×
16.05.2023
223.018.606e

Результат интеллектуальной деятельности: КОНЦЕНТРАТОРНАЯ СОЛНЕЧНАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА

Вид РИД

Изобретение

Аннотация: Концентраторная солнечная энергетическая установка содержит основание (1) с размещенной на нем солнечной батареей (2), набранной из рядов концентраторных фотоэлектрических модулей (3) с корпусами (4) прямоугольной или квадратной формы с отбортовками (5) для прикрепления силиконом-герметиком (6) панелей (7) из линз (8) Френеля и с фотоэлектрическими преобразователями (9), размещенными в фокусах линз (8) Френеля. Основание (1) установлено на механической системе (10) ориентации на Солнце, содержащей приводы зенитального и азимутального вращения и систему слежения, оснащенную датчиками положения Солнца. Концентраторные фотоэлектрические модули (3) сопряжены внахлест отбортовками (5) по высоте в шахматном порядке. При этом в крайнем ряду концентраторных фотоэлектрических модулей (3) и в рядах концентраторных фотоэлектрических модулей (3), параллельных крайнему ряду, отбортовки (5) соседних вдоль ряда концентраторных фотоэлектрических модулей (3) сопряжены внахлест вплотную. В рядах концентраторных модулей (3), перпендикулярных этому крайнему ряду, отбортовки (5) соседних вдоль ряда концентраторных фотоэлектрических модулей (3) отстоят по высоте друг от друга на расстоянии Н, по меньшей мере равном суммарной толщине отбортовки (5), силикона-герметика (6) и панели (7) из линз (8) Френеля. Концентраторная солнечная энергетическая установка обладает высокими фотоэлектрическими характеристиками и позволяет увеличить энергосъем с единицы площади концентраторной солнечной энергетической установки. 1 з.п. ф-лы, 4 ил.

Изобретение относится к солнечной энергетике, в частности к солнечным энергетическим установкам, предназначенным для выработки электроэнергии путем фотоэлектрического преобразования солнечной энергии.

Одним из наиболее перспективных методов солнечной энергетики является фотоэлектрическое преобразование концентрированного солнечного излучения с использованием высокоэффективных каскадных солнечных элементов и недорогих оптических концентраторов. Использование каскадных солнечных элементов делает возможным поднять энергетическую эффективность фотоэлектрических модулей. Применение концентраторов излучения, при условии согласования их параметров с параметрами солнечных элементов, позволяет улучшить их энергоэкономические показатели за счет уменьшения расхода дорогостоящих полупроводниковых материалов.

Известна солнечная энергетическая установка (см. патент RU 2405231, МПК H01L 31/042, опубликован 27.11.2010), включающая в себя систему солнечных модулей, которая содержит множество размещенных в одной плоскости солнечных модулей для преобразования солнечного излучения в электрическую энергию, и регулирующее устройство для позиционирования, в зависимости от положения Солнца. Система солнечных модулей установлена с возможностью поворота вокруг, по меньшей мере, одной оси поворота. Край солнечных модулей установлен, по меньшей мере, частично в J-образном удерживающем профиле. J-образный удерживающий профиль имеет горшкообразный стабилизирующий участок и пазовый участок для позиционирования края солнечного модуля. Стабилизирующий участок имеет основание и проходящую от стенки основания первую и вторую боковые стенки, которые находятся на таком расстоянии друг от друга и/или имеют такую высоту, величина которых больше, чем половина толщины солнечного модуля.

Известна солнечная энергетическая установка имеет низкий удельный энергосъем из-за отсутствия концентраторных элементов.

Известна солнечная фотоэлектрическая установка (см патент RU 47497, МПК F24J 2/42, опубликован 27.08.2005), содержащая солнечную батарею с линзами Френеля и принимающими излучение фотоэлектрическими преобразователями, размещенную на механической системе, поддерживающей перпендикулярное положение солнечной батареи к направлению на Солнце, и оснащенную системой ориентации солнечной батареи на Солнце, Поддерживающая механическая система образована двумя рамами - базовой и подвешенной, из которых базовая рама установлена с возможностью вращения вокруг вертикальной оси, а подвешенная рама установлена с возможностью вращения вокруг горизонтальной оси. Сама солнечная батарея состоит из модулей с солнечными концентраторами, расположенных на подвешенной раме в виде ступеней.

