×
01.06.2023
223.018.7486

Результат интеллектуальной деятельности: Способ получения керамического образца на основе β-трикальцийфосфата с использованием метода стереолитографии для восстановления костной ткани

Вид РИД

Изобретение

Аннотация: Изобретение относится к медицине, в частности биокерамическим материалам, предназначенным для изготовления костных имплантатов и/или замещения дефектов при различных костных патологиях. Технический результат изобретения - получение керамических образцов на основе β-трикальцийфосфата с общей пористостью до 80%, размером пор 300-800 мкм с низкой температурой спекания. Смесь порошков β-ТКФ и 2-6 мас.% карбоната лития прокаливают при 400-700°С, измельчают и смешивают с фотополимером. Образцы печатают с использованием 3D принтера методом стереолитографии при воздействии ультрафиолетового излучения. Форма образцов керамики, пористость и размер пор задаются на стадии печати образцов. Напечатанный образец обжигают ступенчато с промежуточными выдержками. За счет применения добавки - карбоната лития - образцы спекаются при низкой температуре 850-900°С и имеют мелкокристаллическую структуру 0,8-1,0 мкм. 1 табл., 3 пр.

Композиционные материалы на основе β-трикальцийфосфата (β-ТКФ) с применением 3D печати методом лазерной стереолитографии (источник света - лазер) и проекционной микростереолитографии (источник света - экран, проектор) являются одними из наиболее перспективных в медицине для новых технологий регенерации костных тканей. Принцип получения образцов основан на полимеризации (затвердевании) фотополимера в 3D принтере под действием ультрафиолетового излучения. В настоящее время активно развиваются 3D технологии, основанные на возможности печати фотополимера, содержащего порошки оксида алюминия, диоксида циркония, трикальцийфосфата и других. После печати образцы подвергают обжигу, в процессе которого происходит удаление органической составляющей и достижение спеченного состояния, характеризующегося низкой открытой пористостью, высокой относительной плотностью, а также заданной печатью формой. Высокая биорезорбция материалов со структурой β-ТКФ и возможность получения пористых матриксов в результате применения 3D печати создает условия для быстрого восстановления костной ткани. Однако керамика на основе фосфатов кальция (β-ТКФ, гидроксиапатит) характеризуется высокой температурой спекания 1200-1350°С (Баринов С.М., Комлев В.С. Биокерамика на основе фосфатов кальция. - М.: Наука, 2005 - 204 с.), что может приводить к деформации образцов особенно сложной конфигурации. Это снижает процент выхода годных изделий и приводит к удорожанию готовой продукции. Получить спеченные образцы возможно также за счет отработки технологии спекания и применения добавок, повышающих термическую стойкость или способствующих снижению температуры спекания материалов.

Наиболее близким по техническому решению и достигаемому эффекту является способ получения 3D керамического образца на основе трикальцийфосфата, заключающийся в смешении порошка β-ТКФ со фотополимером [Schmidleithner, С., Malferrari, S., Palgrave, R.G., Bomze, D., Schwentenwein, M., & Kalaskar, D.M. Application of high resolution DLP stereolithography for fabrication of tricalcium phosphate scaffolds for bone regeneration // Biomedical Materials. - 2019.]. Печать проводили с использованием 3D принтера при воздействии ультрафиолетового излучения. После печати образец помещали в термопечь, где в течение 96 часов проводили удаление органической составляющей и окончательный обжиг при 1200°С в течение 2 часов. Скорость нагрева варьировали между 0,17 и 0,52°С мин-1. Полученные керамические образцы имели пористость 0, 50 и 75%, размер пор около 400 мкм, относительная пористость 0,95%, размер кристаллов около 3,8 мкм. Недостатком данного способа является большая длительность и высокая температура обжига, что может привести к потере заданной формы керамических образцов.

Технический результат предлагаемого изобретения - снижение температуры обжига до 850-900°С керамического образца, получение образца с меньшим размером кристаллов 0,8-1,0 мкм, с пористостью до 80% и размерами пор до 800 мкм.

