×
20.07.2014
216.012.dfe7

СПОСОБ ОТБРАКОВКИ МОЩНЫХ СВЕТОДИОДОВ НА ОСНОВЕ InGaN/GaN

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к полупроводниковой технике. Способ включает измерение значения спектральной плотности низкочастотного шума каждого светодиода при подаче напряжения в прямом направлении и плотности тока из диапазона 0.1
Основные результаты: Способ отбраковки мощных светодиодов на основе InGaN/GaN, включающий измерение значения спектральной плотности низкочастотного шума светодиодов при подаче напряжения в прямом направлении и плотности тока J из интервала 0.1
Реферат Свернуть Развернуть

Изобретение относится к полупроводниковой технике, а именно к способам отбраковки мощных светодиодов на основе InGaN/GaN, излучающих в видимом диапазоне длин волн, предназначенных для применения в качестве твердотельных источников энергосберегающего освещения.

Наибольший практический интерес представляет способ отбраковки ненадежных мощных светодиодов на основе InGaN/GaN с укороченным сроком службы меньше 50000 часов. Необходимость в таком способе вызвана тем, что для решения проблем энергосберегающего освещения и рентабельности перехода на твердотельное освещение необходимы сроки службы светодиодов более 50000 часов. Кроме того, твердотельные энергосберегающие лампы состоят из 7-10 светодиодов, и преждевременный выход даже одного из них снижает срок службы всего изделия.

Известны способы отбраковки светодиодов по уровню токов утечки путем сравнения значений тока утечки светодиодов в партии между собой [Патент CN102004181, Method and system for testing leakage current of light-emitting diode (LED), SHANGHAI PEKING UNIVERSITY MICROELECTRONICS INST, CN 20101285715 20100917], или сравнения значений тока и напряжения при пропускании тока в прямом направлении [Патент TW 201035574, LED light bar inspection method and inspection apparatus thereof, CHROMA ATE INC [TW], TW 20090108607 20090317)]. Оба способа позволяют отбраковать светодиоды с отличающимися от основной массы светодиодов параметрами в условиях конкретного производства, без указания критерия по этим значениям, пригодного для применения в условиях других производств. Причем информация о сроке службы светодиодов не приводится.

Известны способы, позволяющие прогнозировать срок службы, т.е. с некоторой вероятностью определять средний срок службы светодиодов в партии, без отбраковки конкретных ненадежных светодиодов с укороченным сроком службы меньше 50000 часов. Эти способы имеют общие с предлагаемым способом операции и их последовательность, поэтому они были взяты в качестве аналога и прототипа.

Основные проблемы, возникающие при разработке способа отбраковки ненадежных мощных (синих) светодиодов на основе InGaN/GaN, с укороченным сроком службы меньше 50000 часов, практически такие же, как при прогнозировании срока службы. Они связаны с тем, что в отличие от светодиодов на основе традиционных полупроводниковых материалов развитие деградационного процесса в мощных (синих) светодиодах на основе InGaN/GaN плохо предсказуемо, особенно в первые 5000 часов, т. к. наблюдается волнообразное изменение значений внешней квантовой эффективности (L) во времени [Meneghesso G, Meneghini M and Zanoni E., J Phys D AppI Phys, 43, 2010, p 354007]. Причем для светодиодов даже из одной партии характер изменения может существенно отличаться. Кроме того, небольшая часть светодиодов, не отличающаяся по начальным значениям квантовой эффективности от большей части светодиодов из этой партии, может деградировать катастрофически. При этом за короткие времена работы, меньше 1000 часов, значения L внешней квантовой эффективности уменьшаются более чем на 30% относительно начальных, вплоть до полного выхода из строя. Эти особенности развития деградационного процесса в мощных InGaN/GaN (синих) светодиодах приводят к тому, что срок службы светодиодов из одной партии с близкими значениями внешней квантовой эффективности не эквивалентен времени старения контрольных светодиодов из этой партии.

Известно, что процесс старения этих светодиодов имеет три основных стадии: начальную стадию продолжительностью до 1000 и более часов, на которой наблюдается волнообразное изменение внешней квантовой эффективности (мощности) с колебаниями ±(5-7)%, относительно исходных значений, вторую стадию, с близкой к линейной скорости деградации, которая развивается до 10000 часов, и, наконец, третью стадию с экспоненциальным изменением значений внешней квантовой эффективности (мощности) в соответствии с известным соотношением.

