×
27.05.2023
223.018.7163

Результат интеллектуальной деятельности: Способ выявления РНК вируса SARS-CoV2 с помощью мультиплексной изотермической петлевой амплификации с обратной транскрипцией

Вид РИД

Изобретение

Аннотация: Предлагаемое изобретение относится к области биотехнологии и, в частности, к генетической инженерии. Проводят изотермическую петлевую амплификацию с помощью специально подобранных олигонуклеотидных праймеров, комплементарных участку геномной РНК коронавируса SARS-CoV2 и геномной РНК бактериофага MS2, при этом амплификацию двух фрагментов ДНК, комплементарных геномной РНК коронавируса SARS-CoV2 и геномной РНК бактериофага MS2, осуществляют одновременно в одной реакционной смеси. Детекция результатов амплификации происходит в реальном времени так и после амплификации с помощью интеркалирующего флуоресцентного красителя по анализу кривых плавления амплифицированных фрагментов. Технический результат: сокращение длительности способа выявления РНК вируса SARS-CoV2. 1 з.п. ф-лы, 1 ил., 2 табл., 2 пр.

Предлагаемое изобретение относится к области биотехнологии и, в частности, к генетической инженерии и может быть использовано для выявления генетического материала (РНК) коронавируса SARS-CoV2 в диагностических целях.

Вирус SARS-CoV2, относящийся к роду Betacoronavirus, является причиной пандемии коронавирусной инфекции COVID-19, которая продолжается по состоянию на октябрь 2020. Пандемия охватила все страны мира, общее количество зараженных согласно докладу ВОЗ от 20 октября 2020 составило более 40 миллионов человек с более чем 1,1 миллиона зарегистрированных смертельных случаев (данные на 18 октября 2020 г), из которых 1,45 миллиона инфицированных зарегистрировано в России. Как следствие, возникла чрезвычайно острая потребность в диагностических тестах для выявления РНК вируса SARS-CoV2.

Наиболее распространенные используемые тест-системы основаны на ПЦР в режиме реального времени, совмещенной с обратной транскрипцией (ОТ-ПЦР в реальном времени). ОТ-ПЦР позволяет получить результаты в течение 1,5-2 часов с момента начала анализа РНК. Вместе с тем, в связи с резко возросшей нагрузкой на диагностические лаборатории и ограниченным количеством специальных приборов для проведения ОТ-ПЦР (амплификаторов) время выполнения анализа стало фактором, лимитирующим общее количество тестов, проводимых в течение рабочего дня. Иными словами, в целях увеличения пропускной способности лабораторий представляется необходимой разработка более быстрых диагностических методов.

За последние 30 лет на фоне бурного развития молекулярной биологии было разработано множество различных подходов амплификации нуклеиновых кислот, альтернативных ПЦР. Многие из них подразумевают уход от использования циклического нагревания-охлаждения реакционных смесей и проведение амплификации ДНК при постоянной температуре - это методы изотермической амплификации (NASBA, RPA, LAMP, HDA, MDA, RCA, SDA и ряд других подходов [1-3]. Проведение реакции при постоянной температуре позволяет отказаться от использования сложных и дорогостоящих амплификаторов, за счет чего становится возможным миниатюризация оборудования для проведения реакции амплификации и разработка устройств для тестирования вне лабораторий у постели больного (point-of-care). В ряду методов изотермической амплификации особое место занимает изотермическая петлевая амплификация (LAMP, loop-mediated isothermal amplification) [4]. LAMP основана на использовании цепь-вытесняющей активности некоторых ДНК-полимераз и 2-3 пар олигонуклеотидных праймеров. Детекция результатов амплификации может осуществляться невооруженным глазом колориметрически, с помощью флуоресцентных интеркалирующих красителей или зондов, турбидиметрически или электрохимически, как в режиме реального времени, так и по окончанию реакции. На основе LAMP было разработано множество тестов для выявления инфекционных агентов человека, а также сельскохозяйственных животных и растений, в том числе вирусов гриппа, Зика, возбудителей туберкулеза и малярии [5-8]. Чувствительность и специфичность LAMP не уступают ПЦР; вместе с тем, LAMP более устойчива к ингибиторам и позволяет получить результаты тестирования в 2-3 раза быстрее (30-40 мин против 1,5-2 часов).

