×
01.06.2023
223.018.74a0

Результат интеллектуальной деятельности: Способ получения длинномерных полуфабрикатов из сплавов TiNiHf с высокотемпературным эффектом памяти формы

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии, а именно к получению прутков из сплавов с памятью формы (СПФ) на основе никелида титана легированных гафнием, и может быть использовано для изготовления специальных изделий с повышенной температурой эксплуатации для различных отраслей промышленности, медицины и техники. Способ получения прутков из сплава TiNiHf с высокотемпературным эффектом памяти формы включает выплавку слитков и их деформацию. Выплавляют слитки заданного химического состава с содержанием гафния 1,0-3,0 ат. %, никеля 48,5-50,0 ат. % и титан - остальное, из чистых исходных компонентов Ti, Ni и Hf или из готового сплава никелида титана в виде прутка и гафниевой проволоки повышенной чистоты методом электроннолучевой плавки в медном водоохлаждаемом кристаллизаторе ручьевого типа, проводят гомогенизирующий отжиг слитков в вакууме не менее 10 мм рт. ст. при температуре 1050°С в течение не менее 1 ч. Последующую деформацию осуществляют путем ротационной ковки в интервале температур 750-950°С с единичными обжатиями не более 7% или прокатки в интервале температур 750-950°С с коэффициентом вытяжки за проход не более 1,15, а затем проводят последеформационный отжиг при температуре 400-550°С в течение 1-10 ч. Обеспечивается получение прутков из сплавов TiNiHf контролируемого фазового и химического состава, обладающих высокотемпературным эффектом памяти формы, а также высокими механическими характеристиками. 5 табл., 2 пр.

Изобретение относится к металлургическому производству, конкретно к получению прутков из сплавов с памятью формы (СПФ) на основе никелида титана легированных гафнием, и может быть использовано для изготовления специальных изделий, действующих на основе высокотемпературного эффекта памяти формы и предназначенных для различных отраслей промышленности, медицины и техники, в особенности сигнально-пусковых устройств.

Сплавы на основе TiNi, легированные гафнием, представляют особый интерес благодаря реализации высокотемпературного эффекта памяти формы. Применение данных сплавов позволяет в исполнительных элементах готовых изделий получить температуру конца обратного мартенситного превращения Ак выше 100°С.

Известен способ получения сплавов TiNiHf, заключающийся в использовании порошковой технологии, включающей гидро-кальциевый синтез с последующей консолидацией порошковой массы путем прессования и дальнейшего спекания в вакууме (Патент РФ 2630740, МПК B22F 3/16 B22F 9/18 С22С 14/00 С22С 19/03, 2017 г. и Патент РФ №2705487, МПК B22F 3/16 B22F 9/18 С22С 14/00 С22С 19/03, 2019 г.).

К недостаткам данного способа можно отнести сложность получения заданного химического состава, а также высокую вероятность получения повышенной концентрации газовых примесей, что негативно сказывается на функциональных свойствах и особенно на технологической пластичности получаемого сплава. Кроме того, к недостаткам данного способа можно отнести сложность получения заготовки без остаточной пористости, а также сложность получения длинномерных заготовок методом экструзии.

Известен способ получения сплавов TiNiHf с высокотемпературным эффектом памяти формы, при которых выплавка исходных слитков производится методом дуговой плавки чистых шихтовый компонентов (Патент США №5114504, МПК С22С 14/00; С22С 19/00, 1992).

Данный метод выплавки имеет ряд недостатков, связанных с физико-химическими свойствами исходных компонентов и особенностями процесса выплавки, что зачастую приводит к несоответствию заданного и фактического химического составов. Кроме того, повышенная ликвация компонентов и вероятное выделение неравновесных и избыточных фаз требуют многократного переплава и длительного высокотемпературного отжига, а также приводят к ухудшению свойств сплава.

