×
02.06.2023
223.018.7572

Результат интеллектуальной деятельности: ГИДРОДИОД

Вид РИД

Изобретение

Аннотация: Изобретение относится к области управления или регулирования расхода жидкости и может быть использовано в различных гидравлических системах, в которых необходимо регулировать параметры потоков при низких и средних давлениях, в том числе в качестве запорных органов гидравлических машин периодического действия (например, в насосах). Гидродиод имеет корпус, содержащий верхнюю (1) и нижнюю (2) плиты и боковые стенки (3) и (4), стянутые резьбовыми креплениями (5) с образованием канала прямоугольного сечения (6) для прохода жидкой среды. В этом канале вдоль него на двух его противоположных сторонах (плитах (1) и (2)) в пазах (7) установлены пары жестких пластин (8), наклоненных под углом в сторону прямого потока и имеющие длину вылета . Расстояние между двумя пластинами вдоль канала (6) равно ∙. Количество пар пластин лежит в диапазоне 4÷8. Угол наклона - в диапазоне 20÷40 градусов. При прямом прохождении потока он практически не встречает сопротивления, и расход в прямом потоке практически не отличается от расхода через канал, проходное сечение которого равно площади канала (6), свободной от пластин (8). При обратном течении часть потока отклоняется пластинами (8) в сторону поверхности плит (1) и (2), упирается в карман между пластинами с образованием обратного течения и вихря, препятствующих движению жидкости, из-за чего гидравлическое сопротивление гидродиода существенно возрастает. Снижаются габариты, масса и затраты на изготовление, повышается диодность. 2 з.п. ф-лы, 8 ил.

Изобретение относится к области управления или регулирования расхода жидкости и может быть использовано в различных гидравлических системах, в которых необходимо регулировать параметры потоков при низких и средних давлениях, в том числе в качестве запорных органов гидравлических машин периодического действия (например, в насосах).

Известны гидравлические диоды (в дальнейшем - гидродиоды), содержащие канал с установленными в нем элементами, имеющими поверхности с наклоном в сторону прямого потока (см., например, Носов Е.Ю. Повышение эффективности работы гидропневматических агрегатов с катящимся ротором. Автореферат дисс. канд. наук., 2009 г., стр. 14, рис. 12).

Наиболее близким к заявляемому техническому устройству является гидродиод, содержащий канал прямоугольного сечения для прохода жидкой или газообразной среды, в котором на двух противоположных сторонах канала установлены пары жестких пластин, наклоненных под углом в сторону прямого потока (см. Носов Е.Ю. Повышение эффективности работы гидропневматических агрегатов с катящимся ротором. Автореферат дис. канд. наук., 2009 г., стр. 12, рис. 6).

Недостатком известных конструкций является их низкая диодность (отношение расхода прямого потока к расходу потока в обратном направлении), особенно при работе на низких и средних давлениях жидкости, и существование неопределенности в оптимальном количестве пар таких пластин, что заставляет проектировщика использовать их большое количество, что, в свою очередь, увеличивает габариты, массу и технологическую сложность изготовления гидродиодов.

Технической задачей изобретения является снижение материалоемкости, габаритов и технологической сложности изготовления гидродиодов, а также повышение их диодности при работе на низких и средних давлениях и жидкости.

Данный технический результат достигается тем, что в известном гидродиоде, содержащем канал прямоугольного сечения для прохода жидкой среды, в котором на двух противоположных сторонах вдоль канала установлены пары жестких пластин, наклоненных под углом в сторону прямого потока, согласно изобретению, пластины установлены относительно друг друга на расстоянии В, определяемом по формуле В = lcos α, где l - длина выступающей в канал части пластины, α - угол наклона плоскости пластин к стенке канала, в которую пластины вмонтированы. Кроме того, количество пар пластин, установленных в канале, может находиться в диапазоне 4÷8 штук, при этом меньшее число соответствует рабочей жидкости с высокой кинематической вязкостью, например, 24 мм2/с, а большее - с низкой кинематической вязкостью, например, 6 мм2/с, и угол наклона пластин, равный углу между плоскостью пластин и плоскостью стенки канала, в которую пластины установлены, может находиться в диапазоне 20÷40 градусов, при этом меньшее число соответствует рабочей жидкости с низкой кинематической вязкостью, а большее - с высокой кинематической вязкостью.