В известной солнечной фотоэлектрической установке имеются большие площади нефотоактивной области, что ведет к низкому удельному энергосъему.

Известна фотоэлектрическая энергетическая установка (см. патент US 8697983, МПК HOIL 3L/042, опубликован 15.04.2014), включающая множество фотоэлектрических концентраторных модулей, собранных в двухмерном массиве, где каждый фотоэлектрический концентраторный модуль содержит корпус, имеющий основание и множество боковых стенок, соединенных с основанием; механизм перемещения, который может поворачивать и перемещать фотоэлектрический концентраторный модуль вокруг двух осей относительно монтажной плиты, чтобы обеспечить максимальный прием падающего солнечного света для каждого фотоэлектрического элемента концентраторного модуля.

Недостатком фотоэлектрической энергетической установки является сложность системы юстировки, обеспечивающей поворот вокруг двух осей и перемещение каждого фотоэлектрического концентраторного модуля, и, как следствие этого, высокая стоимость конструкции.

Известна сборка фотоэлектрических модулей (см. патент US 9917224, МПК H01L 31/0232, H01L 21/683, H01L 31/052, опубликован 13.03.2018), каждый из которых имеет заднюю панель с установленными концентраторными фотовольтаическими приемниками. Каждый концентраторный фотовольтаический приемник закреплен на теплоотводящей плате, соединенной с теплоотводящей системой для передачи тепла на теплоотвод в 2-10 раз большей площади, установленный на наружной стороне задней панели и способный рассеять по меньшей мере 50% тепловой энергии, проводимой от указанной части подложки концентраторного фотовольтаического приемника.

В известной сборке фотоэлектрических модулей имеются большие площади нефотоактивных областей, что ведет к низкому удельному энергосъему при преобразовании солнечного излучения.

Известно матричное фокусирующее фотоэлектрическое энергогенерирующее устройство (см. заявка CN 106100558, МПК H02S 20/32, H02S 40/22, опубликована 11.09.2016), которое содержит опору и корпус для крепления групп фотоэлектрических концентраторных модулей для преобразования солнечной энергии в электрическую. Каждый фотоэлектрический концентраторный модуль в группе содержит чип фотоэлемента, над чипом фотоэлемента установлен объемный фокон для фокусировки света на чипе фотоэлемента. Над фоконом расположена линза Френеля для фокусировки света на фокон. Каждая группа фотоэлектрических концентраторных модулей содержит механизм фокусировки, позволяющий поворачивать группу модулей по двум осям для осуществления ориентации модулей на Солнце.

Недостатками известного матричного фокусирующего фотоэлектрического энергогенерирующего устройства являются увеличенная доля несветоактивной площади энергогенерирующего устройства, технические сложности изготовления, монтажа и юстировки большого количества оптических деталей и, как следствие этого, высокая стоимость конструкции.

Известна концентраторная солнечная энергетическая установка (см. патент US 9287430, МПК H01L 31/042, H01L 31/054, опубликован 15.03.2016), содержащая установленные на раме концентраторы круглой формы, каждый из которых содержит многокаскадный солнечный элемент и расположенную над ним линзу, фокусирующую солнечный свет на солнечный элемент. Пьезоэлектрические приводы наклоняют или переводят каждую линзу для отслеживания Солнца с помощью схемы управления с обратной связью, которая реагирует на величину электричества, вырабатываемого одним или несколькими солнечными элементами.

Недостатком известной концентраторной солнечной энергетической установки является низкое отношение фотоактивных площадей к общей площади концентраторной установки, вследствие больших зазоров между линзами круглой формы, фокусирующих излучение на солнечные элементы, и вследствие этого низкий удельный энергосъем установки.

Известна установка концентрирования солнечной энергии (см. патент US 9236516, МПК H01L 31/054, H01L 31/042, Н025 20/32, H01L 31/052, H01L 31/023 опубликован 12.01.2016), содержащая закрепленные на прямоугольной опорной раме модули с принимающими излучение фотоэлектрическими преобразователями. Каждый модуль содержат трубчатый корпус, имеющий открытый конец для приема солнечных лучей, которые затем отражаются от зеркального конуса, расположенного соосно внутри трубчатого корпуса, на солнечные элементы, облицовывающие внутреннюю поверхность корпуса. Система ориентации модулей, включающая три рамы, соединенные поворотными шарнирами, и линейные приводы осуществляет поворот и ориентацию модулей для максимального падения отраженных солнечных лучей на солнечные элементы.

