×
16.05.2023
223.018.643c

Результат интеллектуальной деятельности: Способ выделения оптических импульсов

Вид РИД

Изобретение

Аннотация: Изобретение относится к приему оптических сигналов, в частности, к технике приема сигналов с помощью лавинных фотодиодов, и может быть использовано в локации, связи и других фотоэлектронных системах. Способ выделения оптических импульсов с помощью лавинного фотодиода и порогового устройства, включающий пороговую обработку принятых фотодиодом сигналов и формирование выходных импульсов при превышении сигналом с выхода фотодиода заданного порога срабатывания, при этом предварительно определяют значения умножаемого и неумножаемого темнового тока фотодиода, шум-фактор лавинного умножения и зависимость частоты микроплазм от коэффициента лавинного умножения М, после чего коэффициент лавинного умножения фотодиода устанавливают так, чтобы величина М была как можно более близка к оптимальному значению М, а частота микроплазм не превышала предельно допустимого значения во всех условиях окружающей среды, при этом порог срабатывания порогового устройства регулируют так, чтобы частота f превышений порогового уровня выбросами шумового процесса находилась в пределах причем, , а величину f=N/T определяют путем подсчета количества N стандартных выходных импульсов за предварительно заданное время Т. Технический результат заключается в обеспечении близкой к предельно достижимой чувствительности во всех режимах, в том числе при наличии микроплазменных пробоев. 3 ил.

Предлагаемое изобретение относится к приему оптических сигналов, в частности, к технике приема сигналов с помощью лавинных фотодиодов, и может быть использовано в системах локации, связи и других фотоэлектронных системах.

Известен способ приема оптических сигналов с помощью лавинных фотодиодов [1]. Известны также способы стабилизации лавинного режима фотодиода, например, путем термокомпенсации рабочей точки напряжения смещения [2].

Наиболее близким к предлагаемому техническому решению является способ приема импульсных оптических сигналов с помощью лавинного фотодиода, напряжение смещения которого поддерживают путем стабилизации частоты шумовых импульсов, возникающих в фотодиоде в процессе лавинного умножения [3].

Недостатком этого способа является возможность введения фотодиода в режим микроплазменного пробоя [4]. Микроплазменные импульсы тока имеют прямоугольную форму и постоянную амплитуду, которая возрастает по мере увеличения обратного напряжения. Увеличение амплитуды сопровождается увеличением длительности импульсов и уменьшением скважности [5]. В таком режиме шум лавинного фотодиода состоит из двух независимых составляющих - нормального шума [6] и «телеграфного» шума микроплазм. Микроплазменная составляющая шума фотодиода не сопоставима по статистическим характеристикам с нормальной составляющей, и ее участие в процессе регулирования смещения фотодиода [3] непредсказуемо. При некоторых температурных условиях регулировка лавинного режима по частоте шумовых выбросов фотодиода включая микроплазмы, может привести к выходу системы на неоптимальный режим лавинного умножения, т.е. к ухудшению пороговой чувствительности фотоприемного устройства или к недопустимой вероятности ложных срабатываний, вызванных микроплазмами.

Задачей изобретения является обеспечение высокой чувствительности во всех условиях эксплуатации.

Указанная задача решается за счет того, что в известном способе выделения оптических импульсов с помощью лавинного фотодиода и порогового устройства, включающем пороговую обработку принятых фотодиодом сигналов и формирование выходных импульсов при превышении сигналом с выхода фотодиода заданного порога срабатывания, предварительно определяют значения умножаемого и неумножаемого темнового тока фотодиода, шум-фактор лавинного умножения и зависимость частоты микроплазм от коэффициента лавинного умножения М, после чего коэффициент лавинного умножения фотодиода устанавливают так, чтобы величина М была как можно более близка к оптимальному значению Мопт, а частота микроплазм не превышала предельно допустимого значения во всех условиях окружающей среды, при этом порог срабатывания порогового устройства регулируют так, чтобы частота f превышений порогового уровня выбросами шумового процесса находилась в пределах причем, где - квадрат неумножаемого шумового тока фотодиода, приведенного к его выходу; квадрат умножаемого шумового тока; е - заряд электрона; I1 - первичный обратный ток фотодиода; Δf - полоса пропускания линейного тракта до входа порогового устройства; М - коэффициент лавинного умножения; α - коэффициент, определяемый материалом фотодиода; f1 и f2 - нижняя и верхняя границы допуска на частоту f, а величину f=N/T определяют путем подсчета количества N стандартных выходных импульсов за предварительно заданное время Т.