Также известен способ получения сплавов TiNiHf с высокотемпературным эффектом памяти формы с использованием различных методов выплавки и деформационной обработки, включающий также предварительную термическую обработку перед финишной термообработкой старением (Патент США №20190194788. МПК C22F 1/00; C22F 1/10, С22С 19/03 2019).

Недостатки данного способа состоят в том, что содержание Ni в данной группе сплавов составляет от 50,0 ат. % до 50,3 ат %, что. во-первых, приводит к необходимости увеличения концентрации дорогостоящего Hf для получения высокотемпературного эффекта памяти формы, а во вторых к проявлению эффекта старения, что может повлиять на эксплуатационные характеристики материала в условиях длительной работы сплава при повышенных температурах. Кроме того, в описании данного способа отсутствуют четкие критерии выбора того или иного метода получения исходного слитка, а также его последующей обработки, что, в свою очередь затрудняет прогнозирование формирующейся в сплаве структуры и комплекса механических и функциональных свойств.

Технический результат, решаемый изобретением, заключается в создании способа получении длинномерных полуфабрикатов из сплавов TiNiHf контролируемого фазового и химического состава, обладающих высокотемпературным эффектом памяти формы, а также заданными механическими характеристиками.

Технический результат достигается тем, что, выплавку исходных слитков заданного химического состава с содержанием гафния 1,0-3,0 ат. % и никеля 48,5-50,0 ат. % производят методом электронно-лучевой плавки в медном водоохлаждаемом кристаллизаторе ручьевого типа за один переплав. В качестве шихтовых материалов используют или чистые исходные компоненты Ti, Ni и Hf, или готовый сплав никелида титана в виде прутка известного химического состава и гафниевую проволоку повышенной чистоты. Полученный слиток, подвергают гомогенизирующему отжигу в вакууме не менее 10-4 мм рт. ст. при температуре 1050°С в течение не менее 1 ч. Из исходного слитка после гомогенизирующего отжига получают пруток требуемого диаметра методом ротационной ковки в интервале температур 750-950°С с единичными обжатиями не более 7% или методом сортовой прокатки в аналогичном интервале температур с коэффициентом вытяжки за проход не более 1,15. После этого прутки подвергают последеформационному отжигу при температуре 400-550°С в течение 1-10 ч в зависимости от требований к конечному комплексу механических и функциональных свойств.

Сущность заявленного способа заключается в проведении выплавки исходных слитков методом электронно-лучевой плавки на первом этапе, гомогенизирующего отжига на втором этапе, деформационной обработки (ротационной ковки или прокатки) на третьем этапе и последеформационного отжига на заключительном этапе. Метод электронно-лучевой плавки обладает рядом преимуществ, по сравнению с другими методами, такими как индукционная и электродуговая плавки, а именно: эффективным очищением металлов от газовых и других неметаллических примесей; исключением загрязнения металла материалом тигля, так как плавка идет в гарниссаже с последующей кристаллизацией в водоохлаждаемом медном кристаллизаторе; отсутствием дефектов усадочного происхождения в слитках за счет возможности плавного изменения мощности в электронном пучке и полного заполнения металлом усадочной раковины; возможностью использования шихтовых металлов в любом виде. Использование медного кристаллизатора ручьевого типа позволяет осуществлять последующую термомеханическую обработку слитка непосредственно после выплавки, например методом ротационной ковки или сортовой прокатки, для изготовления полуфабрикатов различного профильного сортамента.

При этом в качестве исходной шихты для выплавки могут использоваться как чистые исходные компоненты Ti, Ni и Hf, так и готовый интерметаллический сплав никелида титана в виде прутка известного химического состава и гафниевая проволока повышенной чистоты. Использование готового сплава никелида титана в качестве исходного компонента позволяет, во-первых, производить его переработку, а во-вторых, снижает вероятность дополнительного попадания примесей в расплав за счет окисления чистого титана при плавке.