В основе известных способов лежит прогнозирование среднего срока службы светодиодов, т.е. временного интервала работы светодиода в непрерывном режиме, при котором значения внешней квантовой эффективности (или мощности) составляют не ниже 70% от исходных значений (L70). При этом указывается вероятность, с которой прогнозируется средний срок службы, т.е. вероятность R(t) того, что светодиод будет работать в течение времени (t): R(t)=exp(-αt), где α - скорость деградации. Причем разброс значений не учитывается. Два явления определяют срок службы: сравнительно медленное снижение эффективности (или мощности) во времени и так называемый катастрофический выход из строя, т.е. значительное снижение эффективности, превышающее L70 за короткие времена старения, вплоть до отсутствия излучения. Оба явления дают вклад в средний срок службы. Причем первое в большей мере определяется свойствами чипа, т.е. полупроводникового материала, а второе, в большей мере, конструкцией и особенностями сборки. При проведении старения контролируют следующие параметры, влияющие на скорость развития процесса старения: TJ - температура p-n-перехода, Tb - температура окружающей среды, IF - ток через светодиод при прямом смещении (при подаче на светодиод напряжения в прямом направлении) или его плотность J, а также время старения и значения внешней квантовой эффективности до и после старения. Режимы старения задаются комбинацией параметров из следующих диапазонов значений: TJ=50-120°С, Tb=35-85°С, If=0.35-1A (соответствует плотности тока J=35-100 А/см2).

Известны способы определения (прогнозирования) срока службы мощных синих светодиодов, предложенные крупными фирмами. Наиболее полно они представлены на сайтах фирмы Cree (США) [Cree EZ™LEDs XLampXR-E lumen maintenance, http://www.cree.com] и фирмы Philips Lumileds (США) [http://www.philipslumileds.com], известных производителей мощных высокоэффективных синих светодиодов на основе InGaN/GaN, в том числе для твердотельного энергосберегающего освещения со сроком службы более 50000 часов. Причем для энергосберегающего освещения с целью получения белого свечения на крышку корпуса синих светодиодов наносится люминофор.

Способ определения срока службы мощных синих светодиодов, предложенный фирмой Cree [Cree EZ™LEDs XLampXR-E lumen maintenance, http://www.cree.com], взят в качестве аналога предлагаемого изобретения. Способ содержит следующую последовательность операций: измерение внешней квантовой эффективности светодиодов, проведение процесса старения светодиодов в течение 5000 часов в режиме, использующем комбинацию значений параметров TJ,Tb и IF из соответствующих диапазонов: TJ=50-120°С, Tb=35-85°С, If=0.35-1A (соответствует плотности тока J=35-100 А/см2), контроль значений Tj при фиксированных значениях Tb и If после 5000 часов; определение по этим измеренным экспериментально значениям TJ среднего прогнозируемого срока службы по уровню L70 из ранее полученных калибровочных зависимостей. Комплект калибровочных зависимостей среднего прогнозируемого срока службы по уровню L70 от TJ для нескольких комбинаций значений параметров Tb и If из соответствующих диапазонов значений, приведенных выше, представлен на сайте фирмы. Расчет этих зависимостей проведен на основе большого количества статистических данных на светодиодах этой фирмы. Причем при условии отсутствия катастрофических отказов, т.к. благодаря высокому уровню технологии роста и сборки, фирме удалось избавиться от таких отказов. Кроме того, в основу расчета положен экспериментальный факт, выявленный исследованиями фирмы, что только через 5000 часов старения наблюдаются установившиеся значения эффективности (мощности) и линейная зависимость снижения внешней квантовой эффективности (мощности) с дальнейшим увеличением времени старения. Эти установившиеся значения эффективности (мощности) используются для расчета в качестве исходных значений при определении скорости медленной составляющей развития процесса старения и уровня L70, а также достоверного определения прогнозируемого срока службы. Полученные зависимости практически непригодны для применения другими фирмами производителями. Параметр TJ определяется как TJ=Tsp+Rth VIF, где Tsp - температура дна корпуса, на котором размещен чип, Rth - тепловое сопротивление между p-n-переходом и дном корпуса, V - напряжение на светодиоде при прямом смещении, IF - ток через светодиод при прямом смещении. Значения Tsp и Rth определяются конструкцией корпуса и технологией сборки, и для разных фирм могут существенно отличаться.