В силу своих преимуществ перед ПНР при сохранении чувствительности и специфичности, LAMP является перспективным методом для создания диагностических тестов для выявления РНК вируса SARS-CoV2. В течение 2020 года было создано несколько подобных тестов, часть из которых прошла сертификацию и используется в реальной клинической практике [9-11]. Следует отметить, что основное внимание исследователей было сосредоточено на создании тестов на основе LAMP для диагностики у постели больного вне лабораторий. В большинстве работ детекция результатов LAMP в реальном времени использовалась для оптимизации методики и проверки аналитических характеристик, в то время как детекция результатов финального варианта теста осуществлялась визуально, по окраске реакционной смеси. Вместе с тем, LAMP может использоваться в режиме реального времени в рамках диагностических лабораторий, что позволит экономить аппаратное время и увеличить пропускную способность тестирования.

Мультиплексирование - амплификации двух и более фрагментов ДНК в одной реакционной смеси. С помощью мультиплексирования появляется возможность детектировать одновременно несколько патогенов и уменьшается себестоимость тестирования. Кроме того, при мультиплексировании достигается одновременная амплификация внутреннего контроля реакции или внутреннего контроля выделения ДНК или РНК из образца, что позволяет отслеживать качество выделения тестируемых образцов нуклеиновых кислот и работоспособность реагентов для обратной транскрипции и амплификации. Однако в силу специфики процесса амплификации и продуктов реакции LAMP ее мультиплексирование является сложной задачей. Так, у ДНК-полимераз, используемых в LAMP, отсутствует 5'-3'-экзонуклеазная активность, что делает невозможным использование гидролизуемых флуоресцентно-меченых-зондов. Продуктом LAMP является конкатемерные последовательности, составленные из повторяющихся амплифицированных фрагментов, что ограничивает разделение продуктов амплификации по длине без дополнительных манипуляций. Мультиплексирование LAMP возможно с помощью модифицированных олигонуклеотидов, в том числе флуоресцентно меченых, или плавления продуктов амплификации в присутствии интеркалирующих красителей [12-14]. В последнем случае различение продуктов происходит за счет характеристических для каждого продукта температур плавления.

Наиболее близким к заявляемому способу - прототипом, является способ выявления ДНК S. aureus, L. monocytogenes и S. spp, путем выделения ДНК из анализируемой пробы, проведения мультиплексной LAMP с тремя наборами праймеров, комплементарных участкам геномов этих организмов в одной пробирке с помощью LAMP, плавления с высоким разрешением в этой же пробирке продуктов амплификации. На последней стадии способа проводят анализ результатов плавления с высоким разрешения и определение температур плавления амплифицированных фрагментов. Наличие ДНК микроорганизма в анализируемой пробе устанавливают по появлению характеристического пика плавления, соответствующего продукту амплификации участка генома микроорганизма [12].

Недостатком данного способа является его длительность, связанная с затратой времени на проведение плавления с высоким разрешением, которое в несколько раз больше, чем время, затрачиваемое на проведение обычного плавления фрагментов ДНК.

Задачей изобретения является разработка более быстрого способа выявления РНК вируса SARS-CoV2 с помощью мультиплексной изотермической петлевой амплификации, сопряженной с реакцией обратной транскрипции.

Технический результат: сокращение длительности способа выявления РНК вируса SARS CoV2.

Поставленная задача достигается предлагаемым способом, заключающимся в следующем.

Проводят изотермическую петлевую амплификацию (LAMP) РНК, выделенной из анализируемой пробы, в которую предварительно добавляют фаг MS2, с помощью специально подобранных олигонуклеотидных праймеров, комплементарных участку геномной РНК коронавируса SARS-CoV2 и геномной РНК бактериофага MS2. Амплификацию двух фрагментов ДНК, комплементарных геномной РНК коронавируса SARS-CoV2 и геномной РНК бактериофага MS2, осуществляют одновременно в одной реакционной смеси, используя обратную транскриптазу и большой фрагмент Gss-полимеразы. Детекцию результатов амплификации проводят с помощью интеркалирующего флуоресцентного красителя. Непосредственную амплификацию проводят в термоциклере для проведения обычной ПЦР, либо в приборе для ПЦР в реальном врмени. Присутствие РНК коронавируса SARS-CoV2 в анализируемой пробе устанавливают путем анализа кривых плавления амплифицированных фрагментов по появлению пика плавления со специфической температурой.