К недостаткам известной установки концентрирования солнечной энергии следует отнести низкую эффективность преобразования излучения солнечными элементами вследствие невысокого уровня концентрации солнечного излучения и недостаточную общую энергоэффективность установки вследствие большой площади нефотоактивной области фотоэлектрической установки, обусловленную большими зазорами между трубчатыми корпусами модулей круглой формы.

Известна концентраторная солнечная энергетическая установка (патент RU 2286517 МПК 7 F24J 2/42, опубликован 27.10.2006), включающая солнечную батарею, набранную из концентраторных фотоэлектрических модулей с прямоугольными корпусами, содержащих фотоэлектрические преобразователи, находящиеся в фокусах линз Френеля, размещенную на механической системе ориентации на Солнце, содержащей приводы зенитального и азимутального вращения, снабженные шаговыми мотор-редукторами, систему слежения, оснащенную датчиками положения Солнца. Механическая система включает две рамы - базовую, вращающуюся вокруг вертикальной оси и подвешенную, с закрепленными концентраторными фотоэлектрическими модулями, обеспечивающую поворот вокруг горизонтальной оси.

Известная концентраторная солнечная энергетическая установка имеет недостаточную общую энергоэффективность вследствие большой площади нефотоактивной области фотоэлектрической установки, увеличивающей общую площадь фотоэлектрической установки.

Известна концентраторная солнечная энергетическая установка (см. патент US 8697983, МПК H01L 31/042, опублик. 15.04.2014), совпадающая с настоящим техническим решением по наибольшему числу существенных признаков и принятая за прототип. Установка-прототип содержит основание с размещенной на нем солнечной батарей, набранной из рядов концентраторных фотоэлектрических модулей с прямоугольными корпусами, содержащих панели из линз Френеля и фотоэлектрические преобразователи, находящиеся в фокусах линз Френеля. Прямоугольные корпуса концентраторных фотоэлектрических модулей снабжены отбортовками, к которым прикреплены прямоугольные панели из линз Френеля. Фотоэлектрические модули установлены на общем основании в виде балки с зазорами друг от друга, необходимыми для обеспечения их поворота вокруг оси, перпендикулярной оси балки. Основание и фотоэлектрические модули снабжены механической системой ориентации на Солнце, содержащей приводы зенитального и азимутального вращения, и системой слежения, оснащенной датчиками положения Солнца.

Известная концентраторная солнечная энергетическая установка имеет недостаточную общую энергоэффективность вследствие большой площади нефотоактивной области фотоэлектрической установки, обусловленной большими зазорами между соседними концентраторными модулями, что снижает удельный энергосъем установки.

Задачей заявляемого технического решения является разработка концентраторной солнечной энергетической установки на основе концентраторных фотоэлектрических модулей, позволяющей увеличить удельный энергосъем при преобразования солнечного излучения в электроэнергию за счет уменьшения площадей нефотоактивных областей концентраторной солнечной энергетической установки.

Поставленная задача решается тем, что концентраторная солнечная энергетическая установка, содержит основание с размещенной на нем солнечной батарей, набранной из рядов концентраторных фотоэлектрических модулей с прямоугольными корпусами с отбортовками для прикрепления силиконом-герметиком панелей из линз Френеля и с фотоэлектрическими преобразователями, размещенными в фокусах линз Френеля. Основание установлено на механической системе ориентации на Солнце, содержащей приводы зенитального и азимутального вращения, и систему слежения, оснащенную датчиками положения Солнца. Новым в концентраторной солнечной энергетическая установке является то, что концентраторные фотоэлектрические модули сопряжены внахлест отбортовками по высоте в шахматном порядке, при этом в крайнем ряду концентраторных модулей и в рядах концентраторных модулей, параллельных крайнему ряду, отбортовки соседних вдоль ряда концентраторных модулей сопряжены внахлест вплотную, а в перпендикулярных им рядах концентраторных модулей отбортовки соседних вдоль ряда концентраторных модулей отстоят по высоте друг от друга на расстоянии Н, по меньшей мере равном суммарной толщине отбортовки, сил икона-герметика и панели из линз Френеля.

