячейки сита, которое задерживает частицы катализатора. Более конкретно, можно считать, что минимальный размер d1 равен корню квадратному из площади А*.

Определение размера путем просеивания катализатора может быть осуществлено предпочтительно в соответствии с методикой испытаний стандарта ASTM D4513-11 и более конкретно в соответствии со стандартом ATSM Е11-17.

Предпочтительно частицы катализатора неправильной формы имеют сферичность, превышающую некоторую пороговую величину. Сферичность частицы определяют как отношение площади поверхности сферы, имеющей такой же объем, как у частицы, к площади поверхности частицы. Сферичность идеальной сферы равна 1, поэтому сферичность, близкая к 1, указывает на то, что форма частицы близка к сферической, а небольшая величина сферичности указывает на то, что форма частицы существенно отличается от сферической. Предпочтительно величина сферичности гранул катализатора равна 0,4 или более, и более предпочтительно равна 0,5 или более.

В общем случае размер частиц катализатора определяется статистическим распределением, например нормальным распределением (кривая Гаусса). Катализаторы, предлагаемые на рынке, поставляются с указанием номинального минимального размера и номинального максимального размера, например, 1-2 мм.

Указанные минимальный и максимальный размеры - это заявленные величины, а имеющиеся в продаже катализаторы могут содержать гранулы, размер которых меньше заявленного минимального размера или больше заявленного максимального размера.

Это происходит, потому что катализатор, предлагаемый на рынке в форме гранул, получают путем дробления объемных образований катализатора. В процессе дробления осуществляют калибровку для получения требуемого размера гранул, однако неизбежно проскакивают гранулы с размерами, отличающимися от требуемых. Поскольку катализатор может крошиться, то образуется достаточное количество частиц, размеры которых меньше расчетного минимального размера. Заявитель обнаружил, что гранулы с размером, меньшим заявленного минимального размера, могут составлять примерно 5 мас. % катализатора.

Более мелкая фракция катализатора засоряет проницаемые стенки.

Заявитель обнаружил, что при вышеуказанных условиях, то есть, при отношении между поперечным размером щелей и минимальным размером гранул, равном или меньшем 0,6, и при содержании в катализаторе не более 3 мас. % частиц, размеры которых меньше минимального размера, степень засорения оказалась неожиданно очень низкой.

Поэтому при соблюдении вышеуказанных условий становится возможным использовать катализатор с очень мелкими частицами.

Предпочтительно номинальный минимальный размер частиц катализатора меньше 1,5 мм, предпочтительно равен или меньше 1,2 мм и более предпочтительно равен или меньше 1 мм. Предпочтительно этот размер равен 1 мм.

Предпочтительно поперечный размер щелей равен или меньше 1 мм, предпочтительно находится в диапазоне 0,5-0,8 мм и более предпочтительно - в диапазоне 0,5-0,6 мм. Предпочтительно этот размер равен 0,6 мм.

В одном из предпочтительных вариантов минимальный размер частиц равен 1 мм, и поперечный размер щелей равен 0,6 мм.

Более предпочтительно слой катализатора содержит не более 2 мас. % частиц, имеющих реальный размер менее указанного номинального размера, и даже более предпочтительно не более 1,5 мас. %.

Указанное количество частиц, имеющих реальный размер меньше номинального размера, может быть определено с помощью сита с квадратными ячейками, стороны которых равны номинальному минимальному размеру гранул катализатора.

Слой катализатора и цилиндрические стенки могут представлять собой часть модуля, который может быть извлечен из корпуса реактора.

Реактор по настоящему изобретению предпочтительно подходит для преобразования газового потока реагентов с получением газового потока продуктов реакции. Например, в одном из предпочтительных применений реактор представляет собой реактор для синтеза аммиака из подпиточного газа, содержащего водород и азот.

