×
01.06.2023
223.018.7518

Результат интеллектуальной деятельности: Способ управления подвесом ротора электростатического гироскопа

Вид РИД

Изобретение

Аннотация: Изобретение относится к гироскопической технике, а именно к способам управления подвесом ротора электростатического гироскопа (ЭСГ), используемого для высокоточных измерений навигационных параметров подвижных объектов. В способе управления подвесом ротора ЭСГ парируют воздействие на ротор внешнего ускорения силами подвеса, образованными при подаче на пару электродов, установленных по каждой оси подвеса с противоположных сторон ротора, опорного напряжения, к которому на одном электроде прибавляют приращение напряжения, пропорциональное внешнему ускорению, действующему вдоль данной оси подвеса, а на другом, противоположном электроде, вычитают приращение напряжения. При этом в условиях пониженного уровня внешнего ускорения снижают величину опорного напряжения, а в условиях повышенного уровня увеличивают величину опорного напряжения. Величину опорного напряжения определяют и устанавливают исходя из соотношения: где - опорное напряжение, определяемое в условиях Космоса; U - опорное напряжение, определяемое в условиях Земли; ΔU - приращение напряжения, пропорциональное внешнему ускорению в условиях Космоса при опорном напряжении U; - коэффициент запаса по приращению внешнего ускорения в одних условиях функционирования гироскопа; A - среднее значение внешнего ускорения; A - максимально возможное ускорение. Технический результат – повышение точности ЭСГ. 1 з.п. ф-лы.

Изобретение относится к гироскопической технике, а именно к способам управления подвесом ротора электростатического гироскопа (далее ЭСГ), используемого для высокоточных измерений навигационных параметров подвижных объектов.

Известен резонансный способ управления подвесом ротора ЭСГ [1]. Элементами подвеса при этом является емкость силового электрода и индуктивность катушки, которые образуют последовательный резонансный контур. При этом подают на резонансный контур переменное синусоидальное напряжение с частотой, превышающей резонансную частоту резонансного контура. Измеряют смещение ротора из центра подвеса, произошедшее под воздействием внешнего ускорения. В случае увеличения расстояния от ротора до силового электрода уменьшается емкость силового электрода, возрастает резонансная частота контура, растет амплитуда переменного напряжения на силовом электроде, растет сила, действующая со стороны электрода на ротор, и ротор возвращается в первоначальное положение. Таким образом, подвес ротора осуществляется автоматически.

Недостатком такого способа является низкая точность ЭСГ, обусловленная низкой точностью поддержания положения ротора в подвесе, зависящая от величины добротности резонансного контура.

Известен способ управления подвесом ротора ЭСГ [2], принятый за прототип. Согласно данному способу воздействие на ротор внешнего ускорения парируют силами подвеса, образованными при подаче на пару электродов, установленных по каждой оси подвеса с противоположных сторон ротора, опорного напряжения, к которому на одном электроде прибавляют приращение напряжения, пропорциональное внешнему ускорению, действующему вдоль данной оси подвеса, а на другом, противоположном электроде, вычитают приращение напряжения. Разность напряжений на электродах создает результирующую силу, удерживающую (возвращающую) ротор в центр подвеса.

Недостатком способа является неизменная точность ЭСГ при снижении уровня действующего на ротор внешнего ускорения. Указанный недостаток обусловлен присутствием на электродах постоянного по величине опорного напряжения, значение которого определено исходя из максимального уровня внешнего ускорения. Напряжение на электродах является источником силы, удерживающей (возвращающей) ротор в центре подвеса. В реальных ЭСГ при воздействии силы на ротор возникает уводящий момент, обусловленный неидеальной формой ротора, который уменьшает точность гироскопа. Величина уводящего момента М под действием силы, приложенной со стороны одного электрода, определяется соотношением [2, стр. 47]:

где:

- сила, прикладываемая к ротору со стороны одного электрода;

Δ - величина отклонения формы ротора от формы шара;

Co - емкость ротор - электрод;

Uo - опорное напряжение;

do - величина зазора ротор - электрод;

S - площадь электрода;

εo - диэлектрическая проницаемость вакуума;

- относительный коэффициент несферичности.

При изменении условий работы подвеса, связанных с уменьшением уровня ускорения, при постоянной величине опорного напряжения на электродах, величина уводящего момента не меняется. Это обстоятельство ограничивает точность гироскопа, поскольку уводящий момент определяется величиной опорного напряжения.