Корпуса концентраторных фотоэлектрических модулей могут быть выполнены в форме квадрата.

Сущность настоящего технического решения поясняется чертежами, где:

на фиг. 1 приведен общий вид концентраторной солнечной энергетической установки с размещенными на основании концентраторными фотоэлектрическими модулями;

на фиг. 2 схематично изображено в аксонометрии взаимное расположение концентраторных фотоэлектрических модулей, установленных на основании в солнечной батарее концентраторной солнечной энергетической установки;

на фиг. 3 схематично показан вид сбоку на расположение соседних концентраторных модулей в крайнем ряду солнечной батареи концентраторной солнечной энергетической установки;

на фиг. 4 схематично изображен вид сбоку на расположение соседних концентраторных модулей в ряду солнечной батареи концентраторной солнечной энергетической установки.

Настоящая концентраторная солнечная энергетическая установка (см. фиг. 1-4) содержит основание 1 с размещенной на нем солнечной батарей 2, набранной из рядов концентраторных фотоэлектрических модулей 3 с корпусами 4 прямоугольной или квадратной формы с отбортовками 5 для прикрепления силиконом-герметиком 6 панелей 7 из линз 8 Френеля и с фотоэлектрическими преобразователями 9, размещенными в фокусах линз 8 Френеля. Основание 1 установлено на механической системе 10 ориентации на Солнце, содержащей приводы зенитального и азимутального вращения, и систему слежения, оснащенную датчиками положения Солнца (на чертеже не показаны). Концентраторные фотоэлектрические модули 3 сопряжены внахлест отбортовками 5 по высоте в шахматном порядке (см. фиг. 2-4). При этом в крайнем ряду концентраторных модулей 3 (см. фиг. 3) и в рядах концентраторных модулей 3, параллельных крайнему ряду, отбортовки 5 соседних вдоль ряда концентраторных модулей 3 сопряжены внахлест вплотную. В рядах концентраторных фотоэлектрических модулей 3, перпендикулярных (см. фиг. 4) этому крайнему ряду, отбортовки 5 соседних вдоль ряда концентраторных фотоэлектрических модулей 3 отстоят по высоте друг от друга на расстоянии Н, по меньшей мере равном суммарной толщине отбортовки 5, силикона-герметика 6 и панели 7 из линз 8 Френеля.

При работе настоящей концентраторной солнечной энергетической установки, механическая система 10 ориентации на Солнце с помощью приводов зенитального и азимутального вращения в соответствии с командами системы слежения, оснащенной датчиками положения Солнца, ориентирует основание 1 с размещенной на нем солнечной батарей 2, набранной из рядов концентраторных фотоэлектрических модулей 3 в положение, когда панели 7 из линз 8 Френеля установлены перпендикулярно направлению на Солнце. Солнечное излучение, попадающее на входную апертуру панелей 7 из линз 8 Френеля, фокусируется линзами 8 на фотоактивные поверхности фотоэлектрических преобразователей 9, Фотоэлектрические преобразователи 9 преобразуют энергию квантов света в электрическую, создавая разность потенциалов на своих контактах. Вырабатываемая концентраторными фотоэлектрическими модулями 3 электроэнергия подается к внешнему потребителю или накопителю электроэнергии.

Сопряжение соседних концентраторных фотоэлектрических модулей 3 отбортовками 5 внахлест позволяет сократить расстояния между краями линз 8 Френеля, образующих фотоактивные поверхности панелей 7, по сравнению с сопряжением соседних концентраторных фотоэлектрических модулей 3 краями отбортовок 5 встык и, соответственно, уменьшить нефотоантивную площадь солнечной батареи 2 до 1,9 раз. Сопряжение соседних концентраторных фотоэлектрических модулей 3 отбортовками 5 внахлест и по высоте в шахматном порядке, причем в крайнем ряду концентраторных фотоэлектрических модулей 3 и в рядах концентраторных фотоэлектрических модулей 3, параллельных крайнему ряду, сопряжение отбортовками 5 соседних вдоль ряда концентраторных фотоэлектрических модулей 3 внахлест вплотную, а в рядах концентраторных фотоэлектрических модулей 3, перпендикулярных этому крайнему ряду, сопряжение отбортовками 5 соседних вдоль ряда концентраторных фотоэлектрических модулей 3, отстоящими по высоте друг от друга на расстоянии Н, равном суммарной толщине отбортовки 5, силикона-герметика 6 и панели 7 из линз 8 Френеля позволяет минимизировать общую толщину солнечной батареи 2, размещенной на основании 1.