Технический результат достигается тем, что способ получения керамического образца на основе β-трикальцийфосфата с использованием метода стереолитографии для восстановления костной ткани, включающий операции: смешение порошка β-трикальцийфосфата с фотополимером, печать образца методом стереолитографии с использованием 3D принтера при воздействии ультрафиолетового облучения, обжиг образца для удаления органической составляющей и получения пористой или плотной структуры, отличается тем, что керамический образец получают в следующей последовательности операций: порошок β-ТКФ смешивают с добавкой карбоната лития в количестве 2-6 масс.%, полученную смесь прокаливают при температуре 400-700°С и измельчают до размера частиц менее 0,5 мкм, полученный порошок в количестве 20-70 масс.% смешивают с фотополимером и производят печать пористого или плотного образца при воздействии ультрафиолетового излучения с использованием 3D принтера методом стереолитографии, при этом размер пор и пористость закладывается при печати с учетом усадки образца в процессе последующего обжига, затем напечатанный образец обжигают по следующему температурному режиму: до 120-140°С - 1 час, до 230-250°С - 5 часов, выдержка при 240-250°С - 10 часов, до 300°С - 3 часа, до 850-900°С - 2 часа, выдержка - 2 часа при 850-900°С; в результате полученный керамический образец характеризуется следующими параметрами - средний размер кристаллов 0,8-1,0 мкм, пористость 0-80%, содержит крупные поры размером от 300 до 800 мкм.

Полученный керамический образец характеризуется более низкой температурой обжига по сравнению с прототипом - 850-900°С, менее длительным режимом обжига образцов - 23 часа, однородной мелкокристаллической структурой 0,8-1,0 мкм. Введение добавки карбоната лития, имеющей температуру плавления около 732°С, приводит к образованию низкотемпературного расплава в процессе обжига, что способствует снижению температуры спекания (получению высокой плотности), мелкокристаллической структуры. Введение добавки менее 2,0 масс. % по отношению к β-ТКФ, а также использование порошка размером более 0,5 мкм не позволяет получить спеченный образец при температуре 850-900°С и размером кристаллов 0,8-1,0 мкм. При содержании добавки более 6 масс. % может происходить деформация образца керамики при его обжиге. Уменьшение времени обжига, увеличение скорости нагрева образца, а также изменение температуры и времени выдержек при обжиге образца может привести к деформации и разрушению образца, а также к появлению дефектов - трещин, отслоений, раковин. При введении порошка в фотополимеры менее 30 масс. % напечатанный образец в процессе обжига сильно деформируется и частично разрушается. При содержании порошка более 70 масс. % качество печатаемого образца снижается или становится невозможной его печать вследствие повышения вязкости эмульсии (смесь фотополимера и порошка β-ТКФ). Выход за указанные температуры прокаливания порошков (400-700°С) приводит к снижению качества печати - уменьшается разрешение напечатанного образца, в том числе, становится невозможно печатать образец с порами размером менее 500 мкм.

Пример 1. В порошок β-ТКФ добавили при перемешивании карбонат лития в количестве 6 масс. %, затем порошок прокалили при температуре 400°С, затем измельчили в планетарной мельнице до размера частиц менее 0,5 мкм. Полученный порошок в количестве 30 масс. % смешали с фотополимером, поместили в 3D принтер и произвели печать образца при воздействии ультрафиолетового излучения с размерами пор 1 мм методом стереолитографии. После печати произвели обжиг образцов по режиму до 120-140°С - 1 час, до 230-250°С - 5 часов, выдержка при 240-250°С - 10 часов, до 300°С - 3 часа, до 850-900°С - 2 часа, выдержка - 2 часа при 850°С. В результате был получен керамический образец со средним размером кристаллов 0,8-0,9 мкм, пористостью 50%, размерами пор 800 мкм.