Суть изменения уровня внешнего ускорения заключается в том, что реальные ЭСГ изготавливаются и испытываются в условиях Земли, при воздействии на ротор гироскопа ускорения, равного ускорению силы тяжести. Эксплуатация гироскопа происходит на космическом аппарате в условиях Космоса при воздействии на ротор практически нулевого ускорения, которое в свою очередь может увеличиваться, например, при смене орбиты, и снова уменьшаться в стационарном движении. Для обеспечения надежной работы ЭСГ, парирования максимального ускорения, действующего в земных условиях, на электроды подвеса подают опорное напряжение, равное Uo.

Решаемой технической проблемой заявляемого изобретения является совершенствование способа управления подвесом ротора ЭСГ.

Достигаемый технический результат - повышение точности ЭСГ.

Поставленная цель достигается тем, что в известном способе управления подвесом ротора ЭСГ, согласно которому парируют воздействие на ротор внешнего ускорения силами подвеса, образованными при подаче на пару электродов, установленных по каждой оси подвеса с противоположных сторон ротора, опорного напряжения, к которому на одном электроде прибавляют приращение напряжения, пропорциональное внешнему ускорению, действующему вдоль данной оси подвеса, а на другом, противоположном электроде, вычитают приращение напряжения. При этом в условиях пониженного уровня внешнего ускорения снижают величину опорного напряжения, а в условиях повышенного уровня увеличивают величину опорного напряжение.

Величину опорного напряжения определяют и устанавливают исходя из соотношения:

где

- опорное напряжение, определяемое в условиях Космоса;

Uo - опорное напряжение, определяемое в условиях Земли;

ΔU - приращение напряжения, пропорциональное внешнему ускорению в условиях Космоса, при опорном напряжении Uo;

- коэффициент запаса по изменению внешнего ускорения в одних условиях функционирования гироскопа. Определяет диапазон функционирования подвеса.

Ao - среднее значение внешнего ускорения;

Am - максимально возможное значение внешнего ускорения.

Для случая уменьшения уровня внешнего ускорения устанавливают значение , а приращение напряжения определяют из соотношения

где:

Ak - внешнее ускорение в условиях Космоса;

- коэффициент пропорциональности, определяемый конструкцией подвеса;

mo - масса ротора;

do - величина зазора ротор - электрод;

Co - емкость ротор - электрод.

Работа устройства по предлагаемому способу происходит следующим образом. Воздействие на ротор внешнего ускорения парируется силами подвеса, образованными при подаче на пару электродов, установленных по каждой оси подвеса с противоположных сторон ротора, опорного напряжения Uo, к которому на одном электроде прибавляют, от напряжения на другом противоположном электроде вычитают приращение напряжения ΔU, пропорциональное внешнему ускорению, действующему вдоль данной оси подвеса.

Приращение напряжения ΔU получают преобразованием смещения ротора, произошедшим под воздействием внешнего ускорения, в напряжение обратной связи Uoc и его усилении.

Величину опорного напряжения Uo определяют и устанавливают исходя из максимального уровня внешнего ускорения.

Соотношение между напряжениями на электродах подвеса и внешним ускорением А имеет вид [2]:

Согласно равенству (3) уменьшение уровня внешнего ускорения А позволяет уменьшить величину опорного напряжения Uo. Величина уводящего момента, действующая со стороны электродов на ротор, уменьшается пропорционально и точность гироскопа увеличивается. Если заранее известно во сколько раз в условиях Космоса уменьшается максимальная величина внешнего ускорения по сравнению с внешним ускорением, действующим в условиях Земли, то во столько раз при этом уменьшают опорное напряжение. При увеличении уровня внешнего ускорения величина опорного напряжения увеличивается.

В общем случае, при не точно известной величине внешнего ускорения в условиях Космоса, величину опорного напряжения устанавливают согласно формуле (2).

Без проведения данной операции в условиях космоса, при неизменном опорном напряжении Uo, величина уводящего момента определяется соотношением (1), что не позволяет повысить точность гироскопа.

Между внешним ускорением А и напряжениями на электродах существует связь [2]:

В условиях Земли, при ΔUз=Uo, имеет место равенство:

где:

g~10 м/с2 - ускорение силы тяжести;

ΔUз - приращение напряжения в условиях Земли.

Откуда

В условиях Космоса аналогично имеем соотношение:

где - опорное напряжение в условиях Космоса.

Откуда

Тогда условие (2) записывается в виде:

При этом соотношение уводящих моментов в условиях Космоса (Mk) и в условиях Земли (Мз) имеет вид:

где:

Ak≈10-4 м/с2 - среднее значение внешнего ускорения в условиях Космоса

Откуда видно, что при выполнении операций согласно формуле (2) значительно уменьшается уводящий момент, повышается точность гироскопа.