Концентрацию никеля в готовом сплаве задают на уровне 48,50-50,0 ат. %, концентрацию гафния в сплаве задают на уровне 1,0-3,0 ат. %, а титан - все остальное. Пониженное содержание гафния на ряду с пониженным содержанием никеля и соответствующей термомеханической обработкой позволяют получить в сплаве температуру конца обратного мартенситного превращения Ак в интервале температур 125-185°С, а также избежать образования большого количество избыточной охрупчивающей фазы типа (Ti,Hf)2Ni, формирующейся в сплавах с повышенным содержанием Ti. Увеличение концентрации Hf выше 3,0 ат. % в сочетании с пониженным содержанием Ni приводит к значительному снижению технологической пластичности сплава. Увеличение концентрации Ni при сохранении концентрации Hf на таком же уровне не позволяет получить требуемые температуры начала и конца обратного мартенситного превращения.

На следующей этапе литую заготовку подвергают гомогенизирующему отжигу в вакууме при температуре 1050°С в течение не менее 1 ч и последующей ротационной ковке в интервале температур 750-950°С с единичными обжатиями не более 7% или сортовой прокатке в аналогичном интервале температур с коэффициентом вытяжки за проход не более 1,15 до требуемого конечного диаметра.

Проведение ротационной ковки или сортовой прокатки при температуре деформации 750-950°С позволяет получать длинномерную заготовку различного диаметра сплава TiNiHf, обладающую высокотемпературным эффектом памяти формы.

На последнем этапе полученную заготовку подвергают последеформационному отжигу при температуре 400-550°С в течения 1-10 ч с целью устранения избыточного деформационного наклепа и получения требуемого сочетания механических и функциональных свойств, в том числе требуемой температуры конца обратного мартенситного превращения Ак в интервале температур 125-185°С.

Результаты апробации заявленного способа приведены в виде конкретного примера.

Пример №1.

Выплавку исходного слитка проводили методом электронной-лучевой плавки в печи мощностью 60 кВт в вакууме 1×10-5 мм рт. ст. в медном водоохлаждаемом кристаллизаторе ручьевого типа. В качестве исходной шихты для выплавки сплава TiNiHf были выбраны следующие материалы: шлифованный пруток диаметром 12 мм никелида титана марки ТН-1; проволока гафниевая нагартованная марки ГФИ-1 диаметром 2 мм. Химический состав используемых прутка и проволоки приведен в таблицах 1 и 2. Химический состав слитка приведен в таблице 3.

После выплавки слиток подвергали гомогенизирующему отжигу в вакууме 10-5 мм рт. ст.при температуре 1050°С в течение 3 ч. Деформацию слитков проводили методом горячей ротационной ковки при температуре 950°С с относительной степенью деформации за проход 5-10%. В результате из исходного слитка был получен пруток диаметром 3,5 мм и длиной 870 мм. После деформации пруток подвергали последеформационному отжигу при температуре 550°С, в течение 2 ч. Механические и функциональные свойства полученного прутка приведены в таблице 5.

Пример №2.

Выплавку исходного слитка проводили методом электронной-лучевой плавки в печи мощностью 60 кВт в вакууме 1×10-5 мм рт. ст. в медном водоохлаждаемом кристаллизаторе ручьевого типа. В качестве исходной шихты для выплавки сплава TiNiHf использовали следующие компоненты: йодидный титан марки ТИ-1 (99,99%), никель марки Н0 (99,99%) и йодидный гафний марки ГФИ-1 (99,93%). Химический состав слитка приведен в таблице 4.

После выплавки слиток подвергали гомогенизирующему отжигу в вакууме 10-5 мм рт. ст. при температуре 1050°С в течение 3 ч. Деформацию слитков проводили методом сортовой прокатки в системе калибров квадрат-квадрат при температуре 950°С с коэффициентом вытяжки за проход не более 1,15. В результате из исходного слитка был получен пруток сечением 7×7 мм и длиной 500 мм. После деформации пруток подвергали последеформационному отжигу при температуре 550°С, в течение 2 ч. Механические и функциональные свойства полученного прутка приведены в таблице 5.