Объектом изобретения является также способ загрузки катализатора в реактор, предназначенный для осуществления каталитических химических реакций в котором: реактор содержит по меньшей мере первую цилиндрическую стенку и вторую цилиндрическую стенку, которые определяют границы пространства, способного содержать катализатор, причем вторая стенка проходит внутри первой стенки коаксиально с ней, так что загрузка катализатора между двумя стенками формирует слой катализатора в форме цилиндрического кольца с радиальным или аксиально-радиальным направлением пересекающего потока; первая стенка и вторая стенка имеют проходы, делающие эти стенки газопроницаемыми, причем одна стенка приспособлена таким образом, чтобы она действовала в качестве распределителя газового потока, содержащего реагенты, а другая стенка приспособлена таким образом, чтобы она действовала в качестве коллектора газового потока, содержащего продукты реакции; проходы представляют собой щели, имеющие вытянутую форму и соответствующий продольный размер в продольном направлении щели и соответствующий поперечный размер в поперечном направлении, которое перпендикулярно продольному направлению; слой загружаемого катализатора формируется частицами катализатора, имеющими номинальный минимальный размер; отношение поперечного размера щелей и номинального минимального размера частиц катализатора равно или меньше 0,6; минимальный размер частиц катализатора определяют как квадратный корень из максимальной площади живого сечения квадратной ячейки сита, которое задерживает катализатор. При этом в предлагаемом способе просеивают катализатор перед введением в реактор, так чтобы введенный катализатор содержал не более 3 мас. % частиц, размер которых меньше упомянутого номинального размера. Краткое описание чертежей

На фиг. 1 - схематический вид реактора с радиальным потоком;

на фиг. 2 - вид части перфорированной стенки реактора фиг. 1;

на фиг. 3 - график статистического распределения размера гранул катализатора.

Подробное описание изобретения

На фиг. 1 приведен схематический вид реактора 1, который включает: корпус 2; слой 3 катализатора; первую перфорированную цилиндрическую стенку 4; вторую перфорированную цилиндрическую стенку 5; и центральный коллектор 6.

Газовый поток реагентов, поступающий через впускное отверстие 7, проходит в радиальном направлении из пространства 8 в центральный коллектор 6 и затем из него выходит в выпускной фланец 9.

Поток, проходящий через слой катализатора, может быть направлен к центру (входящий поток), как это показано на фиг. 1, или может быть направлен наружу (выходящий поток).

Слой 3 катализатора имеет форму цилиндрического кольца с радиальной симметрией вокруг оси Х-Х.

В некоторых вариантах слой 3 и перфорированные стенки 4, 5 являются частью модуля (картриджа), извлекаемого из корпуса 2.

На фиг. 2 показана детально первая перфорированная стенка 4, в которой имеются прорези 10, обеспечивающие газопроницаемость стенки. Перфорированная стенка 5 выполнена аналогичным образом. Для лучшего представления на фигуре показана только часть цилиндрической стенки.

Каждая щель 10 имеет вытянутую форму и проходит по существу вдоль продольной оси А-А. Щели имеют размер (ширину) s в поперечном направлении, которое перпендикулярно оси А-А.

Соотношение между этим размером s и размером частиц катализатора по существу определяет способность щели 10 удерживать частицы катализатора.

Щели 10 перфорированных стенок 4 и 5 предпочтительно имеют одинаковый размер s.

На фиг. 3 показано типичное статистическое распределение частиц товарного катализатора, которые имеют минимальный заявленный размер d1 и максимальный заявленный размер d2. Например, у частиц товарного катализатора с заявленным размером 1-2 мм d1=1 мм и d2=2 мм.

Отношение поперечного размера s щелей 10 обеих стенок 4 и 5 к номинальному размеру d1 частиц катализатора меньше или равно 0,6. Кроме того, слой 3 катализатора содержит не более 3 мас. % частиц, размеры которых меньше d1.

Частицы катализатора, размеры которых меньше d1, указаны зоной 11 фиг.

Было определено, что для особенно успешного варианта осуществления изобретения ширина s=0,6 мм и d1=1 мм.

Пример

Были проведены испытания различных типов катализатора для оценки их способности засорять щели проницаемой стенки. Использовалась стенка из плоского металлического листа со щелями, имеющими среднюю длину 60 мм и ширину 0,6 мм, расположенными в нижней части трубы.

Труба была заполнена катализатором, и через нее пропускали воду в течение 10 часов. В конце испытаний оценивалась степень засорения щелей частицами катализатора.

При использовании промышленного катализатора с номинальными размерами 1,5-3 мм была получена степень засорения, которая варьировалась в диапазоне 2-3% от общей площади поперечного сечения проходов.

При использовании промышленного катализатора с номинальными размерами 1-2 мм частиц, содержащего более 5 мас. % частиц с размерами менее 1 мм, была получена степень засорения, которая варьировалась в диапазоне 10-30% от общей площади поперечного сечения проходов.

При использовании катализатора, просеянного в соответствии с изобретением и содержащего менее 3 мас. % частиц с размерами менее 1 мм, была получена степень засорения, которая варьировалась в диапазоне 3-5% от общей площади поперечного сечения проходов.