В предельном случае уменьшения уровня внешнего ускорения, в условиях Космоса, устанавливают Приращение напряжения при этом подают на электрод, со стороны которого действует на ротор ускорение, в результате чего имеют равенство:

Соотношение (4) нелинейно, система подвеса ротора склонна к возбуждению, это обуславливает появление дополнительной погрешности ЭСГ. Для исключения нелинейности системы управления подвесом напряжение обратной связи подвеса Uoc, пропорциональное действующему ускорению, подвергают арифметической операции извлечения корня квадратного, преобразуя в приращение напряжения при этом получают соотношение:

где:

В результате система управления подвесом становится линейной и устойчивой. При этом уводящий момент будет равен:

Эта величина является минимальной, т.к. определяется только ускорением объекта и величиной отклонения формы ротора от формы шара, что обеспечивает максимальную точность ЭСГ при его эксплуатации. Таким образом, поставленная цель достигнута.

На предприятии предлагаемый способ проверен при летных испытаниях орбитального космического аппарата типа «Ресурс» с системой ориентации, построенной на гироскопах с электростатическим подвесом ротора. Получены положительные результаты.

Используемая литература

1. П.И. Малеев. Новые типы гироскопов // Л.: Судостроение, 1971, стр. 15, 17.

2. Я.А. Некрасов, B.C. Фрезинский. Активные электростатические подвесы // Л: ЦНИИ «Румб», 1987.

Источник поступления информации: Роспатент

Showing 61-70 of 87 items.
02.07.2019
№219.017.a30a

Способ обнаружения, классификации и определения координат и параметров движения морской шумящей цели

Изобретение относится к области гидроакустики, а именно к пассивным шумопеленгаторным станциям, предназначенным для поиска и обнаружения шумящих морских объектов (целей). Технический результат - сокращение времени обнаружения и классификации целей. Указанный технический результат достигается...
Тип: Изобретение
Номер охранного документа: 0002692839
Дата охранного документа: 28.06.2019
06.07.2019
№219.017.a6d3

Корабль освещения подводной обстановки

Изобретение относится к области кораблестроения, а именно к кораблям, назначением которых является обнаружение подводных объектов. Корабль освещения подводной обстановки оснащен гидроакустическим излучателем с гидроакустической антенной, опускаемой под воду на заданную глубину, комплектом...
Тип: Изобретение
Номер охранного документа: 0002693767
Дата охранного документа: 04.07.2019
12.10.2019
№219.017.d556

Способ измерения скорости судна доплеровским лагом

Изобретение относится к области кораблевождения, а именно к способам и устройствам измерения абсолютной скорости судна. Решаемая техническая проблема - повышение эксплуатационных характеристик доплеровского лага. Технический результат - повышение точности измерения скорости судна в условиях...
Тип: Изобретение
Номер охранного документа: 0002702696
Дата охранного документа: 09.10.2019
12.10.2019
№219.017.d55f

Способ позиционирования подводных объектов

Изобретение относится к способам навигации подводных объектов (подводных лодок, обитаемых и необитаемых подводных аппаратов), конкретно к способам их позиционирования. Решаемая техническая проблема - совершенствование способов позиционирования ПО. Технический результат - повышение точности и...
Тип: Изобретение
Номер охранного документа: 0002702700
Дата охранного документа: 09.10.2019
05.02.2020
№220.017.fe0a

Устройство для удаления порошкообразных отходов при изготовлении световодов

Изобретение относится к модифицированному методу химического парофазного осаждения (modified chemical vapor deposition - MCVD) внутри опорной кварцевой трубы в технологии изготовления заготовок оптических волокон (кварцевых световодов), в частности, к устройству для удаления оксидных...
Тип: Изобретение
Номер охранного документа: 0002712998
Дата охранного документа: 03.02.2020
05.02.2020
№220.017.fe0f

Способ управления электростатическим подвесом инерционной массы

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке электростатического подвеса инерционной массы чувствительных элементов инерциальных систем. Способ управления электростатическим подвесом инерционной массы дополнительно содержит этапы, на...
Тип: Изобретение
Номер охранного документа: 0002712993
Дата охранного документа: 03.02.2020
05.02.2020
№220.017.fe3d

Плоскостное антенно-фидерное устройство

Изобретение относится к антенно-фидерным устройствам (АФУ) для подводных объектов. Техническим результатом является повышение скорости передачи данных по радиоканалу на приледненный подводный объект. Изобретение представляет собой устройство, устанавливаемое в верхней части подводного объекта,...
Тип: Изобретение
Номер охранного документа: 0002713030
Дата охранного документа: 03.02.2020
05.02.2020
№220.017.fe48