Пример 1. Была изготовлена концентраторная солнечная энергетическая установка, содержащая основание, установленное на механической системе ориентации на Солнце, с приводами зенитального и азимутального вращения, и систему слежения, оснащенную датчиками положения Солнца. На основании была размещена солнечная батарея, набранная из 13 рядов по 10 концентраторных фотоэлектрических модулей с прямоугольными корпусами с отбортовками. Каждый модуль содержал линзовую панель размерами 0,372×0,492 м2, состоящую из 48 линз Френеля размерами 60×60 мм2 с фокусным расстоянием 110 мм, отлитых из силикона на прямоугольном стеклянном листе толщиной 4 мм. Размеры фотоактивной области линзовой панели составляли 0,36×0,48 м2. Ширина отбортовок концентраторных фотоэлектрических модулей составляла 6 мм, толщина отбортовок - 1 мм. Прямоугольные панели из линз Френеля были приклеены к отбортовкам корпусов модулей силиконом-герметиком толщиной 0,3 мм. Концентраторные фотоэлектрические модули были сопряжены внахлест отбортовками по высоте в шахматном порядке, при этом в крайнем ряду концентраторных фотоэлектрических модулей, расположенном вдоль длинной стороны линзовой панели 0,492 м, и в рядах концентраторных фотоэлектрических модулей, параллельных крайнему ряду, отбортовки соседних вдоль ряда концентраторных фотоэлектрических модулей сопряжены внахлест вплотную, а в рядах концентраторных фотоэлектрических модулей, перпендикулярных этому крайнему ряду, отбортовки соседних вдоль ряда концентраторных фотоэлектрических модулей отстоят по высоте друг от друга на расстоянии H=5,3 мм. Общая площадь солнечной батареи из концентраторных фотоэлектрических модулей составляла 23,28 м2, а суммарная площадь фотоактивных поверхностей линзовых панелей составляла 22,46 м2. Нефотоактивная площадь солнечной батареи составляла 0,82 м2, что в 1,62 раза меньше, чем в конструкции концентраторной солнечной энергетической установки с пленарным размещением концентраторных фотоэлектрических модулей такой же конфигурации с сопряжением соседних концентраторных фотоэлектрических модулей краями отбортовок встык. Проведенные измерения показали, что эффективность преобразования солнечного излучения фотоактивной поверхностью линзовых панелей равна 32%, что обеспечивало достижение генерированной электрической мощности концентраторной солнечной энергетической установки 5,75 кВт. Удельный энергосъем концентраторной солнечной энергетической установки составлял 247 Вт/м2, что на 2,2% выше, чем в концентраторной солнечной энергетической установке с солнечной батареей планарной конструкции. Потери мощности солнечного излучения, падающего на поверхность солнечной батареи, но не достигающего фотоактивных поверхностей концентраторной солнечной энергетической установки, составляли 3,5%, что в 1,6 раза меньше чем в концентраторной солнечной энергетической установке с пленарным размещением модулей. Общая площадь солнечной батареи настоящей концентраторной солнечной энергетической установки на 2,2% меньше общей площади солнечной батареи планарной конструкции.