Пример 2. В порошок β-ТКФ добавили при перемешивании карбонат лития в количестве 5 масс. %, затем порошок прокалили при температуре 650°С, затем измельчили в планетарной мельнице до размера частиц менее 0,5 мкм. Полученный порошок в количестве 50 масс. % смешали с фотополимером, поместили в 3D принтер и произвели печать беспористого образца при воздействии ультрафиолетового излучения методом стереолитографии. После печати произвели обжиг образца по режиму до 120-140°С - 1 час, до 230-250°С - 5 часов, выдержка при 240-250°С - 10 часов, до 300°С - 3 часа, до 850-900°С - 2 часа, выдержка - 2 часа при 880°С. В результате был получен плотный керамический образец со средним размером кристаллов около 0,9 мкм, пористостью менее 0,05%, крупные поры отсутствуют.

Также были изготовлены другие образцы керамики в пределах заявленного способа, и определены их свойства в сравнении с прототипом. Полученные результаты сведены в таблицу 1, где температурные режимы обжига обозначены: 1 - до 120-140°С - 1 час, до 240°С - 5 часов, выдержка при 240-250°С - 10 часов, до 300°С - 3 часа, до 850-900°С - 2 часа, выдержка - 2 часа при 850-900°С.

2 - скорость нагрева варьировали между 0,17 и 0,52°С мин-1, общая продолжительность составляет 96 часов.

Способ получения керамического образца на основе β-трикальцийфосфата с использованием метода стереолитографии для восстановления костной ткани, включающий операции: смешение порошка β-трикальцийфосфата с фотополимером, печать образца с использованием 3D принтера при воздействии ультрафиолетового облучения, обжиг образца для удаления органической составляющей и получения пористой структуры, отличающийся тем, что керамический образец получают в следующей последовательности операций: порошок β-ТКФ смешивают с добавкой карбоната лития в количестве 2-6 масс. %, полученную смесь прокаливают при температуре 400-700°С и измельчают до размера частиц менее 0,5 мкм, полученный порошок в количестве 30-70 масс. % смешивают с фотополимером и производят печать пористых или плотных образцов при воздействии ультрафиолетового излучения с использованием 3D принтера методом стереолитографии, при этом размер пор и пористость закладывается при печати с учетом усадки образца в процессе последующего обжига, затем напечатанный образец обжигают по следующему температурному режиму: до 120-140°С - 1 час, до 230-250°С - 5 часов, выдержка при 240-250°С - 10 часов, до 300°С - 3 часа, до 850-900°С 2 часа, выдержка - 2 часа при 850-900°С.
Источник поступления информации: Роспатент

Showing 31-40 of 108 items.
10.06.2016
№216.015.4478

Высокопрочная коррозионно-стойкая свариваемая сталь

Изобретение относится к области металлургии, а именно к составам высокопрочных коррозионно-стойких сталей, используемых для изготовления высоконагруженных деталей и конструкций в машиностроении, судостроении, авиации и железнодорожном транспорте. Сталь содержит, мас.%: углерод 0,01-0,04,...
Тип: Изобретение
Номер охранного документа: 0002586193
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.476e

Композиционный материал на основе фторгидроксиапатита и частично стабилизированного диоксида циркония для замещения костных дефектов

Изобретение относится к медицине, в частности биокерамическим материалам, предназначенным для изготовления костных имплантатов и/или замещения дефектов при различных костных патологиях. Техническим результатом изобретения является увеличение прочности материалов в системе 40-60 масс. %...
Тип: Изобретение
Номер охранного документа: 0002585954
Дата охранного документа: 10.06.2016
13.01.2017
№217.015.7879

Способ получения пористой керамики из фосфатов кальция для лечения дефектов костной ткани

Изобретение относится к области керамических материалов для медицины, которые могут быть использованы для заполнения костных дефектов в травматологии и ортопедии, челюстно-лицевой хирургии и хирургической стоматологии. Для получения пористой керамики яичные белки с сахарозой в соотношении 1:1...
Тип: Изобретение
Номер охранного документа: 0002599524
Дата охранного документа: 10.10.2016
25.08.2017
№217.015.9caf