Сущность изобретения поясняется чертежами.

На фиг. 1 показано продольное сечение гидродиода, а на фиг. 2 - его поперечное сечение плоскостью А-А.

На фиг. 3 показан фрагмент конструкции с обозначениями размера выступающей части пластин и их расстоянием друг от друга.

На фиг. 4 показан диод в процессе прохождения по нему потока жидкости в прямом направления (слева - направо), а на фиг. 5 - в обратном направлении (справа - налево).

На фиг. 6 показан обобщенный график зависимости диодности D от угла α наклона пластин при течении маловязких жидкостей.

На фиг. 7 показан обобщенный график зависимости диодности D от числа пар пластин N при работе гидродиода с маловязкими жидкостями.

На фиг. 8 показан обобщенный график зависимости диодности D от оптимального расстояния между пластинами вдоль канала гидродиода, характерном как для вязких, так и для маловязких жидкостей.

Гидродиод (фиг. 1 и 2) имеет корпус, содержащий верхнюю 1 и нижнюю 2 плиты и боковые стенки 3 и 4, стянутые резьбовыми креплениями 5 с образованием канала прямоугольного сечения 6 для прохода жидкой среды. В этом канале вдоль него на двух его противоположных сторонах (плитах 1 и 2) в пазах 7 установлены пары жестких пластин 8, наклоненных под углом α (см. также фиг. 3) в сторону прямого потока.

Угол α наклона пластин равен углу между плоскостью пластин 8 и плоскостью стенок канала (плит 1 и 2), в которые пластины 8 установлены.

Расстояние В между пластинами равно произведению lcos α, где l - длина выступающей в канал 6 части пластин 8, и α - угол наклона пластин.

Гидродиод работает следующим образом (фиг. 4 и 5).

При прямом прохождении потока (фиг. 4) линии тока (обозначены стрелками) практически не встречают сопротивление, и жидкость течет, огибая наклонные в сторону потока пластины. В связи с этим расход жидкости в прямом потоке практически не отличается от расхода через канал, проходное сечение которого равно площади канала 6, свободной от пластин 8.

При обратном течении жидкости (фиг. 5) часть потока жидкости (обозначена стрелками) отклоняется наклонными пластинами 8 в сторону поверхности плит 1 и 2, «упирается» в карман между пластинами с образованием обратного течения и вихря, препятствующих движению жидкости, из-за чего гидравлическое сопротивление гидродиода существенно превышает сопротивление течению жидкости в прямом потоке. В связи с этим, расход жидкости в обратном направлении кратно ниже расхода жидкости в прямом направлении.

Вышеописанная работа гидродиода оценивается диодностью D, которая равна отношению расхода при прямом течении жидкости QПР к расходу жидкости в обратном направлении QОБ при одном и том же давлении на входе в гидродиод: D = QПР / QОБ.

При этом следовало бы ожидать, что чем больше по длине канала гидродиода установлено пар пластин, тем сильнее отличаются прямой и обратный потоки, и диодность должна быть больше.

Однако проведенными экспериментальными исследованиями установлено, что диодность практически перестает расти после установки в канале гидродиода определенного числа пар пластин, то есть диодность, например, при работе на невязких маслах типа И-5а и воде при количестве пар пластин 8-ми шт. больше, чем при установке 7-ми или менее пар пластин, но дальнейшее увеличение количества пар пластин практически этот параметр не увеличивает. Причем, снижение роста диодности начинает явно наблюдаться уже при увеличении количества пар пластин с 5-ти и далее. Оптимальное предельное количество работающих пар пластин зависит также от вязкости жидкости. Для наиболее вязких жидкостей типа 75W (трансмиссионное масло) предельное оптимальное количество пар пластин равно 4-м.