На фиг. 1 представлена схема фотоприемного устройства, реализующего данный способ. На фиг. 2а), б) - примеры реализации шума на входе порогового устройства при разной величине М. На фиг. 3 показаны графики зависимости η(М) для германиевого (фиг. 3а) и кремниевого (фиг. 3б) лавинных фотодиодов.

Фотоприемное устройство содержит последовательно включенные лавинный фотодиод 1, усилитель 2 и пороговое устройство 3. Напряжение смещения подается на фотодиод 1 от последовательно связанных источника питания 4 и схемы термокомпенсации 5. Пороговое устройство охвачено цепью обратной связи в виде схемы шумовой автоматической регулировки порога 6, включенной между выходом порогового устройства и его управляющим входом. Схема термокомпенсации связана с блоком установки лавинного режима 7. Синхронизация режима осуществляется блоком управления 8, связанным с блоками 6 и 7.

Способ осуществляется следующим образом.

Предварительно определяют ход параметров I0, I1, α выбранных лавинных фотодиодов в зависимости от температуры и величины коэффициента лавинного умножения М, в свою очередь определяемого напряжением смещения фотодиода Uсм. Одновременно выявляют зависимость частоты микроплазм от температуры и коэффициента лавинного умножения [7]. Этот подготовительный цикл осуществляют однократно на этапе проектирования.

При изготовлении и отладке фотоприемного устройства с учетом ранее определенных зависимостей настраивают схему термокомпенсации так, чтобы во всех условиях эксплуатации коэффициент лавинного умножения был как можно ближе к своему оптимальному значению и чтобы частота микроплазм при этом не превышала допустимого количества Nм за время приема Т. Характер шумов, включающий нормальную составляющую шума 8 и поток микроплазм 9, приведен на фиг. 2 - при М=Мопт (фиг. 2а) и при коэффициенте соответствующем максимально допустимой частоте микроплазм (фиг. 2б).

После выхода фотодиода на номинальный лавинный режим непосредственно перед приемом сигналов включают шумовую автоматическую регулировку, осуществляемую схемой 6, например, по методике, изложенной в [8]. После выхода шумовой регулировки порога на рабочий режим, включают режим приема сигналов.

Описанный способ обеспечивает максимальное отношение сигнал/шум при наличии микроплазменных пробоев, которые обычно не учитывают, что приводит к ухудшению реальной чувствительности приемных устройств.

Оптимальное значение коэффициента лавинного умножения М можно определить следующим образом. На выходе лавинного фотодиода действует эквивалентный квадрат шумового тока

- квадрат неумножаемого шумового тока

е - заряд электрона;

I1 - первичный обратный ток фотодиода;

Δf - полоса пропускания линейного тракта до входа порогового устройства;

М - коэффициент лавинного умножения;

Мα - шум-фактор лавинного умножения;

α - коэффициент, определяемый материалом фотодиода [6].

Квадрат W отношения шум/сигнал

Условие нуля производной

Или

Пример 1 (Фиг. 3а).

Германиевый фотодиод. I1=10-7 A. Jм2=3,2⋅10-19 А2. α=1. Область микроплазм начинается с М=4. Рабочую точку фотодиода поддерживают при М=1,8…3,5. При этом максимальное отношение сигнал/шум, обеспечиваемое способом, то есть величина отличается от максимального значения, обеспечиваемого при М=Мопт=3, не более, чем на 2%.

Пример 2 (Фиг. 3б).

Кремниевый фотодиод. I1=10-9 A. Jм2=3,2⋅10-21 А2. α=0,5. Область микроплазм начинается с М=25. Рабочую точку фотодиода поддерживают при М=20…25. При этом максимальное отношение сигнал/шум, обеспечиваемое способом, то есть величина отличается от максимального значения, обеспечиваемого при М=Мопт=30, не более, чем на 2%.