В связи с этим очевидно, что полученные расчетные зависимости по экспериментальным данным фирмы непригодны для светодиодов, выращенных в других фирмах-производителях, что является серьезным недостатком способа (существенно ограничивается его применение). Способ неприменим при решении задач по разработке и усовершенствованию технологии роста светоизлучающих структур и сборки чипов, т.к. полученные зависимости не учитывают катастрофические отказы, от которых, как утверждает фирма Cree, практически избавились благодаря высокому уровню технологии роста и сборки. Кроме того, время старения 5000 часов не позволяет оперативно получить данные по сроку службы.

Известен способ определения срока службы (отбраковки) мощных синих светодиодов, предложенный фирмой Philips Lumileds (США) [статья Liftime Behavoire of LED Systems White Paper WP15, сайт http://www.philipslumileds.com], выбранный в качестве прототипа. В этом способе учтен вклад в срок службы катастрофических отказов и медленного развития старения до уровня эффективности (мощности) L70. Способ содержит следующую последовательность операций: измерение внешней квантовой эффективности контрольной группы светодиодов (100 шт.) из каждой партии; проведение процесса старения светодиодов в течение 1000 часов в режиме, использующем комбинацию значений параметров TJ, Tb и IF из соответствующих диапазонов: TJ=50-120°С, Tb=25-85°С, If=0.35-1A (соответствует плотности тока J=35-100 А/см2); измерение эффективности (мощности) контрольных светодиодов; определение вероятности отказов из экспериментальных данных о числе отказов в контрольной группе из 100 светодиодов из каждой партии после старения в течение 1000 часов, с учетом количества вышедших из строя светодиодов до 1000 часов и минимального времени работы этих светодиодов; определение по полученным значениям вероятности отказа среднего значения срока службы светодиодов при фиксированных значениях TJ, Tb, J, из ранее рассчитанных зависимостей, связывающих вероятность отказов и срок службы светодиодов по уровню L70. Расчетные зависимости учитывают оба явления (катастрофические отказы и медленное развитие старения). Если отказов за 1000 часов нет, то используется вероятность 0.5, отражающая средний уровень L70.

Основным недостатком способа является то, что срок службы определяется с некоторой вероятностью по контрольной группе светодиодов, а эквиваленты установлены на светодиодах, производимых этой фирмой. По существу, данные, полученные на контрольной группе при старении в течение 1000 часов, экстраполируются на всю партию и на порядки большие времена. Между тем, хорошо известно, что скорость развития деградационного процесса в InGaN/GaN светоизлучающих структурах существенно зависит от характера наноструктурной организации [Kamanin A.V., Kolmakov A.G., Kopev P.S., Onushkin G.A., Sakharov A.V., Shmidt N.M., Sizov D.S., Sitnikova A.A., Zakgeim A.L.and R.V. Zolotareva R.V., Usikov A.S., Degradation of blue LEDs related to structural disorder, Phys.stat.sol.(c) 3, 2129-2132 (2006)]. Этот параметр определяется не только выбором режима роста, но и особенностями ростовых установок, режимами роста зародышевого слоя, индивидуально подбираемого в каждой фирме для конкретной установки. Естественно ожидать неидентичности этого параметра для структур, выращенных на разных фирмах.

Этот способ с большой вероятностью прогнозирует срок службы в условиях конкретного производства, но его универсальность неочевидна. Выбранное время старения, равное 1000 часам, хотя и немалое, но недостаточное для достоверного определения срока службы (как показано фирмой Cree), т.к. скорость развития деградационного процесса на этом интервале времени нелинейна. Способ не позволяет отбраковать все ненадежные светодиоды с пониженным сроком службы, присутствующие в партии, а значит, возрастает угроза преждевременного отказа ламп.