Источник поступления информации: Роспатент

Showing 61-70 of 73 items.
04.06.2020
№220.018.23f2

Реактор, предназначенный для окисления аммиака при получении азотной кислоты

Изобретение относится к области промышленного получения азотной кислоты, в частности к способу получения азотной кислоты, реактору, предназначенному для каталитического окисления аммиака, предназначенному для последующего получения азотной кислоты, и способу переоборудования реактора,...
Тип: Изобретение
Номер охранного документа: 0002722645
Дата охранного документа: 02.06.2020
09.06.2020
№220.018.25af

Способ очистки потока со2

Изобретение относится к способу очистки потока диоксида углерода от водорода и метанола и может использоваться для очистки СО, подаваемого в процесс синтеза мочевины. Способ заключается в том, что водород и метанол удаляют за счет контакта СО потока (12) с катализатором, окисляющим водород до...
Тип: Изобретение
Номер охранного документа: 0002723017
Дата охранного документа: 08.06.2020
21.06.2020
№220.018.28b1

Способ модернизации установки синтеза аммиака

Изобретение относится к установке для синтеза аммиака и способу её модернизации. Способ содержит головную секцию для получения подпиточного газа (1), содержащего водород и азот, компрессор (3) для доведения подпиточного газа до давления синтеза, секцию (2) синтеза, работающую при давлении...
Тип: Изобретение
Номер охранного документа: 0002724051
Дата охранного документа: 19.06.2020
04.07.2020
№220.018.2e4d

Способ производства комбинированных удобрений

Изобретение относится к сельскому хозяйству. Способ производства комбинированного удобрения, изготовленного из жидкого сырья, включающего первое удобрение на основе азота и один или более дополнительных компонентов, выбираемых из одного или более вторых удобрений на основе азота, отличающихся...
Тип: Изобретение
Номер охранного документа: 0002725536
Дата охранного документа: 02.07.2020
06.08.2020
№220.018.3d71

Комбинированное устройство для синтеза мочевины под высоким давлением

Изобретение относится к комбинированному устройству для синтеза мочевины из аммиака и диоксида углерода. Устройство имеет кожух и содержит зону реакции и зону конденсации, сообщающиеся друг с другом и заключенные внутри кожуха. При этом зона реакции или зона конденсации расположена коаксиально...
Тип: Изобретение
Номер охранного документа: 0002729068
Дата охранного документа: 04.08.2020
20.04.2023
№223.018.4ab4

Способ реконструкции установки для дистилляции метанола

Настоящее изобретение относится к способу реконструкции секции очистки установки дистилляции метанола, в которую подается поток метанола-сырца и которая включает очистную колонну (300) среднего давления (СД), выполненную с возможностью работы при первом давлении (p1) дистилляции, и очистную...
Тип: Изобретение
Номер охранного документа: 0002788870
Дата охранного документа: 25.01.2023
20.04.2023
№223.018.4b2b

Способ производства метанола

Настоящее изобретение относится к способу совместного синтеза метанола, аммиака и монооксида углерода, а также к установке для его осуществления. Предлагаемый способ включает следующие стадии: а) синтез метанола посредством каталитической конверсии первого синтез-газа (12), содержащего водород...
Тип: Изобретение
Номер охранного документа: 0002774658
Дата охранного документа: 21.06.2022
20.04.2023
№223.018.4e18

Способ снижения содержания noи no в хвостовом газе процесса получения азотной кислоты

Группа изобретений относится к способу снижения содержания NO и NO в хвостовом газе процесса получения азотной кислоты. Способ снижения содержания NO и NO во входном хвостовом газе процесса получения азотной кислоты включает стадию сокращения выбросов, включающую по меньшей мере стадию deNO и...
Тип: Изобретение
Номер охранного документа: 0002793239
Дата охранного документа: 30.03.2023
16.05.2023
№223.018.5eba

Производство твердого химического продукта

Изобретение относится к способу отверждения химического продукта в форме плава для получения твердого продукта в виде прилов или гранул. В частности, изобретение относится к сфере производства твердой мочевины. В заявке описан способ отверждения химического продукта, имеющего форму плава, при...
Тип: Изобретение
Номер охранного документа: 0002754939
Дата охранного документа: 08.09.2021
20.05.2023
№223.018.675e