Литейный сплав на основе интерметаллида ni3al и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к литейным сплавам на основе интерметаллида NiAl, предназначенным для изготовления методом направленной кристаллизации и монокристаллического литья деталей газотурбинных двигателей авиационной промышленности, например сопловых и рабочих...
Тип: Изобретение
Номер охранного документа: 0002610577
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.9cd4

Способ получения пористой алюмооксидной керамики

Изобретение относится к технологии пористых керамических материалов и может быть использовано для изготовления изделий, эксплуатируемых в качестве высокотемпературной теплоизоляции (или теплозащиты), термостойкого огнеприпаса, носителей катализаторов, фильтров для очистки жидких и газовых сред....
Тип: Изобретение
Номер охранного документа: 0002610482
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.a236

Способ получения структуры высокотемпературный сверхпроводник - диэлектрик - высокотемпературный сверхпроводник

Использование: для создания структур высокотемпературный сверхпроводник – диэлектрик – высокотемпературный сверхпроводник. Сущность изобретения заключается в том, что на слой высокотемпературного сверхпроводника 123-типа направляют поток атомных частиц, в качестве высокотемпературного...
Тип: Изобретение
Номер охранного документа: 0002606940
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a359

Способ получения порошкового магнитотвёрдого сплава 30х20к2м2в системы железо-хром-кобальт

Изобретение относится к получению порошковых магнитотвердых сплавов. Способ получения порошкового магнитотвердого сплава 30Х20К2М2В системы железо-хром-кобальт включает приготовление шихты из порошков железа, хрома, кобальта, молибдена и вольфрама, формование полученной шихты, спекание,...
Тип: Изобретение
Номер охранного документа: 0002607074
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a4f2

Способ получения катионзамещенного трикальцийфосфата

Изобретение относится к химической и медицинской отраслям промышленности и может быть использовано в производстве исходного биосовместимого материала, пригодного для изготовления плотной и пористой керамики, применяющейся в качестве скэффолдов в инженерии костной ткани, мишеней для создания...
Тип: Изобретение
Номер охранного документа: 0002607743
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a8e2

Резорбируемый пористый кальцийфосфатный цемент

Изобретение относится к фармацевтической промышленности, а именно к резорбируемому пористому кальцийфосфатному цементу для заполнения костных челюстно-лицевых и стоматологических дефектов. Кальцийфосфатный цемент состоит из смеси порошков фосфатов кальция, а именно из железо- или...
Тип: Изобретение
Номер охранного документа: 0002611345
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.b20d

Брушитовый гидравлический цемент, упрочненный пористым каркасом из полилактида

Изобретение относится к медицине. Описан брушитовый гидравлический цемент, упрочненный пористым каркасом из полилактида для восстановления костных тканей, имеющий прочность не менее 40 МПа, содержащий порошок α-трикальцийфосфата, гранулы карбонатгидроксиапатита и затворяющую жидкость,...
Тип: Изобретение
Номер охранного документа: 0002613182
Дата охранного документа: 15.03.2017
Showing 31-40 of 55 items.
25.08.2017
№217.015.c5f4

Способ получения корундовой керамики, содержащей металлический никель

Изобретение относится к области керамических материалов на основе корунда, использующихся в технике в качестве режущего инструмента, как носитель для никелевых, платиновых и палладиевых катализаторов, керамических мембран, применяемых для очистки сточных вод и др. Способ получения корундовой...
Тип: Изобретение
Номер охранного документа: 0002618768
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c61f

Волоконный импульсный лазер с нелинейным петлевым зеркалом

Изобретение относится к лазерной технике. Волоконный лазер содержит источник накачки и резонатор, выполненный полностью из элементов, сохраняющих поляризацию, и состоящий из двух волоконных петель - пассивной и активной, соединяющихся посредством сплавного волоконного четырехпортового...
Тип: Изобретение
Номер охранного документа: 0002618605
Дата охранного документа: 04.05.2017
25.08.2017
№217.015.cc5c