В качестве мишеней для праймеров LAMP были выбраны консервативные регионы геномной РНК вируса SARS-CoV2, кодирующей участок белка Е, а также участок генома фага MS2. Праймеры подбирали в соответствии с рекомендациями, размещенными на сайте primerexplorer.jp. Эффективность амплификации с помощью подобранных праймеров оценивали, проводя LAMP с фрагментами РНК вируса SARS-CoV2 и фага MS2. Концентрацию РНК-стандартов измеряли с помощью цифровой капельной ПЦР на платформе QX200 (Bio-Rad; США).

Разработанный новый способ выявления РНК коронавируса SARS-CoV2 позволяет детектировать в режиме реального времени генетический материал вируса в течение 40 минут с пределом детекции не менее 20 копий вирусной РНК в реакционной смеси, вместе с одновременной амплификацией контрольного фрагмента РНК MS2.

Изобретение иллюстрируется следующими примерами конкретного выполнения.

Пример 1.

LAMP проводили в реакционном объеме 20 мкл, содержавшем 1× реакционный буфер для Bst-полимеразы (20 мМ Tris-HCl рН 8,8, 10 мМ (NH4)2SO4, 150 мМ KCl, 0,1% Tween-20, 2 мМ М MgSO4), 1,4 мМ каждого дНТФ, 1х праймеров на SARS-CoV2 (по 0,2 мкМ внешних праймеров (F3/B3), 0,6 мкМ петлевых праймеров (LF/BF), 1,6 мкМ внутренних праймеров (FIP/BIP)), 0,5х праймеров на MS2 (по 0,1 мкМ внешних праймеров (F3/B3), 0,3 мкМ петлевых праймеров (LF/BF), 0,8 мкМ внутренних праймеров (FIP/BIP)), последовательности которых представлены в таблице 1, РНК-матрицу (тип и количество матрицы указаны ниже), 100 е.а. обратной транскриптазы M-MuLV, 2 е.а. большого фрагмента Gss-полимеразы из Geobacillus sp. 777 [15], интеркалирующий краситель SYTO-82 до концентрации 1 мкМ. Реакцию проводили в амплификаторе CFX96 (Bio-Rad; США). Программа включала в себя следующие стадии: 10 мин обратной транскрипции при 50°С, отжиг праймеров и элонгацию при температуре 64°С 90 циклов длиной 20 с каждый с регистрацией сигнала флуоресценции на канале FAM; определение температуры плавления продуктов амплификации в диапазоне 70-95°С после амплификации для определения наработанных продуктов амплификации. Результаты изотермической амплификации оценивали по параметру Tt (time-to-threshold - времени до пересечения кривой накопления продукта амплификации порогового значения) и графикам плавления продуктов LAMP.

Предел детекции РНК коронавируса SARS-CoV2 с помощью мультиплексной LAMP оценивали, варьируя количество РНК CoV2-E в пределах 100-10 копий на фоне 12000 копий РНК MS2 в реакционной смеси.

Всего использовали 4 концентрации РНК CoV2-E: 100, 50, 20 и 10 копий в реакционной смеси, с каждой концентрацией проводили LAMP с праймерами MS2-CoV2-E в 20 технических повторах в одном запуске. Наличие РНК CoV2-E определяли по появлению соответствующего пика на графике плавления продуктов амплификации. Результаты анализа кривых плавления продуктов LAMP при установлении предела детекции дуплекса MS2-CoV2 показаны на фиг. 1. На фиг. 1 видны характеристические пики плавления продуктов LAMP, полученные с моноплексом CoV2-E и 103 копий РНК CoV2-Е (выделено квадратами), с моноплексом MS2 и 103 копий РНК MS2 (выделено ромбами), с дуплексом MS2-CoV2-E 12000 копиями на реакцию РНК MS и РНК CoV2-E: 100 копиями (выделено окружностями), 50 копиями (выделено тругольниками) и 20 копиями (выделено крестами).