Оптимальный коэффициент лавинного умножения М можно устанавливать предварительно путем подачи на фотодиод пробного сигнала, изменения напряжения смещения фотодиода и одновременного измерения отношения η амплитуды выходного сигнала А к среднеквадратическому значению шума σ, причем оптимальным устанавливают такое значение Мопт, при котором отношение максимально, а в процессе приема сигналов фиксируют напряжение смещения фотодиода на уровне, соответствующем установленной величине Мопт.

Таким образом, обеспечивается близкая к предельно достижимой чувствительность во всех режимах, в том числе при наличии микроплазменных пробоев.

Источники информации

1 Росс М. Лазерные приемники. - «Мир», М., 1969 г. - 520 с.

2 Патент РФ №2 248670. Устройство включения лавинного фотодиода в приемнике оптического излучения. 2005 г.

3 US pat. 4,077,718. Receiver for optical radar. 1978. - прототип.

4 Филачев A.M., Таубкин И.И., Тришенков М.А. Твердотельная фотоэлектроника. Физические основы. Москва, Физматгиз. 2007, - С. 345.

Вишневский А.И., Руденко В.С, Платонов А.П. Силовые ионные и полупроводниковые приборы. Учебное пособие для вузов. Под редакцией В.С. Руденко. Москва, Высшая школа, 1975.

6. Вильнер В.Г., Лейченко Ю.А., Мотенко Б.Н. Анализ входной цепи фотоприемного устройства с лавинным фотодиодом и противошумовой коррекцией. Оптико-механическая промышленность, 1981, №9, - С. 59.

7 Шашкина А.С. и др. Лавинный пробой p-n-перехода в задачах радиотехники. - Научно-технический вестник информационных технологий, механики и оптики, 2016, том 16, №5, с. 864-871.

8 Вильнер В.Г. Проектирование пороговых устройств с шумовой стабилизацией порога. - Оптико-механическая промышленность, 1984, №5, с. 39-41.

Способ выделения оптических импульсов с помощью лавинного фотодиода и порогового устройства, включающий пороговую обработку принятых фотодиодом сигналов и формирование выходных импульсов при превышении сигналом с выхода фотодиода заданного порога срабатывания, отличающийся тем, что предварительно определяют значения умножаемого и неумножаемого темнового тока фотодиода, шум-фактор лавинного умножения и зависимость частоты микроплазм от коэффициента лавинного умножения М, после чего коэффициент лавинного умножения фотодиода устанавливают так, чтобы величина М была как можно более близка к оптимальному значению М, а частота микроплазм не превышала предельно допустимого значения во всех условиях окружающей среды, при этом порог срабатывания порогового устройства регулируют так, чтобы частота f превышений порогового уровня выбросами шумового процесса находилась в пределах причем, где - квадрат неумножаемого шумового тока фотодиода, приведенного к его выходу; квадрат умножаемого шумового тока; е - заряд электрона; I - первичный обратный ток фотодиода; Δf - полоса пропускания линейного тракта до входа порогового устройства; М - коэффициент лавинного умножения; α - коэффициент, определяемый материалом фотодиода; f и f - нижняя и верхняя границы допуска на частоту f, а величину f=N/T определяют путем подсчета количества N стандартных выходных импульсов за предварительно заданное время Т.
Источник поступления информации: Роспатент

Showing 31-40 of 71 items.
24.10.2019
№219.017.d9b1

Лазер с поперечной диодной накачкой

Изобретение относится к лазерной технике, а именно к импульсным твердотельным лазерам. Лазер с поперечной диодной накачкой содержит активный элемент и параллельно расположенный источник накачки в виде линейки лазерных диодов. В состав введены два отражателя, установленных вдоль продольной оси...
Тип: Изобретение
Номер охранного документа: 0002703934
Дата охранного документа: 22.10.2019
09.02.2020
№220.018.0155