Таким образом, способ не является оперативным, универсальным (подходящим для светодиодов разных фирм-производителей), прогнозы носят вероятностный характер. Для практики во многих случаях важно отбраковать ненадежные светодиоды с коротким сроком службы (менее 50000 часов) без долговременных испытаний, чтобы обеспечить больший срок службы ламп.

Предлагаемое изобретение решает задачи расширения области применения за счет обеспечения отбраковки светодиодов со сроком службы менее 50000 часов для светодиодов любых производителей, а также ускорения (оперативности) процесса отбраковки.

Задачи решаются способом отбраковки мощных светодиодов на основе InGaN/GaN, включающим измерение значения спектральной плотности низкочастотного шума светодиодов при подаче напряжения в прямом направлении и плотности тока J из интервала 0.1<J<10 А/см2, проведение процесса старения, осуществляемого в течение времени не менее 50 часов при температуре TJ p-n-перехода из интервала TJ=50-150°С, температуре Tb окружающей среды из интервала Tb=25-120°С, плотности тока J через светодиод при напряжении в прямом направлении из интервала J=35-100 А/см2, повторное измерение значения спектральной плотности низкочастотного шума светодиодов при упомянутых условиях и отбраковку светодиодов со сроком службы менее 50000 часов по превышению уровня спектральной плотности низкочастотного шума светодиодов после процесса старения более чем на порядок по сравнению с значением до процесса старения.

Решение задач основано на том, что используется контроль параметра, чувствительного к изменению состояния всей дефектной системы светодиода. Таким параметром является спектральная плотность низкочастотного шума. Известно, что этот параметр и его зависимость от плотности тока содержат интегральную информацию о состоянии дефектной системы, в том числе не только о единичных дефектах, но и о протяженных, таких как дислокации, их скопления и границы зерен [Г.П. Жигальский, УФН, 173, 465 (2003)]. Кроме того, в процессе старения наблюдается изменение спектральной плотности низкочастотного шума, и, как было показано на единичных мощных синих светодиодах, деградация внешней квантовой эффективности происходит быстрее на светодиодах с большими значениями спектральной плотности низкочастотного шума [Leung К. К., Fongm W.K., Chan P.KL and Surya С., J. Appl. Phys., 107, 2010, p.0731]. Однако никаких количественных критериев определения ненадежных мощных синих светодиодов по величине этого параметра до сих пор не было выявлено.

Авторами экспериментально установлено на светодиодах от разных фирм производителей (Cree, Lumileds, SemiLED) и с разным способом сборки, что зависимость спектральной плотности низкочастотного шума от плотности тока SJ (J) при подаче на светодиод напряжения в прямом направлении (прямом смещении) носит нелинейный характер в диапазоне плотностей тока J=10-3-20 А/см2 как на исходных светодиодах, так и после разных стадий процесса старения. Выявлено, что в диапазоне плотностей тока J=0.1-10 А/см2 зависимость SJ (J) становится слабой и приближается к SJ=const. [Закгейм А.Л.; Левинштейн М.Е.; Петров В.П.; Черняков А.Е.; Шабунина Е.И.; Шмидт Н.М., «Низкочастотный шум в исходных и деградировавших синих lnGaAs/GaN-светодиодах» ФТП, т.46, С.219-223 (2012)]. Появление этого участка, как установлено авторами, вызвано заполнением неравновесными носителями дефектных состояний и подавлением, таким образом, безызлучательной рекомбинации.

При разработке способа авторами было установлено, что по мере увеличения времени старения наблюдается рост плотности шума во всем диапазоне плотностей тока. При этом в области падающего нелинейного участка зависимостей SJ (J) после старения выявляется изменение диапазона плотностей тока, в котором этот участок наблюдается, относительно диапазона до старения. Причем эти изменения для разных светодиодов носят случайный характер. Диапазон плотностей тока, соответствующий участку слабой зависимости SJ (J), не изменяется после старения, так же как и вид слабой зависимости SJ, приближающейся к SJ=const. Благодаря этим свойствам этот стационарный участок SJ(J) в диапазоне плотностей тока 0.1<J<10 А/см2 был использован авторами для контроля за свойствами дефектной системы светодиодов на разных стадиях процесса старения по изменению значений SJ. Экспериментально установлено, путем сопоставления результатов долговременного старения и контроля значений SJ в диапазоне плотностей тока 0.1<J<10 А/см2, что рост шума более чем на порядок относительно исходных значений на этом участке после старения светодиодов в течение времени не менее 50 часов свидетельствует о необратимых изменениях свойств дефектной системы, т.к. такие светодиоды при дальнейшем увеличении времени старения начинают деградировать и имеют срок службы меньше 50000 часов.