Исходя из представленных примеров можно заключить, что благодаря заявленному способу удалось получить длинномерные качественные прутки из сплава на основе никелида титана с содержанием гафния 4,4 вес. % (1,4 ат. %) и 9,0 вес. % (2,9 ат. %) с высокими механическими и функциональными свойствами и высокотемпературным эффектом памяти формы в заявленном интервале температур (Ак=125-185°С). Из полученных прутков возможно изготовление изделий технического назначения, действующих на основе высокотемпературного эффекта памяти формы.

Технико-экономический эффект заявленного способа состоит в обеспечении возможности получения полуфабрикатов из сплавов на основе никелида титана, легированных гафнием, с высокотемпературным эффектом памяти формы и высокими механическими и функциональными свойствами. Использование данных полуфабрикатов позволит значительно расширить сферу применения сплавов TiNiHf за счет создания новых устройств, действующих на основе высокотемпературного эффекта памяти формы, используемых в различных областях науки и техники.

Способ получения прутков из сплава TiNiHf с высокотемпературным эффектом памяти формы, включающий выплавку слитков и их деформацию, отличающийся тем, что выплавляют слитки заданного химического состава с содержанием гафния 1,0-3,0 ат. %, никеля 48,5-50,0 ат. % и титан - остальное, из чистых исходных компонентов Ti, Ni и Hf или из готового сплава никелида титана в виде прутка и гафниевой проволоки повышенной чистоты методом электроннолучевой плавки в медном водоохлаждаемом кристаллизаторе ручьевого типа, проводят гомогенизирующий отжиг слитков в вакууме не менее 10 мм рт. ст. при температуре 1050°С в течение не менее 1 ч, а последующую деформацию осуществляют путем ротационной ковки в интервале температур 750-950°С с единичными обжатиями не более 7% или прокатки в интервале температур 750-950°С с коэффициентом вытяжки за проход не более 1,15, а затем проводят последеформационный отжиг при температуре 400-550°С в течение 1-10 ч.
Источник поступления информации: Роспатент

Showing 31-40 of 108 items.
10.06.2016
№216.015.4478

Высокопрочная коррозионно-стойкая свариваемая сталь

Изобретение относится к области металлургии, а именно к составам высокопрочных коррозионно-стойких сталей, используемых для изготовления высоконагруженных деталей и конструкций в машиностроении, судостроении, авиации и железнодорожном транспорте. Сталь содержит, мас.%: углерод 0,01-0,04,...
Тип: Изобретение
Номер охранного документа: 0002586193
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.476e

Композиционный материал на основе фторгидроксиапатита и частично стабилизированного диоксида циркония для замещения костных дефектов

Изобретение относится к медицине, в частности биокерамическим материалам, предназначенным для изготовления костных имплантатов и/или замещения дефектов при различных костных патологиях. Техническим результатом изобретения является увеличение прочности материалов в системе 40-60 масс. %...
Тип: Изобретение
Номер охранного документа: 0002585954
Дата охранного документа: 10.06.2016
13.01.2017
№217.015.7879

Способ получения пористой керамики из фосфатов кальция для лечения дефектов костной ткани

Изобретение относится к области керамических материалов для медицины, которые могут быть использованы для заполнения костных дефектов в травматологии и ортопедии, челюстно-лицевой хирургии и хирургической стоматологии. Для получения пористой керамики яичные белки с сахарозой в соотношении 1:1...
Тип: Изобретение
Номер охранного документа: 0002599524
Дата охранного документа: 10.10.2016
25.08.2017
№217.015.9caf