Способ проверки вероятности достоверных измерений

Изобретение относится к технике измерений при воздействии помех, например, в лазерной дальнометрии или в системах охранной сигнализации. Способ проверки вероятности р достоверных измерений прибора, заключающийся в n-кратном повторении измерений, определении количества m недостоверных измерений...
Тип: Изобретение
Номер охранного документа: 0002713720
Дата охранного документа: 06.02.2020
13.02.2020
№220.018.0251

Способ изготовления окисной пленки холодного катода газового лазера в тлеющем разряде постоянного тока

Изобретение относится к области квантовой электроники и может быть использовано при изготовлении газоразрядных приборов, в частности холодных катодов моноблочных газовых лазеров. Технический результат, заключающийся в расширении области применения способа с целью обеспечения повышенной...
Тип: Изобретение
Номер охранного документа: 0002713915
Дата охранного документа: 11.02.2020
23.02.2020
№220.018.0501

Активный элемент твердотельного лазера

Изобретение относится к лазерной технике, в частности, к твердотельным лазерам. Активный элемент твердотельного лазера представляет собой легированный активирующей примесью оптический стержень, на внешней поверхности стержня вдоль всей его длины выполнена канавка с минимально возможной шириной...
Тип: Изобретение
Номер охранного документа: 0002714863
Дата охранного документа: 19.02.2020
29.02.2020
№220.018.0723

Способ контроля вероятности достоверных измерений

Изобретение относится к технике обнаружения сигналов при воздействии помех, например, в лазерной дальнометрии или в системах охранной сигнализации. Техническим результатом является сокращение объема испытаний при обеспечении необходимой надежности оценки вероятности недостоверных измерений....
Тип: Изобретение
Номер охранного документа: 0002715167
Дата охранного документа: 25.02.2020
17.04.2020
№220.018.1517

Способ автоматической стабилизации частоты пересечения порогового уровня выбросами шумового процесса

Изобретение относится к приему сигналов, в частности к технике выделения сигналов из шума. Технический результат изобретения заключается в сокращении времени выхода на рабочий режим порогового обнаружителя сигналов при обеспечении максимальной вероятности обнаружения сигнала. Согласно...
Тип: Изобретение
Номер охранного документа: 0002718856
Дата охранного документа: 15.04.2020
20.05.2020
№220.018.1e1c

Пороговое устройство с шумовой стабилизацией порога

Изобретение относится к приему сигналов, в частности к технике выделения сигналов из шума. Технический результат изобретения заключается в сокращении времени выхода на рабочий режим. В пороговое устройство с шумовой стабилизацией порога, содержащее пороговое устройство с сигнальным и...
Тип: Изобретение
Номер охранного документа: 0002721174
Дата охранного документа: 18.05.2020
04.06.2020
№220.018.23e9

Способ измерения профиля поверхности оптических деталей с помощью лазерной фазосдвигающей интерферометрии

Изобретение относится к области бесконтактных оптических измерений и может быть использовано для измерения профиля поверхности оптических деталей. Способ заключается в том, что формируют пучок непрерывного одномодового излучения лазера с длиной волны λ, делят его в интерферометре по схеме Физо...
Тип: Изобретение
Номер охранного документа: 0002722631
Дата охранного документа: 02.06.2020
24.06.2020
№220.018.29b1

Система регулировки периметра зеемановского лазерного гироскопа

Изобретение относится к гироскопам и измерительной технике и может быть использовано для регулировки периметра зеемановского лазерного гироскопа. Система регулировки периметра зеемановского лазерного гироскопа дополнительно содержит включенные в кольцевой лазер второе зеркало с пьезоприводом и...
Тип: Изобретение
Номер охранного документа: 0002724242
Дата охранного документа: 22.06.2020
25.06.2020
№220.018.2b4f

Способ десинхронизации динамических зон на частотной характеристике лазерного гироскопа

Изобретение относится к лазерной технике, а именно к лазерной гироскопии. Способ десинхронизации динамических зон на частотной характеристике лазерного гироскопа включает создание быстрой знакопеременной частотной подставки с амплитудой, многократно превышающей ширину зоны захвата, и периодом...
Тип: Изобретение
Номер охранного документа: 0002724306
Дата охранного документа: 22.06.2020
Showing 31-40 of 97 items.
25.08.2017
№217.015.ce0e