Уменьшение плотности тока (до 0.1 А/см2 и менее) приводит в нелинейную область сильной зависимости уровня шума от плотности тока (т.е от концентрации неравновесных носителей) и не обеспечивает корректный контроль значений SJ. При плотности тока, равной или большей 10 А/см2, наблюдается экспериментально установленный рост уровня шума светодиодов как до, так и после старения, с сильно нелинейной зависимостью SJ~J3, при этом значения J, с которых начинается нарастание SJ, имеют разброс. Кроме того, при этих плотностях тока начинаются процессы локального перегрева, носящие случайный характер, и, следовательно, корректный контроль значений SJ обеспечить практически невозможно.

Установленное время проведения старения не менее 50 часов, необходимое для выявления ненадежных светодиодов, определено экспериментально. Эта граница, в силу специфики развития деградационного процесса в мощных синих InGaN/GaN светодиодах, нерезкая. На небольшой части светодиодов изменения свойств дефектной системы (рост уровня шума) начинают развиваться с 10 часов старения, но с увеличением времени добавляются все новые и новые светодиоды. Экспериментально на обширном статистическом материале результатов испытаний светодиодов от разных фирм установлено, что при 50 часах старения наступает насыщение, и количество светодиодов с избыточным уровнем шума не увеличивается при дальнейшем увеличении времени. Исходя из этих экспериментальных результатов, установлен временной интервал старения не менее 50 часов.

Следует отметить, что определение SJ проводится в общепринятом частотном диапазоне 1-10 Гц, т.к. на этих частотах вклад в шум вносят все типы дефектов, в том числе дефекты, связанные с различными неупорядоченностями, с межзеренными границами, с дислокациями и их скоплениями.

Способ осуществляют следующим образом.

Проводят измерение спектральной плотности низкочастотного шума SJ каждого светодиода при подаче на него напряжения в прямом направлении и плотности тока J из интервала 0.1<J<10 А/см2. Затем для проведения процесса старения все светодиоды помещают в камеру термостата при температуре Tb из интервала Tb=25-120°С, пропускают ток в прямом направлении плотностью J из интервала J=35-100 А/см2 и поддерживают температуру p-n-перехода TJ из интервала TJ=50-150°С. Процесс старения осуществляют в течение времени не менее 50 часов. Затем производят повторные измерения значений спектральной плотности низкочастотного шума светодиодов при тех же условиях, как и до старения: подаче на светодиоды напряжения в прямом направлении и плотности тока J из интервала 01<J<10 А/см2. Отбраковывают те светодиоды (со сроком службы менее 50000 часов, не годные), у которых значения спектральной плотности низкочастотного шума после процесса старения увеличены более чем на порядок по сравнению с значениями до процесса старения.

Пример 1

Для проверки предлагаемого способа на группах из 500 светодиодов фирмы Lumileds и из 400 светодиодов фирмы Cree, собранных в корпус и имеющих измеренные значения внешней квантовой эффективности 45% с разбросом ±2% при плотности тока 5 А/см2, были апробированы способ-прототип и предлагаемый способ.

В соответствии со способом-прототипом на 100 шт. светодиодов фирмы Lumileds и на 100 шт. светодиодов фирмы Cree был проведен процесс старения в режиме TJ=85°С, Tb=50°С, J=50 А/см2 в течение 1000 часов. Затем на каждом светодиоде в соответствии с международными стандартами были проведены измерения внешней квантовой эффективности при 5 А/см2.