Пример 2. Была изготовлена концентраторная солнечная энергетическая установка содержащая основание, установленное на механической системе ориентации на Солнце, с приводами зенитального и азимутального вращения, и систему слежения, оснащенную датчиками положения Солнца. На основании была размещена солнечная батарея, набранная из 20 рядов по 20 концентраторных фотоэлектрических модулей с прямоугольными корпусами с отбортовками. Каждый модуль содержал линзовую панель размерами 0,51×0,57 м2, состоящую из 72 линз Френеля размерами 60×60 мм2 с фокусным расстоянием 110 мм, отлитых из силикона на прямоугольном стеклянном листе толщиной 4 мм. Размеры фотоактивной области линзовой панели составляли 0,48×0,54 м2. Ширина отбортовок концентраторных фотоэлектрических модулей составляла 15 мм, толщина отбортовок - 1 мм. Прямоугольные панели из линз Френеля были приклеены к отбортовкам корпусов модулей силиконом-герметиком толщиной 0,3 мм. Концентраторные фотоэлектрические модули были сопряжены внахлест отбортовками по высоте в шахматном порядке, при этом в крайнем ряду концентраторных фотоэлектрических модулей, расположенном вдоль длинной стороны линзовой панели 0,57 м, и в рядах концентраторных фотоэлектрических модулей, параллельных крайнему ряду, отбортовки соседних вдоль ряда концентраторных модулей сопряжены внахлест вплотную, а в рядах концентраторных модулей, перпендикулярных этому крайнему ряду, отбортовки соседних вдоль ряда концентраторных модулей отстояли по высоте друг от друга на расстоянии H=5,3 мм. Общая площадь солнечной батареи из концентраторных фотоэлектрических модулей составляла 110,61 м2, а суммарная площадь фотоактивных поверхностей линзовых панелей составляла 103,68 м2. Нефотоактивная площадь солнечной батареи составляла 6,92 м2, что в 1,84 раза меньше, чем в конструкции концентраторной солнечной энергетической установки с пленарным размещением концентраторных фотоэлектрических модулей такой же конфигурации с сопряжением соседних концентраторных фотоэлектрических модулей краями отбортовок встык. Проведенные измерения показали, что эффективность преобразования солнечного излучения фотоактивной поверхностью линзовых панелей была равна 32%, что обеспечивало достижение генерированной электрической мощности концентраторной солнечной энергетической установкой 26,5 кВт. Удельный энергосъем концентраторной солнечной энергетической установки составлял 240 Вт/м2, что на 5,3% выше, чем в концентраторной солнечной энергетической установке с солнечной батареей планарной конструкции. Потери мощности солнечного излучения, падающего на поверхность солнечной батареи, но не достигающего фотоактивных поверхностей концентраторной солнечной энергетической установки, составляли 6,3%, что в 1,75 раза меньше, чем в концентраторной солнечной энергетической установке с пленарным размещением модулей. Общая площадь солнечной батареи настоящей концентраторной солнечной энергетической установки на 4,9% меньше общей площади солнечной батареи планарной конструкции.

Настоящее техническое решение концентраторной солнечной энергетической установки позволяет от 1,6 раз до 1,9 раз уменьшить нефотоактивные площади при приеме солнечного излучения, падающего на поверхность солнечной батареи концентраторной солнечной энергетической установки и уменьшить общую площадь концентраторной солнечной энергетической установки при сохранении суммарной площади линзовых панелей. Использование настоящей концентраторной солнечной энергетической установки, содержащей концентраторные фотоэлектрические модули, дает значительный экономический эффект, обусловленный тем, что концентраторная солнечная энергетическая установка обладает высокими фотоэлектрическими характеристиками и позволяет увеличить энергосъем с единицы площади концентраторной солнечной энергетической установки.

Мировой рынок солнечной энергетики составляет около 100 ГВт/год при общей стоимости солнечных установок около 200 млрд долларов/год. Потенциальный рынок концентраторных солнечных энергетических установок составляет порядка 10% суммарного рынка, т.е. около 10 ГВт/год (20 млрд долларов/год). При использовании настоящей конструкции концентраторных солнечных энергетических установок удельный энергосъем будет увеличен на 2-5%, что в денежном выражении обеспечит дополнительный доход от 400 млн до 1 млрд долларов в год.

Источник поступления информации: Роспатент

Showing 11-20 of 114 items.
20.10.2013
№216.012.773e

Топливный элемент и батарея топливных элементов

Изобретение относится к области электрохимической энергетики. Топливный элемент (1) включает мембранно-электродную сборку (2), к аноду которой примыкает упругая пластинчатая диэлектрическая прокладка из химически инертного материала (12), первая и вторая герметизирующие прокладки (5), (8). В...
Тип: Изобретение
Номер охранного документа: 0002496186
Дата охранного документа: 20.10.2013
27.01.2014
№216.012.9cf6

Способ получения слоя прозрачного проводящего оксида на стеклянной подложке

Изобретение относится к технологии тонкопленочных фотоэлектрических преобразователей с текстурированным слоем прозрачного проводящего оксида. Способ получения слоя прозрачного проводящего оксида на стеклянной подложке включает нанесение на стеклянную подложку слоя оксида цинка ZnO химическим...
Тип: Изобретение
Номер охранного документа: 0002505888
Дата охранного документа: 27.01.2014
10.05.2014
№216.012.c135