Карбонаткальциевый цемент для заполнения костных дефектов

Изобретение относится к медицине и может быть использовано для пластической реконструкции поврежденных костных тканей. Карбонаткальциевый цемент для заполнения костных дефектов характеризуется тем, что для его получения используют порошок кристаллической фазы карбоната кальция – кальцита, и...
Тип: Изобретение
Номер охранного документа: 0002620549
Дата охранного документа: 26.05.2017
19.01.2018
№218.016.0bbe

Гидрогель для получения композиционных материалов с антибактериальной активностью для замещения костно-хрящевых дефектов методом 3d печати

Изобретение относится к области медицины. Описан гидрогель, содержащий масс. %: альгинат натрия - 40-90; кальцийфосфатные наполнители - 10-60, полученный гидрогель охлаждают до t +37°C и при непрерывном перемешивании на оборотах от 500 до 1000 об/мин добавляют порошок ванкомицина в...
Тип: Изобретение
Номер охранного документа: 0002632431
Дата охранного документа: 04.10.2017
20.01.2018
№218.016.0f4a

Волоконный задающий генератор

Изобретение относится к лазерной технике. Волоконный задающий генератор содержит источник накачки и резонатор, состоящий из двух волоконных частей - активной нелинейной петли и длинной линейной части, соединяющихся посредством четырехпортового волоконного ответвителя; активная петля образует...
Тип: Изобретение
Номер охранного документа: 0002633285
Дата охранного документа: 11.10.2017
09.06.2018
№218.016.5f3d

Способ получения биоразлагаемой пленки на основе хитозана и крахмала для медицины

Изобретение относится к способу получения биоразлагаемой пленки, содержащей крахмал и хитозан, для использования в фармацевтике, медицине, ветеринарии, пищевой или косметической промышленности. Способ получения биоразлагаемой пленки на основе хитозана и крахмала для медицины включает...
Тип: Изобретение
Номер охранного документа: 0002656502
Дата охранного документа: 05.06.2018
16.06.2018
№218.016.62ea

Способ получения биоцемента на основе карбоната кальция для заполнения костных дефектов

Изобретение относится к области медицины, а именно к керамическим и цементным материалам, и раскрывает способ получения биоцемента на основе карбоната кальция для заполнения костных дефектов. Способ характеризуется тем, что цементный раствор получают в результате последовательного добавления в...
Тип: Изобретение
Номер охранного документа: 0002657568
Дата охранного документа: 14.06.2018
05.09.2018
№218.016.8316

Керамический материал с низкой температурой спекания на основе диоксида циркония тетрагональной модификации

Изобретение относится к области получения высокоплотной керамики на основе тетрагонального диоксида циркония. Технический результат изобретения - увеличение прочности материалов, спекающихся до плотного состояния при низкой температуре 1300-1350°С. Керамический материал содержит добавку ниобат...
Тип: Изобретение
Номер охранного документа: 0002665734
Дата охранного документа: 04.09.2018
20.12.2018
№218.016.a92e

Керамический материал с низкой температурой спекания на основе диоксида циркония тетрагональной модификации

Изобретение относится к области получения высокоплотной керамики на основе тетрагонального диоксида циркония и может быть использовано в качестве износостойких изделий, режущего инструмента, керамических подшипников, а также имплантатов для замещения костных дефектов. Керамический материал...
Тип: Изобретение
Номер охранного документа: 0002675391
Дата охранного документа: 19.12.2018
08.02.2019
№219.016.b835

Кальцийфосфатный цемент для заполнения костных дефектов

Изобретение относится к области медицины, а именно к кальцийфосфатному цементу для заполнения костных дефектов. Кальцийфосфатный цемент для заполнения костных дефектов, состоящий из порошка, содержащего трикальцийфосфат, гидроксиапатит и цементной жидкости, содержащей фосфат магния, фосфорную...
Тип: Изобретение
Номер охранного документа: 0002679140
Дата охранного документа: 06.02.2019
+ добавить свой РИД