На десяти из 100 светодиодов фирмы Lumileds наблюдалось снижение значений внешней квантовой эффективности до 30,5-29,0%, т.е ниже относительно исходных значений и уровня L70, причем за время старения 500-800 часов, что является катастрофическим отказом. Из этих данных была определена вероятность катастрофических отказов, равная 01, и по графику фирмы Lumileds определен средний прогнозируемый срок службы светодиодов при рабочей плотности тока 50 А/см2 этой партии - 80000 часов. Это означает, что для большей части светодиодов из этой партии можно прогнозировать срок службы более 50000 часов. Однако, при этом неизвестно, какие конкретно светодиоды являются ненадежными, с укороченным сроком службы. Долговременные испытания (до 10000 часов) показали, что после 1000 часов число светодиодов с катастрофическим отказом увеличилось до 14 светодиодов, на остальных значения внешней квантовой эффективности изменились меньше 3%, т.е, согласно данным фирмы Lumileds, это свидетельствует о сроке службы светодиодов более 50000 часов. Таким образом, прогноз среднего срока службы для светодиодов фирмы Lumileds достаточно достоверен, а экстраполяция данных по отказам за 1000 часов на большие времена занижена.

При применении способа-прототипа на 100 светодиодах фирмы Cree катастрофических отказов после 1000 часов старения не было выявлено, и, согласно способу-прототипу, в этом случае вероятность оценивается по уровню 0.9, и прогнозируется срок службы по графику - 170000 часов. Однако, в ходе долговременных испытаний до 10000 часов на трех светодиодах после разных временных интервалов (на двух после 2000 часов, на одном после 5000 часов) были зафиксированы катастрофические отказы. На остальных светодиодах значения внешней квантовой эффективности изменились меньше 2%, что, согласно данным фирмы Lumileds, свидетельствует о сроке службы светодиодов не меньше 150000 часов. Таким образом, прогноз среднего срока службы для светодиодов фирмы Cree, сделанный способом-прототипом, достоверен, а экстраполяция данных по отказам за 1000 часов на большие времена не соответствует действительности.

На остальных 400 светодиодах фирмы Lumileds из этой партии и 300 светодиодах фирмы Cree согласно предлагаемому способу проводилось измерение спектральной плотности низкочастотного шума SJ по общепринятой схеме и методике [Vilius Palenskis, Jonas Matukas.Sandra Pralgauskaite, Light-emitting diode ouality investigation via low-frequency noise characteristics, Solid-State Electronics 54 (2010), 781-786] на частоте 1 Гц, и были определены значения SJ при плотности тока 5 А/см2. Для измерения спектральной плотности низкочастотного шума SJ светодиодов использовался низко шумящий предусилитель SR-560, цифровой анализатор спектра SR-770 (FFT spectrum analyzer SR-770), определяющий значение спектральной плотности флуктуации напряжения Sv с помощью алгоритма быстрого преобразования Фурье. Анализатор спектра соединен с персональным компьютером интерфейсом RS-232. Обработка результатов осуществлялась по программе, написанной на базе пакета Lab View 7.0 и Origin 7.5. Каждый светодиод подключался последовательно с низко шумящим нагрузочным сопротивлением, величина которого изменялась от 50 Ом до 14 кОм, и малошумящим источником напряжения (6 В). Величина подаваемого на вход схемы смещения регулировалась переменным сопротивлением. Значения SJ для всех светодиодов при плотности тока 5 А/см2 лежали в узком интервале (3-4)10-17 2/Гц.