Концентраторный каскадный фотопреобразователь

Изобретение относится к полупроводниковым фотопреобразователям, в частности к концентраторным каскадным солнечным фотоэлементам, которые преобразуют концентрированное солнечное излучение в электроэнергию. Концентраторный каскадный фотопреобразователь содержит подложку (1) p-Ge, в которой создан...
Тип: Изобретение
Номер охранного документа: 0002515210
Дата охранного документа: 10.05.2014
20.07.2014
№216.012.dfe7

Способ отбраковки мощных светодиодов на основе ingan/gan

Изобретение относится к полупроводниковой технике. Способ включает измерение значения спектральной плотности низкочастотного шума каждого светодиода при подаче напряжения в прямом направлении и плотности тока из диапазона 0.1
Тип: Изобретение
Номер охранного документа: 0002523105
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e266

Активный материал для мазера с оптической накачкой и мазер с оптической накачкой

Изобретение относится к квантовой электронике. Активный материал для мазера с оптической накачкой содержит кристалл карбида кремния, содержащего парамагнитные вакансионные дефекты. Мазер с оптической накачкой включает генератор (1) сверхвысокой частоты (СВЧ), циркулятор (2), магнит (3), между...
Тип: Изобретение
Номер охранного документа: 0002523744
Дата охранного документа: 20.07.2014
10.09.2014
№216.012.f3f6

Способ изготовления каскадных солнечных элементов на основе полупроводниковой структуры galnp/galnas/ge

Способ изготовления каскадных солнечных элементов включает последовательное нанесение на фронтальную поверхность фоточувствительной полупроводниковой структуры GaInP/GaInAs/Ge пассивирующего слоя и контактного слоя GaAs, локальное удаление контактного слоя травлением через маску фоторезиста....
Тип: Изобретение
Номер охранного документа: 0002528277
Дата охранного документа: 10.09.2014
10.01.2015
№216.013.1d6b

Способ получения платинусодержащих катализаторов на наноуглеродных носителях

Изобретение относится к области водородной энергетики, а именно к разработке катализаторов для воздушно-водородных топливных элементов (ВВТЭ), в которых в качестве катализаторов можно использовать платинированные углеродные материалы. Способ получения платинусодержащих катализаторов на...
Тип: Изобретение
Номер охранного документа: 0002538959
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1dfa

Многопереходный солнечный элемент

Многопереходный солнечный элемент содержит подложку p-Ge (1), в которой создан нижний p-n переход (2), и последовательно выращенные на подложке нуклеационный слой (3) n-GaInP, буферный слой (4) n-GaInAs, нижний туннельный диод (5), средний p-n переход (6), содержащий слой тыльного...
Тип: Изобретение
Номер охранного документа: 0002539102
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.224c

Инжекционный лазер с многоволновым модулированным излучением

Использование: для управления лазерным излучением. Сущность изобретения заключается в том, что инжекционный лазер с многоволновым модулированным излучением на основе гетероструктуры содержит первый оптический Фабри-Перо резонатор, ограниченный с одной стороны первым отражателем, с другой...
Тип: Изобретение
Номер охранного документа: 0002540233
Дата охранного документа: 10.02.2015
10.04.2015
№216.013.3c9c

Способ изготовления фотопреобразователя на основе gaas

Изобретение относится к области изготовления фоточувствительных полупроводниковых приборов на основе GaAs, позволяющих преобразовывать мощное узкополосное излучение в электрическую энергию для энергоснабжения наземных и космических объектов. Способ изготовления фотопреобразователя на основе...
Тип: Изобретение
Номер охранного документа: 0002547004
Дата охранного документа: 10.04.2015
Showing 11-20 of 59 items.
10.09.2014
№216.012.f3f6

Способ изготовления каскадных солнечных элементов на основе полупроводниковой структуры galnp/galnas/ge

Способ изготовления каскадных солнечных элементов включает последовательное нанесение на фронтальную поверхность фоточувствительной полупроводниковой структуры GaInP/GaInAs/Ge пассивирующего слоя и контактного слоя GaAs, локальное удаление контактного слоя травлением через маску фоторезиста....
Тип: Изобретение
Номер охранного документа: 0002528277
Дата охранного документа: 10.09.2014
10.01.2015
№216.013.1dfa