Пик плавления CoV2-E присутствовал во всех 20 технических повторах для концентраций РНК CoV2-E 100, 50, 20 молекул в реакционной смеси, а также в 16 из 20 технических повторах для концентрации РНК CoV2-E 10 молекул на реакцию. Таким образом, предел детекции мультиплексной LAMP составлял не менее 20 молекул РНК SARS-CoV2 в реакционной смеси. Полученный предел детекции соответствует аналогичным показателям для ранее опубликованных тест-систем для выявления РНК коронавируса SARS-CoV2.

Пример 2.

Валидацию заявляемого способа (мультиплексная LAMP MS2-CoV2-E) проводили на 40 клинических образцах назофарингеальных мазков, полученных от пациентов ЦНМТ ИХФБМ СО РАН. Все участвовавшие пациенты подписали информированное согласие на проведение исследования. РНК из образцов выделяли с помощью комплекта реагентов для выделения РНК/ДНК из клинического материала «РИБО-преп», после чего проводили тестирование двумя методами: ОТ-ПЦР в режиме реального времени с помощью праймеров, рекомендованных ВОЗ [16] (таблица 1) и мультиплексной LAMP MS2-CoV2-E. Результаты сравнения мультиплексной LAMP MS2-CoV2-E с ОТ-ПЦР в реальном времени представлены в таблице 2.

Из 40 образов, результаты тестирования обоими методами совпали для 37. При этом для двух негативных по ОТ-ПЦР образцов, тестированных как позитивные по LAMP, показатель Cq ОТ-ПРЦ в реальном времени превышал 35. Таким образом, конкордантность результатов мультиплексной LAMP с ОТ-ПЦР в реальном времени составила 92%.

Таким образом, разработанный новый способ выявления РНК коронавируса SARS-CoV2 позволяет детектировать в режиме реального времени генетический материал вируса в течение 40 минут с пределом детекции не менее 20 копий вирусной РНК в реакционной смеси, вместе с одновременной амплификацией контрольного фрагмента РНК MS2.

Источники информации:

1. Compton J. Nucleic acid sequence-based amplification. // Nature. 1991. Vol. 350, №6313. P. 91-92.

2. Fire A., Xu S.Q. Rolling replication of short DNA circles. // Proc. Natl. Acad. Sci. U. S. A. 1995. Vol. 92, №10. P. 4641-4645.

3. Notomi T. et al. Loop-mediated isothermal amplification of DNA. // Nucleic Acids Res. 2000. Vol. 28, №12. P. E63.

4. Notomi T. et al. Loop-mediated isothermal amplification of DNA. // Nucleic Acids Res. 2000. Vol. 28, №12. P. E63.

5. Yongkiettrakul S. et al. Simple detection of single nucleotide polymorphism in Plasmodium falciparum by SNP-LAMP assay combined with lateral flow dipstick. // Parasitol. Int. 2017. Vol. 66, №1. P. 964-971.

6. Global Tuberculosis Programme. The use of loop-mediated isothermal amplification (ТВ-LAMP) for the diagnosis of pulmonary tuberculosis: policy guidance. 38 p.

7. Guo X.G. et al. Rapid and reliable diagnostic method to detect Zika virus by real-time fluorescence reverse transcription loop-mediated isothermal amplification // AMB Express. Springer Verlag, 2018. Vol. 8, №1.

8. Poon L.L.M. et al. Detection of human influenza A viruses by loop-mediated isothermal amplification // J. Clin. Microbiol. J Clin Microbiol, 2005. Vol. 43, №1. P. 427-430.

9. Broughton J. et al. Rapid Detection of 2019 Novel Coronavirus SARS-CoV-2 Using a CRISPR-based DETECTR Lateral Flow Assay // medRxiv Prepr. Serv. Heal. Sci. medRxiv, 2020.