Визуальное наблюдение через прозрачные стенки 3 и 4 за потоком жидкости в гидродиоде, в том числе с применением подкрашенной алюминиевой пудрой жидкости, позволило установить, что относительно высокое гидравлическое сопротивление гидродиода такой формы при течении обратного потока приводит к появлению мельчайших пузырьков воздуха (изображены на фиг. 5 в виде небольших окружностей).

Воздух, который ранее находился в жидкости в растворенном состоянии, выделяется из нее в связи со снижением в ней давления из-за нарастающего гидравлического сопротивления. Этот процесс начинается примерно в зоне установки 4-5-й пар пластин 8 (для маловязких жидкостей), и далее развивается, что существенно влияет на физико-механические свойства жидкости и условия ее течения через препятствия, т.к. она теряет свою упругость. Это сначала снижает вихреобразование, а потом и сводит его на «нет».

Это явление отражено на фиг. 7, где показано, что сначала при увеличении числа пар пластин N диодность растет, потом ее рост в зоне между четырех и шести пар пластин замедляется, и при N = 8 рост диодности практически прекращается.

При исследовании жидкостей с высокой вязкостью этот эффект наблюдается уже на второй-третьей паре пластин.

Зависимость между предельным оптимальным количеством пар пластин от вязкости жидкости является практически линейной.

В связи с этим при изготовлении гидродиода данной конструкции достаточно ограничиться предельным оптимальным количеством пар пластин, что исключает неопределенность при проектировании и дает возможность снизить материалоемкость, габариты и затраты на изготовление гидродиода.

Экспериментальные исследования также показали, что существует явный оптимум по углу наклона пластин ϕ, что отражено на фиг. 6 в виде графика, из которого становится ясным, что в гидродиоде данной конструкции при работе на маловязких жидкостях оптимальным углом наклона пластин является угол, равный 20-ти градусам. При работе на жидкостях с большой вязкостью этот угол равен 40-ка градусам. Зависимость оптимального угла наклона пластин от вязкости жидкости практически линейная. Выполнение этого условия позволяет изготавливать гидродиоды с максимальной диодностью.

Проведенные натурные опыты также выявили влияние расстояния между пластинами В на диодность, что отражено на графике, изображенном на фиг. 8. Установлено, что в гидродиоде такой конструкции оптимальным, обеспечивающим максимальную диодность расстоянием между пластинами, является расстояние В, определенное по формуле В = lcos α, причем это условие не зависит от вязкости жидкости.

Таким образом, следует признать, что поставленная техническая задача полностью выполнена, и предлагаемые конструктивные соотношения позволяют сделать гидродиод с минимальными габаритами, при минимальных затратах на материал и изготовить его с максимальной диодностью.

Источник поступления информации: Роспатент

Showing 11-20 of 41 items.
12.04.2020
№220.018.1443

Способ и устройство идентификации постоянных магнитов по объемной намагниченности

Изобретение относится к идентификации постоянных магнитов по объемной намагниченности из опытной партии, изготовленной из одинаковой марки сплава, форме и геометрии. Устройство для определения одинаковой намагниченности опытных образцов постоянных магнитов содержит основание, настольные...
Тип: Изобретение
Номер охранного документа: 0002718641
Дата охранного документа: 10.04.2020
15.05.2020
№220.018.1cf7

Электротехнический комплекс поршневого компрессора на основе линейной магнитоэлектрической машины

Изобретение относится к области электротехники. Технический результат – обеспечение высокого электромагнитного усилия на всем ходу якоря. Электротехнический комплекс включает в себя систему управления, программное обеспечение, датчики силы и перемещения, аккумуляторную батарею, поршневой...
Тип: Изобретение
Номер охранного документа: 0002720882
Дата охранного документа: 13.05.2020
16.05.2020
№220.018.1d7d

Устройство защиты от замыканий в обмотках однофазного трансформатора

Использование: в области электроэнергетики для защиты трансформаторов от замыканий в его обмотках. Технический результат - повышение чувствительности устройства защиты к витковым замыканиям в обмотках однофазного трансформатора за счет возможности вращения цилиндрической катушки индуктивности...
Тип: Изобретение
Номер охранного документа: 0002720946
Дата охранного документа: 15.05.2020
29.05.2020
№220.018.21c3