Способ синтеза мочевины

Изобретение относится к способу синтеза мочевины из СО и NH. При осуществлении способа: а) проводят реакцию СО и NH при давлении реакции для формирования водного раствора мочевины; б) проводят отпарку водного раствора мочевины при давлении отпарки с получением очищенного раствора и газовой...
Тип: Изобретение
Номер охранного документа: 0002794580
Дата охранного документа: 21.04.2023
Showing 31-39 of 39 items.
29.06.2019
№219.017.a047

Способ получения аммиака из полученной из природного газа смеси азота и водорода

Изобретение относится к способу получения аммиака из азота и водорода и может быть использовано в химической промышленности. Аммиак 3 получают из состоящей по существу из азота и водорода газовой смеси 4, полученной из природного газа 5 следующим образом. Из природного газа 5 путем частичного...
Тип: Изобретение
Номер охранного документа: 0002404123
Дата охранного документа: 20.11.2010
29.06.2019
№219.017.a183

Стеночная конструкция для слоев катализатора в реакторах синтеза и способ ее изготовления

Изобретение относится к области обеспечения гетерогенного каталитического синтеза химических соединений в реакторах с неподвижными слоями катализатора, через которые проходит газообразный поток синтез-газа. Стеночная конструкция (8; 9; 50) для слоев катализатора в реакторах (1) синтеза содержит...
Тип: Изобретение
Номер охранного документа: 0002462299
Дата охранного документа: 27.09.2012
10.07.2019
№219.017.aaf9

Установка для получения мочевины

Изобретение относится к аппаратурному оформлению стадии синтеза в процессе получения мочевины из аммиака и диоксида углерода. Установка для получения мочевины содержит секцию высокого давления, состоящую из работающих по существу при одном и том же давлении реактора синтеза и расположенного...
Тип: Изобретение
Номер охранного документа: 0002296748
Дата охранного документа: 10.04.2007
23.07.2019
№219.017.b7ee

Процесс синтеза аммиака

Изобретение относится к процессу получения аммиака из углеводородного сырья, соответствующей установке и способу реконструкции таких установок. Способ включает стадии: риформинга углеводородного сырья в сырой полученный газ, для выполнения которой требуется приток тепла, очистки сырого...
Тип: Изобретение
Номер охранного документа: 0002695164
Дата охранного документа: 22.07.2019
15.11.2019
№219.017.e1e9

Способ получения аммиака

Изобретение относится к способу получения аммиака каталитической реакцией подпиточного синтез-газа, получаемого риформингом углеводородного сырья, и к установке для его осуществления. Способ включает: первичный риформинг углеводородного сырья с водяным паром, с получением первого...
Тип: Изобретение
Номер охранного документа: 0002706059
Дата охранного документа: 13.11.2019
06.12.2019
№219.017.ea57

Способ повышения производительности установки синтеза аммиака

Изобретение относится к обработке технологического конденсата в установке синтеза аммиака. Способ осуществляют в установке синтеза аммиака, включающей головную секцию, вырабатывающую подпиточный газ риформингом углеводородного сырья, и секцию синтеза, где происходит реакция получения аммиака из...
Тип: Изобретение
Номер охранного документа: 0002708049
Дата охранного документа: 03.12.2019
22.04.2020
№220.018.16dc

Способ получения азотной кислоты

Изобретение может быть использовано в химической промышленности. Способ совмещенного синтеза аммиака и азотной кислоты включает синтез азотной кислоты, при осуществлении которого подвергают поток аммиака окислению с получением газового потока, содержащего оксиды азота. Полученный газовый поток...
Тип: Изобретение
Номер охранного документа: 0002719430
Дата охранного документа: 17.04.2020
21.06.2020
№220.018.28b1

Способ модернизации установки синтеза аммиака

Изобретение относится к установке для синтеза аммиака и способу её модернизации. Способ содержит головную секцию для получения подпиточного газа (1), содержащего водород и азот, компрессор (3) для доведения подпиточного газа до давления синтеза, секцию (2) синтеза, работающую при давлении...
Тип: Изобретение
Номер охранного документа: 0002724051
Дата охранного документа: 19.06.2020
17.06.2023
№223.018.8169

Химическая установка, в частности, для синтеза аммиака, содержащая абсорбционный холодильный агрегат

Изобретение относится к химической установке, содержащей паровой цикл и систему охлаждения. Система охлаждения содержит абсорбционный холодильный агрегат. Паровой цикл содержит один или более парогенераторов, потребителей пара и по меньшей мере один конденсатор пара. Причем для перехватывания...
Тип: Изобретение
Номер охранного документа: 0002758404
Дата охранного документа: 28.10.2021
+ добавить свой РИД