10. Park G.S. et al. Development of Reverse Transcription Loop-Mediated Isothermal Amplification Assays Targeting Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) // J. Mol. Diagnostics. Elsevier B.V., 2020. Vol. 22, №6. P. 729-735.

11. Kitagawa Y. et al. Evaluation of rapid diagnosis of novel coronavirus disease (COVID-19) using loop-mediated isothermal amplification // J. Clin. Virol. Elsevier B.V., 2020. Vol. 129.

12. Dong J. et al. Single-color multiplexing by the integration of high-resolution melting pattern recognition with loop-mediated isothermal amplification // Chem. Commun. Royal Society of Chemistry, 2019. Vol. 55, №17. P. 2457-2460.

13. Tanner N. a, Zhang Y., Evans T.C. Simultaneous multiple target detection in real-time loop-mediated isothermal amplification. // Biotechniques. 2012. Vol. 53, №2. P. 81-89.

14. Higgins O. et al. Evaluation of an internally controlled multiplex Tth endonuclease cleavage loop-mediated isothermal amplification (TEC-LAMP) assay for the detection of bacterial meningitis pathogens // Int. J. Mol. Sci. MDPI AG, 2018. Vol. 19, №2.

15. Oscorbin LP., Boyarskikh U.A., Filipenko M.L. Large Fragment of DNA Polymerase I from Geobacillus sp. 777: Cloning and Comparison with DNA Polymerases I in Practical Applications. // Mol. Biotechnol. 2015. Vol. 57, №10. P. 947-959.

16. Corman V. et al. Diagnostic detection of Wuhan coronavirus 2019 by realtime RT-PCR.

Источник поступления информации: Роспатент

Showing 1-10 of 81 items.
27.04.2013
№216.012.3a45

Средство для инактивации днк-вирусов

Изобретение относится к химии и биомедицине. Предложено средство, представляющее собой одно из производных N-замещенного 1,4-диазабицикло[2.2.2.]октана, проявляющее противовирусную активность в отношении ДНК-вирусов. Предложенное средство может найти применение в ветеринарии и здравоохранении в...
Тип: Изобретение
Номер охранного документа: 0002480478
Дата охранного документа: 27.04.2013
27.06.2013
№216.012.51c0

Способ определения концентрации варфаринового спирта в плазме крови

Изобретение относится к области биохимии. Суть способа. Предварительно готовят калибровочные растворы варфаринового спирта с концентрацией 0, 10, 25, 50, 75, 100 нг/мл. Затем готовят пробы исследуемых образцов, анализируют последние на масс-спектрометре в режиме обнаружения отрицательных ионов...
Тип: Изобретение
Номер охранного документа: 0002486521
Дата охранного документа: 27.06.2013
20.07.2013
№216.012.56fc

Средство, проявляющее противирусную активность в отношении днк-вирусов

Изобретение относится к средству, представляющее собой одно из производных N-замещенного 1,4-диазабицикло[2.2.2.]октана общей формулы (I) (соединения 1-3), где R=1,4-замещенный бут-2-ин - для (1), 1,5-замещенный пентан - для (2), 1,4-диметилфенил для (3), проявляющее противовирусную активность...
Тип: Изобретение
Номер охранного документа: 0002487876
Дата охранного документа: 20.07.2013
20.08.2013
№216.012.6202

Способ восстановления кровотока в регионе тромбированной вены в эксперименте

Изобретение относится к экспериментальной медицине. Моделируют острый венозный тромбоз у лабораторного животного - крысы. Затем в просвет тромбированной вены вводят суспензию мезенхимальных стволовых клеток с концентрацией не менее 1×10 клеток/мл в количестве 30-50 мкл. При этом введение...
Тип: Изобретение
Номер охранного документа: 0002490722
Дата охранного документа: 20.08.2013
10.09.2013
№216.012.67e3

Способ оценки активности системы эксцизионной репарации нуклеотидов млекопитающих

Изобретение относится к области биохимии и молекулярной биологии. Предложен способ оценки активности системы эксцизионной репарации нуклеотидов млекопитающих, включающий получение модельной ДНК и ее инкубацию с белками экстракта млекопитающего в присутствии матричного олигонуклеотида,...
Тип: Изобретение
Номер охранного документа: 0002492242
Дата охранного документа: 10.09.2013
27.10.2013
№216.012.79f0