Многопереходный солнечный элемент

Многопереходный солнечный элемент содержит подложку p-Ge (1), в которой создан нижний p-n переход (2), и последовательно выращенные на подложке нуклеационный слой (3) n-GaInP, буферный слой (4) n-GaInAs, нижний туннельный диод (5), средний p-n переход (6), содержащий слой тыльного...
Тип: Изобретение
Номер охранного документа: 0002539102
Дата охранного документа: 10.01.2015
10.04.2015
№216.013.3c9c

Способ изготовления фотопреобразователя на основе gaas

Изобретение относится к области изготовления фоточувствительных полупроводниковых приборов на основе GaAs, позволяющих преобразовывать мощное узкополосное излучение в электрическую энергию для энергоснабжения наземных и космических объектов. Способ изготовления фотопреобразователя на основе...
Тип: Изобретение
Номер охранного документа: 0002547004
Дата охранного документа: 10.04.2015
27.03.2016
№216.014.c751

Концентраторный солнечный фотоэлектрический модуль

Изобретение относится к области солнечной энергетики. Фотоэлектрический модуль (1) содержит боковые стенки (2), фронтальную панель (3) с линзами Френеля (4) на ее внутренней стороне, светопрозрачную тыльную панель (5), солнечные фотоэлементы (б) с байпасными диодами, планки (11), выполненные из...
Тип: Изобретение
Номер охранного документа: 0002578735
Дата охранного документа: 27.03.2016
27.02.2016
№216.014.ce4c

Способ изготовления фотопреобразователя на основе gasb

При изготовлении фотопреобразователя согласно изобретению на тыльной стороне подложки GaSb n-типа проводимости выращивают методом эпитаксии высоколегированный контактный слой n-GaSb, а на лицевой стороне подложки - буферный слой n-GaSb. Наносят на лицевую поверхность подложки диэлектрическую...
Тип: Изобретение
Номер охранного документа: 0002575972
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.ce65

Способ изготовления гетероструктурного солнечного элемента

Способ изготовления гетероструктурного солнечного элемента включает выращивание полупроводниковой гетероструктуры на германиевой подложке, создание омических контактов со стороны тыльной поверхности германиевой подложки и со стороны фронтальной поверхности гетероструктуры, нанесение...
Тип: Изобретение
Номер охранного документа: 0002575974
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.cf0a

Способ формирования многослойного омического контакта к прибору на основе арсенида галлия

Изобретение относится к технологии полупроводниковых приборов. Способ формирования многослойного омического контакта включает предварительное формирование фотолитографией маски из фоторезиста на поверхности арсенида галлия электронной проводимости, очистку свободной от маски поверхности...
Тип: Изобретение
Номер охранного документа: 0002575977
Дата охранного документа: 27.02.2016
10.04.2016
№216.015.2ccb

Система позиционирования и слежения за солнцем концентраторной фотоэнергоустановки

Система позиционирования и слежения за Солнцем концентраторнойфотоэнергоустановки, содержащая платформу с концентраторными каскадными модулями, подсистему азимутального вращения, подсистему зенитального вращения, силовой блок, блок управления положением платформы с блоком памяти, содержащий...
Тип: Изобретение
Номер охранного документа: 0002579169
Дата охранного документа: 10.04.2016
12.01.2017
№217.015.648e

Способ изготовления многопереходного солнечного элемента

Изобретение относится к солнечной энергетике и может быть использовано в электронной промышленности для преобразования световой энергии в электрическую. Способ изготовления многопереходного солнечного элемента согласно изобретению включает последовательное формирование субэлемента из Ge с p-n...
Тип: Изобретение
Номер охранного документа: 0002589464
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.919e

Фотоэлектрический преобразователь

Изобретение относится к электронной технике, а именно к фотоэлектрическим преобразователям солнечной энергии. Фотоэлектрический преобразователь на основе изотипной варизонной гетероструктуры из полупроводниковых соединений A3B5 и/или A2B6 содержит полупроводниковую подложку и изотипный с...
Тип: Изобретение
Номер охранного документа: 0002605839
Дата охранного документа: 27.12.2016
+ добавить свой РИД