Способ работы поршневого двухступенчатого компрессора и устройство для его осуществления

Предложенный способ работы заключается в использовании столба жидкости для сжатия газа во второй ступени, при этом давление жидкости создается в подпоршневой полости первой ступени. Компрессор содержит приводной вал (1) и картер (2) с крейцкопфным кривошипно-шатунным механизмом привода,...
Тип: Изобретение
Номер охранного документа: 0002722116
Дата охранного документа: 26.05.2020
03.06.2020
№220.018.232d

Поршневой двухступенчатый компрессор

Изобретение относится к области машин объемного вытеснения и может быть использовано при создании компрессоров среднего и высокого давления. Поршневой двухступенчатый компрессор содержит цилиндры 1 первой и 2 второй ступени, поршни 3 и 4, соединенные штоком 5 с приводом...
Тип: Изобретение
Номер охранного документа: 0002722588
Дата охранного документа: 01.06.2020
12.06.2020
№220.018.266b

Устройство для обогрева салона автомобиля в экстремальных ситуациях (варианты)

Изобретение относится к области конструкции и эксплуатации транспортных средств, преимущественно автомобилей. Устройство для выработки энергии содержит турбину, которая устанавливается на крыше автомобиля и имеет вертикальную ось вращения, а ее лопасти представляют собой пластины, выполняющие...
Тип: Изобретение
Номер охранного документа: 0002723198
Дата охранного документа: 09.06.2020
25.06.2020
№220.018.2b3a

Газоанализатор диоксида азота

Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и измерения содержания микропримесей диоксида азота. Сущность изобретения: полупроводниковый датчик диоксида азота, содержащий полупроводниковое основание, нанесенное на...
Тип: Изобретение
Номер охранного документа: 0002724290
Дата охранного документа: 22.06.2020
11.07.2020
№220.018.3194

Способ спуска отделяющейся части ступени ракеты-носителя и устройство для его осуществления

Группа изобретений относится к ракетам-носителям (РН) с жидкостными ракетными двигателями (ЖРД). Способ спуска отделяющейся части (ОЧ) ступени РН основан на ориентации и стабилизации положения ОЧ двигательной установкой вперед, приложении управляющих моментов путём сброса продуктов газификации...
Тип: Изобретение
Номер охранного документа: 0002726214
Дата охранного документа: 09.07.2020
24.07.2020
№220.018.36c7

Способ повышения эффективности эксплуатации магистральных нефтепроводов

Изобретение относится к области нефтяной промышленности и может быть использовано при прогнозировании работы магистральных нефтепроводов, работающих не на проектных мощностях. Предложен способ повышения эффективности эксплуатации магистральных нефтепроводов с использованием существующего...
Тип: Изобретение
Номер охранного документа: 0002727511
Дата охранного документа: 22.07.2020
24.07.2020
№220.018.37eb

Способ определения толщины тонких пленок

Использование: для определения толщины тонких пленок. Сущность изобретения заключается в том, что осаждают тонкие пленки с различной толщиной слоя на подложку, измеряют толщину слоя методом атомно-силовой микроскопии, измеряют аналитический сигнал рентгеновской флуоресценции от элементов пленки...
Тип: Изобретение
Номер охранного документа: 0002727762
Дата охранного документа: 23.07.2020
Showing 11-20 of 79 items.
10.01.2015
№216.013.1b1f

Способ работы насос-компрессора и устройство для его осуществления

Изобретение относится к области насосо- и компрессоростроения и может быть использовано при создании машин для сжатия и подачи одновременно или попеременно жидкостей и газов. Способ состоит в том, что подпоршневую насосную полость П-образного поршня, содержащую газовый демпфер в виде газового...
Тип: Изобретение
Номер охранного документа: 0002538371
Дата охранного документа: 10.01.2015
20.02.2015
№216.013.2810