Лазерный дальномер

Изобретение относится к лазерной технике, а именно к лазерной дальнометрии. Лазерный дальномер содержит приемное устройство, включающее приемный объектив и фотоприемник, и передающее устройство, включающее объектив и два лазерных излучателя, выходные пучки излучения которых поляризованы и...
Тип: Изобретение
Номер охранного документа: 0002620765
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.ceda

Лазерный дальномер с оптическим сумматором излучения

Изобретение относится к лазерной дальнометрии. Лазерный дальномер с оптическим сумматором излучения содержит приемное устройство и передающее устройство, включающее объектив и два излучателя в виде полупроводниковых лазерных диодов, выходные пучки излучения которых поляризованы и совмещены с...
Тип: Изобретение
Номер охранного документа: 0002620768
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.d351

Лазерный дальномер с сумматором зондирующих пучков

Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии. Лазерный дальномер с сумматором зондирующих пучков содержит приемное устройство и передающее устройство, включающее объектив и два лазерных излучателя со взаимно параллельными излучающими площадками, выходные...
Тип: Изобретение
Номер охранного документа: 0002621476
Дата охранного документа: 06.06.2017
26.08.2017
№217.015.d48d

Дальномер с комбинированным лазерным полупроводниковым излучателем

Изобретение относится к лазерной дальнометрии. Лазерный дальномер с комбинированным лазерным полупроводниковым излучателем содержит приемное устройство и передающее устройство, включающее объектив и раздельно размещенные лазерные излучатели, выполненные в виде полупроводникового лазерного...
Тип: Изобретение
Номер охранного документа: 0002622229
Дата охранного документа: 13.06.2017
26.08.2017
№217.015.da1b

Лазер с продольной накачкой

Изобретение относится к лазерной технике. Лазер с продольной накачкой содержит источник излучения накачки, активный элемент, установленный внутри резонатора, включающего глухое и полупрозрачное зеркала. Активный элемент выполнен в виде стержня, по крайней мере один из торцов которого скошен...
Тип: Изобретение
Номер охранного документа: 0002623688
Дата охранного документа: 28.06.2017
26.08.2017
№217.015.da32

Лазер

Изобретение относится к лазерной технике. Лазер содержит активный элемент, выполненный в виде стержня, по крайней мере один из торцов которого скошен относительно его продольной оси так, что угол между нормалью к торцу и продольной осью активного элемента превышает предельный угол полного...
Тип: Изобретение
Номер охранного документа: 0002623810
Дата охранного документа: 29.06.2017
29.12.2017
№217.015.f680

Твердотельный лазер

Изобретение относится к лазерной технике. Твердотельный лазер содержит источник излучения накачки, активный элемент, установленный внутри резонатора, включающего глухое и полупрозрачное зеркала. Активный элемент выполнен в виде стержня, по крайней мере один из торцов которого скошен так, что...
Тип: Изобретение
Номер охранного документа: 0002635400
Дата охранного документа: 13.11.2017
19.01.2018
№218.016.00bc

Лазерный измеритель дальности с оптическим сумматором

Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии. Лазерный измеритель дальности с оптическим сумматором содержит приемное устройство и передающее устройство, включающее объектив и два излучателя в виде полупроводниковых лазерных диодов, выходные пучки...
Тип: Изобретение
Номер охранного документа: 0002629684
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.00cd

Импульсный твердотельный лазер

Изобретение относится к лазерной технике. Импульсный твердотельный лазер содержит активный элемент, выполненный в виде стержня, оба торца которого скошены так, что угол между нормалью к поверхности торца и продольной осью активного элемента превышает предельный угол полного внутреннего...
Тип: Изобретение
Номер охранного документа: 0002629685
Дата охранного документа: 31.08.2017
20.01.2018
№218.016.19ab

Твердотельный лазер с модуляцией добротности

Изобретение относится к лазерной технике. Твердотельный лазер с модуляцией добротности содержит источник излучения накачки в виде лазерной диодной матрицы, активный элемент, первое и второе зеркала резонатора, а также электрооптический элемент и поляризатор, активный элемент выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002636260
Дата охранного документа: 21.11.2017
+ добавить свой РИД