Антенный модуль

Изобретение относится к гидроакустической технике и может быть использовано при разработке и изготовлении корабельных приемных гидроакустических антенн, размещаемых на подводных лодках, надводных кораблях и подводных аппаратах. Достигаемый технический результат - повышение виброустойчивости...
Тип: Изобретение
Номер охранного документа: 0002713018
Дата охранного документа: 03.02.2020
05.02.2020
№220.017.fe5d

Способ изготовления ротора шарового гироскопа

Изобретение относится к области точного приборостроения и может быть использовано при разработке технологии изготовления роторов шаровых гироскопов (далее - ШГ). Технический результат - совершенствование технологического процесса изготовления тонкостенных роторов ШГ, повышение точности...
Тип: Изобретение
Номер охранного документа: 0002713033
Дата охранного документа: 03.02.2020
05.02.2020
№220.017.fe73

Способ измерения фазового сигнала волоконно-оптического интерферометрического датчика

Изобретение относится к области волоконной оптики и может быть использовано для регистрации фазовых сигналов волоконно-оптических интерферометрических датчиков. Способ измерения фазового сигнала волоконно-оптического интерферометрического датчика включает измерение интерференционного сигнала...
Тип: Изобретение
Номер охранного документа: 0002713028
Дата охранного документа: 03.02.2020
Showing 31-37 of 37 items.
17.03.2019
№219.016.e245

Двухстепенной поплавковый гироскоп

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве двухстепенных поплавковых гироскопов. Сущность изобретения заключается в том, что корпус двухстепенного поплавкового гироскопа выполнен в виде двух цилиндров, установленных...
Тип: Изобретение
Номер охранного документа: 0002682131
Дата охранного документа: 14.03.2019
05.04.2019
№219.016.fd39

Способ обработки информации в гидроакустической антенне

Изобретение относится к области гидроакустики и может быть применено при разработке и эксплуатации гидроакустических антенн различного назначения для коррекции выходных сигналов гидроакустических приемников. Решаемая техническая проблема - совершенствование способа обработки информации в...
Тип: Изобретение
Номер охранного документа: 0002684003
Дата охранного документа: 03.04.2019
29.04.2019
№219.017.424a

Способ управления подвесом ротора электростатического гироскопа

Изобретение относится к гироскопической технике, а именно к способам управления подвесами роторов электростатических гироскопов (ЭСГ), которые используются для высокоточного измерения навигационных параметров движущихся объектов. Способ заключается в том, что вначале при взвешивании ротора...
Тип: Изобретение
Номер охранного документа: 0002338999
Дата охранного документа: 20.11.2008
24.05.2019
№219.017.5d7c

Способ определения погрешности двухстепенного гироблока

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве двухстепенных гироблоков. Достигаемый технический результат - повышение точности (достоверности) определения составляющей погрешности гироблока, обусловленной резонансом его...
Тип: Изобретение
Номер охранного документа: 0002688915
Дата охранного документа: 22.05.2019
04.06.2019
№219.017.733f

Способ диагностики состояния газодинамической опоры ротора поплавкового гироскопа

Изобретение относится к измерительной технике и может быть использовано при изготовлении прецизионных приборов на газодинамической опоре. Способ диагностики состояния газодинамической опоры ротора поплавкового гироскопа включает определение времени выбега ротора на последовательных этапах...
Тип: Изобретение
Номер охранного документа: 0002690231
Дата охранного документа: 31.05.2019
05.02.2020
№220.017.fe0f

Способ управления электростатическим подвесом инерционной массы

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке электростатического подвеса инерционной массы чувствительных элементов инерциальных систем. Способ управления электростатическим подвесом инерционной массы дополнительно содержит этапы, на...
Тип: Изобретение
Номер охранного документа: 0002712993
Дата охранного документа: 03.02.2020
02.06.2023
№223.018.755b

Способ измерения параметров угловой скорости и ускорения микромеханическими гироскопами и акселерометрами

Изобретение относится к измерительной технике. Сущность изобретения заключается в том, что в способе измерения параметров угловой скорости и ускорения микромеханическими гироскопами и акселерометрами отсутствуют погрешности, вызванные угловой скоростью вращающегося модуля, так как измерения...
Тип: Изобретение
Номер охранного документа: 0002766833
Дата охранного документа: 16.03.2022
+ добавить свой РИД