Литейный сплав на основе интерметаллида ni3al и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к литейным сплавам на основе интерметаллида NiAl, предназначенным для изготовления методом направленной кристаллизации и монокристаллического литья деталей газотурбинных двигателей авиационной промышленности, например сопловых и рабочих...
Тип: Изобретение
Номер охранного документа: 0002610577
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.9cd4

Способ получения пористой алюмооксидной керамики

Изобретение относится к технологии пористых керамических материалов и может быть использовано для изготовления изделий, эксплуатируемых в качестве высокотемпературной теплоизоляции (или теплозащиты), термостойкого огнеприпаса, носителей катализаторов, фильтров для очистки жидких и газовых сред....
Тип: Изобретение
Номер охранного документа: 0002610482
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.a236

Способ получения структуры высокотемпературный сверхпроводник - диэлектрик - высокотемпературный сверхпроводник

Использование: для создания структур высокотемпературный сверхпроводник – диэлектрик – высокотемпературный сверхпроводник. Сущность изобретения заключается в том, что на слой высокотемпературного сверхпроводника 123-типа направляют поток атомных частиц, в качестве высокотемпературного...
Тип: Изобретение
Номер охранного документа: 0002606940
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a359

Способ получения порошкового магнитотвёрдого сплава 30х20к2м2в системы железо-хром-кобальт

Изобретение относится к получению порошковых магнитотвердых сплавов. Способ получения порошкового магнитотвердого сплава 30Х20К2М2В системы железо-хром-кобальт включает приготовление шихты из порошков железа, хрома, кобальта, молибдена и вольфрама, формование полученной шихты, спекание,...
Тип: Изобретение
Номер охранного документа: 0002607074
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a4f2

Способ получения катионзамещенного трикальцийфосфата

Изобретение относится к химической и медицинской отраслям промышленности и может быть использовано в производстве исходного биосовместимого материала, пригодного для изготовления плотной и пористой керамики, применяющейся в качестве скэффолдов в инженерии костной ткани, мишеней для создания...
Тип: Изобретение
Номер охранного документа: 0002607743
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a8e2

Резорбируемый пористый кальцийфосфатный цемент

Изобретение относится к фармацевтической промышленности, а именно к резорбируемому пористому кальцийфосфатному цементу для заполнения костных челюстно-лицевых и стоматологических дефектов. Кальцийфосфатный цемент состоит из смеси порошков фосфатов кальция, а именно из железо- или...
Тип: Изобретение
Номер охранного документа: 0002611345
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.b20d

Брушитовый гидравлический цемент, упрочненный пористым каркасом из полилактида

Изобретение относится к медицине. Описан брушитовый гидравлический цемент, упрочненный пористым каркасом из полилактида для восстановления костных тканей, имеющий прочность не менее 40 МПа, содержащий порошок α-трикальцийфосфата, гранулы карбонатгидроксиапатита и затворяющую жидкость,...
Тип: Изобретение
Номер охранного документа: 0002613182
Дата охранного документа: 15.03.2017
Showing 31-40 of 60 items.
25.08.2017
№217.015.b601

Способ получения листового композиционного материала системы титан-алюминий

Изобретение может быть использовано при получении листового композиционного материала системы титан-алюминий для изготовления деталей летательных аппаратов, в том числе подвергаемых повышенным тепловым нагрузкам. Способ включает получение слоистой заготовки в виде пакета и последующую ее...
Тип: Изобретение
Номер охранного документа: 0002614511
Дата охранного документа: 28.03.2017
26.08.2017
№217.015.de6e

Способ построения базовой станции волоконно-эфирной телекоммуникационной системы сети мобильной радиосвязи

Изобретение относится к области электросвязи и может использоваться в комбинированных системах волоконно-эфирной структуры сетей мобильной радиосвязи. Технический результат состоит в расширении области применения. Для этого центральную станцию соединяют через оптический разветвитель оптическим...
Тип: Изобретение
Номер охранного документа: 0002624771
Дата охранного документа: 06.07.2017
19.01.2018
№218.015.ff1d