Нанокомпозит с активным лигандом, способ его приготовления и способ адресной инактивации вируса гриппа внутри клетки

Изобретение относится к области молекулярной биологии, биоорганической химии и медицины. Заявляемые нанокомпозиты предназначены для направленного воздействия на генетический материал внутри клетки и подавления его дальнейшего функционирования. Нанокомпозиты, состоящие из наночастиц диоксида...
Тип: Изобретение
Номер охранного документа: 0002496878
Дата охранного документа: 27.10.2013
27.11.2013
№216.012.853f

Алкилирующие фторированные производные 1,4-нафтохинона, обладающие цитотоксической активностью по отношению к раковым клеткам человека в культуре

Изобретение относится к новым фторированным производным 1,4-нафтохинона, содержащим алкилирующие группы, общей формулы (I), где R, R=SCHCHCl, или R, R=OCHCHCl, или R=OCHCHCl, R=F, или R=SCHCHCl, R=OCHкоторые обладают цитотоксической активностью по отношению к раковым клеткам человека в...
Тип: Изобретение
Номер охранного документа: 0002499789
Дата охранного документа: 27.11.2013
10.12.2013
№216.012.88b1

Средство для ингибирования фермента поли(адф-рибозо)полимеразы-1 человека

Изобретение относится к средству для ингибирования фермента поли(АДФ-рибозо)полимеразы-1 человека, представляющее собой 6-ацетил-7,9-дигидрокси-8,9b-диметил-2-етилид-2,11-ен-1,9b,2,3-тетрагидро-11-N-карбоксифенилметиламино-1,3-диоксодибензофуран общей формулы (I): Данное средство оказывает...
Тип: Изобретение
Номер охранного документа: 0002500675
Дата охранного документа: 10.12.2013
10.03.2014
№216.012.a9b2

Способ детекции специфических последовательностей нуклеиновых кислот (варианты) и устройство для его осуществления

Группа изобретений относится к области молекулярной биологии и электрохимии. По первому варианту способ осуществляют путем регистрации циклических вольтамперограмм рабочего электрода, модифицированного углеродными нанотрубками с нековалентно иммобилизованным на их поверхности олигонуклеотидным...
Тип: Изобретение
Номер охранного документа: 0002509157
Дата охранного документа: 10.03.2014
20.03.2014
№216.012.ac3d

Способ определения чувствительности клеток немелкоклеточного рака легких к действию препаратов, реактивирующих белок р53

Изобретение относится к области онкологии и молекулярной биологии. Предложен способ определения чувствительности клеток немелкоклеточного рака легких к действию препаратов, реактивирующих р53 белок, включающий выделение РНК из образцов, синтез кДНК генов CDKN1A, BTG2 и E2F1 методом обратной...
Тип: Изобретение
Номер охранного документа: 0002509808
Дата охранного документа: 20.03.2014
Showing 1-10 of 20 items.
20.06.2013
№216.012.4c8b

Способ выявления устойчивых к рифампицину изолятов mycobacterium tuberculosis

Изобретение относится к области молекулярной биологии и медицины. Предложен способ выявления мутаций гена rpoB посредством проведения ПЦР, где в режиме «реального времени» нарабатывается фрагмент гена rpoB с использованием праймеров Rpo11 (5'-GACGTGGAGGCGATCACAC-3') и Rpo12...
Тип: Изобретение
Номер охранного документа: 0002485177
Дата охранного документа: 20.06.2013
20.03.2014
№216.012.ac3d

Способ определения чувствительности клеток немелкоклеточного рака легких к действию препаратов, реактивирующих белок р53

Изобретение относится к области онкологии и молекулярной биологии. Предложен способ определения чувствительности клеток немелкоклеточного рака легких к действию препаратов, реактивирующих р53 белок, включающий выделение РНК из образцов, синтез кДНК генов CDKN1A, BTG2 и E2F1 методом обратной...
Тип: Изобретение
Номер охранного документа: 0002509808
Дата охранного документа: 20.03.2014
10.06.2015
№216.013.50d5