Мембранный регулятор расхода для газо- или гидростатической опоры

Изобретение относится к газо- и гидростатическим опорам повышенной жесткости. Регулятор состоит из корпуса (1) и крышки (2), между которыми защемлена упругая мембрана (3), которая совместно с корпусом (1) образует подмембранную полость (4) и с крышкой (2) - надмембранную полость (5). В крышке 2...
Тип: Изобретение
Номер охранного документа: 0002541713
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2c4d

Снаряд с газовым подвесом

Изобретение относится к области огнестрельного гладкоствольного оружия, в частности к снарядам с газовым подвесом. Снаряд с газовым подвесом содержит гладкую цилиндрическую часть, в которой выполнена полость питания, соединенная с наружной цилиндрической поверхностью через питающие устройства....
Тип: Изобретение
Номер охранного документа: 0002542809
Дата охранного документа: 27.02.2015
10.04.2015
№216.013.3a1c

Способ производства выстрела огнестрельного оружия и устройство для его осуществления

Изобретение относится к области огнестрельного оружия и касается использования при создании образцов артиллерийского и стрелкового оружия. Перед выстрелом из огнестрельного оружия укладывают боеприпас, состоящий из порохового заряда и метательного снаряда, в казенную часть основного ствола,...
Тип: Изобретение
Номер охранного документа: 0002546364
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3a37

Поршневой компрессор без смазки

Изобретение относится к области компрессоростроения и может быть использовано преимущественно при создании поршневых компрессоров без смазки цилиндропоршневой группы средней и большой производительности. Компрессор состоит из цилиндра 1 с обратными самодействующими клапанами 2 и 3, в котором...
Тип: Изобретение
Номер охранного документа: 0002546391
Дата охранного документа: 10.04.2015
20.05.2015
№216.013.4d1b

Способ работы компрессора объемного действия

Изобретение относится к области компрессоров объемного действия и может быть использовано для повышения их экономичности и быстроходности. Способ заключается в циклическом попеременном уменьшении и увеличении объема рабочей камеры за счет движения в ней рабочего органа. При увеличении объема...
Тип: Изобретение
Номер охранного документа: 0002551253
Дата охранного документа: 20.05.2015
10.06.2015
№216.013.5009

Двигатель внутреннего сгорания

Изобретение может быть использовано в двигателях внутреннего сгорания, предназначенных преимущественно для районов с низкими температурами. Двигатель внутреннего сгорания имеет по крайней мере одну камеру (2) сгорания, соединенную со своим рабочим объемом, и механизм преобразования тепловой...
Тип: Изобретение
Номер охранного документа: 0002552010
Дата охранного документа: 10.06.2015
20.08.2015
№216.013.7197

Поршневой насос-компрессор

Изобретение относится к области насосо- и компрессоростроения и может быть использовано в поршневых машинах объемного действия, для одновременной или попеременной подачи жидкостей и газов. Насос-компрессор содержит поршень 2, установленный с зазором 3 в цилиндре 4 с всасывающим 5 и...
Тип: Изобретение
Номер охранного документа: 0002560649
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7198

Пневмогидравлический агрегат

Изобретение относится к области насосо- и компрессоростроения и может быть использовано при создании машин, предназначенных для сжатия и подачи потребителю одновременно или попеременно жидкостей и газов. Пневмогидравлический агрегат состоит из цилиндра 1 с газовой полостью 2 и тронкового поршня...
Тип: Изобретение
Номер охранного документа: 0002560650
Дата охранного документа: 20.08.2015
20.10.2015
№216.013.82fb

Поршневой насос-компрессор

Изобретение относится к области гидравлической и пневматической техники. Насос-компрессор состоит из цилиндров 1 и 2 с поршнями 3 и 4. Оба цилиндра имеют надпоршневые полости 5 и 6 и подпоршневые полости 7 и 8, соединенные с заполненным жидкостью картером 9, разделенным перегородкой 10 на две...
Тип: Изобретение
Номер охранного документа: 0002565134
Дата охранного документа: 20.10.2015
+ добавить свой РИД