Листопрокатная клеть

Изобретение относится к прокатному производству, конкретно к конструкциям прокатных валков в клетях листопрокатных станов дуо, в том числе одноклетьевых. Комплект прокатных валков содержит пару валков с бочками цилиндрической формы, на которых выполнены геликоидальные выступы, имеющие форму...
Тип: Изобретение
Номер охранного документа: 0002629579
Дата охранного документа: 30.08.2017
25.08.2018
№218.016.7f8f

Способ обработки магниевого сплава системы mg-al-zn методом ротационной ковки

Изобретение относится к сплавам на основе магния, в частности к способам деформационной обработки магниевых сплавов, и может быть использовано для получения изделий, применяемых в качестве конструкционных материалов в авиации, ракетной технике, транспорте и т.д. Способ обработки магниевого...
Тип: Изобретение
Номер охранного документа: 0002664744
Дата охранного документа: 22.08.2018
20.02.2019
№219.016.c080

Способ термической обработки магнитотвердых сплавов на основе железа

Изобретение относится к металлургии, в частности к производству магнитотвердых сплавов на основе системы Fe-Cr-Co, которые применяются в автоприборостроении, релейной технике, электромашиностроении, медицине и т.д. Для повышения магнитных свойств обрабатываемых постоянных магнитов на 3-5% и...
Тип: Изобретение
Номер охранного документа: 0002305710
Дата охранного документа: 10.09.2007
01.03.2019
№219.016.c940

Способ изоляции зон водопритока в скважине

Предложение относится к нефтегазодобывающей промышленности и предназначено для ремонтно-изоляционных работ в нефтяных и газовых скважинах. Технический результат - увеличение эффективности изоляционных работ за счет повышения вязкости обратной эмульсии и армирования каждой порции обратной...
Тип: Изобретение
Номер охранного документа: 0002283422
Дата охранного документа: 10.09.2006
29.03.2019
№219.016.eeba

Способ предотвращения замерзания устья водонагнетательной скважины в режиме циклического заводнения

Изобретение относится к нефтедобывающей отрасли, в частности к способу предотвращения замерзания труб устья водонагнетательной скважины в режиме циклического заводнения. Техническим результатом изобретения является предотвращение замерзания устья водонагнетательной скважины в периоды плановых...
Тип: Изобретение
Номер охранного документа: 0002278951
Дата охранного документа: 27.06.2006
29.03.2019
№219.016.f283

Способ изоляции водопритока и зоны поглощения в скважине

Изобретение относится к нефтедобывающей промышленности, в частности к способам изоляции водопритока и зоны поглощения в скважине, и может быть использовано для проведения ремонтно-изоляционных работ в условиях больших поглощений, в том числе для герметизации нарушений эксплуатационной колонны,...
Тип: Изобретение
Номер охранного документа: 0002378490
Дата охранного документа: 10.01.2010
29.03.2019
№219.016.f728

Способ ограничения водопритока в скважине

Изобретение относится к нефтегазодобывающей промышленности и предназначено для ремонтно-изоляционных работ в скважинах и может быть использовано с применением колтюбинга. Технический результат - повышение эффективности ремонтно-изоляционных работ за счет создания более стойкого к прорыву вод...
Тип: Изобретение
Номер охранного документа: 0002431735
Дата охранного документа: 20.10.2011
10.04.2019
№219.017.023b

Способ производства ремонтно-изоляционных работ в скважине

Изобретение относится к нефтедобывающей промышленности, в частности к способам доставки тампонажного материала в скважину для ремонтно-изоляционных работ, и предназначено для догерметизации эксплуатационных колонн. Способ включает установку цементного моста, теоретическое определение объема и...
Тип: Изобретение
Номер охранного документа: 0002342516
Дата охранного документа: 27.12.2008
+ добавить свой РИД