Способ выявления устойчивых к пиразинамину изолятов mycobacterium tuberculosis

Изобретение относится к области биохимии, в частности к способу выявления устойчивых к пиразииамиду изолятов Mycobacterium tuberculosis, путем определения наличия мутаций в гене pncA, ассоциированных с формированием устойчивости к пиразинамиду, посредством проведения ПЦР в режиме «реального...
Тип: Изобретение
Номер охранного документа: 0002552214
Дата охранного документа: 10.06.2015
27.09.2015
№216.013.7e20

Способ определения антител к бактериальным антигенам

Изобретение относится к ветеринарной медицине, а именно к определению наличия антител к бактериальным антигенам в сыворотке крови животных. Для этого антиген смешивают с тестируемой сывороткой крови в различных разведениях в лунках микропланшета с V-образным дном с последующей визуализацией...
Тип: Изобретение
Номер охранного документа: 0002563885
Дата охранного документа: 27.09.2015
20.06.2016
№217.015.0532

Способ диагностики состояния иммунной системы пациента и набор праймеров, зондов и стандартных образцов для количественной оценки днк молекул trec, krec и количества геном эквивалентов днк

Группа изобретений относиться к области медицины, а именно к иммунологии, и может быть использована для диагностики состояния иммунной системы пациента на основе оценки количества наивных Т и В клеток, экспрессирующих TREC и KREC. Для этого выделяют ДНК из анализируемого образца крови. Затем...
Тип: Изобретение
Номер охранного документа: 0002587540
Дата охранного документа: 20.06.2016
25.08.2017
№217.015.ae8e

Способ определения нуклеотидных последовательностей экзонов генов brca1 и brca2

Изобретение относится к области молекулярной биологии и диагностической медицины. Описан способ определения последовательностей экзонов генов BRCA1 и BRCA2. Способ включает в себя два раунда амплификации экзонов с сайтами сплайсинга генов BRCA1 и BRCA2, секвенирование пулированной ДНК после...
Тип: Изобретение
Номер охранного документа: 0002612894
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.aea1

Метод определения уровня метилирования промоторной области гена col1a2 для диагностики рака толстой кишки

Изобретение относится к биохимии. Описан способ диагностики рака толстой кишки путем определения уровня метилирования промоторной области гена COL1A2, посредством проведения пиросеквенирования, отличающийся тем, что исследуют уровень метилирования CpG динуклеотидов в промоторной области гена...
Тип: Изобретение
Номер охранного документа: 0002612890
Дата охранного документа: 13.03.2017
13.01.2019
№219.016.af49

Способ определения доли мтднк с делециями в биологических образцах

Изобретение относится к области биохимии и молекулярной биологии. Предложен способ определения доли мтДНК с делециями в биологических образцах, включающий выделение ДНК из образцов, одновременную амплификацию соответствующих участков ДНК в режиме триплекс при помощи ПЦР в реальном времени с...
Тип: Изобретение
Номер охранного документа: 0002676897
Дата охранного документа: 11.01.2019
21.02.2019
№219.016.c50a

Система детекции наиболее значимых прокариотических представителей микробиоты кишечника человека на основе пцр панели

Изобретение относится к биотехнологии и представляет собой набор синтетических олигонуклеотидов для выявления маркерных участков генов бактерий и архей из микробиоты кишечника человека. Был разработан и экспериментально протестирован новый способ профилирования микробиоты кишечника индивида....
Тип: Изобретение
Номер охранного документа: 0002680268
Дата охранного документа: 19.02.2019
01.03.2019
№219.016.cf21

Состав для обработки птицеводческих помещений

Изобретение относится к ветеринарной медицине и птицеводству. Состав содержит лимонную кислоту, бензойную кислоту, марганец сернокислый, натрий сернокислый и натрий лимоннокислый при следующем содержании компонентов, мас.%: лимонная кислота 70-75, бензойная кислота 5-13, марганец сернокислый...
Тип: Изобретение
Номер охранного документа: 0002407545
Дата охранного документа: 27.12.2010
+ добавить свой РИД