После измерений все светодиоды помещались в камеру термостата при температуре Tb=50°С, пропускался ток в прямом направлении плотностью J=50 А/см2 и поддерживалась температура p-n-перехода TJ=85°С, т.е. режим старения был такой же, как для 100 светодиодов по способу-прототипу, кроме времени старения, равного 50 часам. Большая часть светодиодов после старения имела значения SJ=(4-5)10-17 А2/Гц, близкие к значениям до старения. На небольшой части светодиодов фирмы Lumileds (58 штук) и трех светодиодах фирмы Cree наблюдалось увеличение уровня шума до SJ=(5-6)10-16 А2/Гц, т.е. больше чем на порядок относительно исходных значений. Для выяснения срока службы этих светодиодов с разными свойствами дефектной системы, выявившимися после времени старения 50 часов, было увеличено время старения до 10000 часов с контролем значений SJ при 5 А/см2 и внешней квантовой эффективности L после 500, 1000, 5000 и 10000 часов. Значения SJ после 10000 часов изменились в среднем не более чем в 2 раза на светодиодах, имевших значения SJ после 50 часов старения, близкие к исходным. Для сравнения с прототипом на этих же светодиодах контролировались значения внешней квантовой эффективности. При этом изменений значений внешней квантовой эффективности не наблюдалось, либо они были меньше 3% от исходных значений, т.е. такие же, как у светодиодов со сроком службы более 50000 часов, прошедших испытания по способу-прототипу. Совершенно другая картина наблюдалась на 58 светодиодах фирмы Lumileds и трех светодиодах фирмы Cree, имевших SJ=(5-6)10-16 А2/Гц после 50 часов старения (т.е. увеличение уровня шума больше чем на порядок относительно исходных значений). На 15 из 58 светодиодов фирмы Lumileds уже при временах старения, меньших 1000 часов, наблюдались катастрофические отказы, т.е. не просто уменьшение значений эффективности, а отсутствие электролюминесценции. На трех светодиодах фирмы Cree также были зафиксированы катастрофические отказы после 5000 часов. Остальные 43 светодиода фирмы Lumileds продолжали светить и после 10000 часов, но при этом уровень SJ возрастал еще на порядок и более, а значения внешней квантовой эффективности уменьшались ниже уровня L70, что означает укороченный срок службы меньше 50000 часов.

Долговременные испытания позволяют сделать следующие выводы. Увеличение значений SJ при плотности тока 5 А/см2 менее чем на порядок относительно исходных значений после 50 часов старения позволяет прогнозировать срок службы таких светодиодов более 50000 часов, являющийся типичным для светодиодов этого типа сроком службы, критерием годности. Увеличение значений SJ более чем на порядок относительно исходных значений после 50 часов старения характеризует ненадежные светодиоды с укороченным сроком службы.

Сравнение результатов по способу-прототипу и по предлагаемому способу показало, что предлагаемый способ за значительно меньшие времена старения, чем способ-прототип, позволяет, независимо от фирмы производителя, отбраковать ненадежные светодиоды с укороченным сроком службы, причем конкретно, а не вероятностно. По способу-прототипу из 400 светодиодов фирмы Lumileds можно было ожидать 40 ненадежных светодиодов, а по предлагаемому способу уже после 50 часов старения определялось 58, и это в точности подтвердилось после долговременных испытаний. По способу-прототипу из 300 светодиодов фирмы Cree катастрофических отказов не ожидалось, по предлагаемому уже после 50 часов старения определялось 3 ненадежных светодиода, и этот прогноз подтвердился после долговременных испытаний.

Таким образом, пример, выполненный с оптимальными параметрами согласно формуле изобретения, продемонстрировал преимущества предлагаемого способа: обеспечение отбраковки ненадежных мощных светодиодов на основе InGaN/GaN с укороченным сроком службы меньше 50000 часов, причем для различных фирм-производителей и за более короткое время старения.

В последующих примерах предлагаемый способ применен к 400 светодиодам фирмы Lumileds, также имеющим измеренные значения внешней квантовой эффективности 45% с разбросом ±2% при плотности тока 5 А/см2.

Пример 2

То же, что в Примере 1 при применении предлагаемого способа для 400 светодиодов фирмы Lumileds, но режим старения светодиодов отличался временем старения - 55 часов. При этом, как в Примере 1, после старения большая часть светодиодов имела значения SJ=(5-6)10-17 А2/Гц при плотности тока 5 А/см2, близкие к значениям до старения. Для остальных светодиодов (62 шт. из 400), так же как в Примере 1, наблюдался рост до SJ=(6-8)10-16 А2/Гц, т.е. больше чем на порядок относительно исходных значений. Поведение светодиодов с значениями SJ, близкими к исходным, и с значениями SJ, превышающими исходные более чем на порядок, при долговременных испытаниях соответствовало Примеру 1. Таким образом, увеличение временного интервала старения более 50 часов не приводит к изменению результатов отбраковки и является нецелесообразным.

Пример 3

То же, что в Примере 1 для 400 светодиодов фирмы Lumileds, но режим старения отличался временем старения - 45 часов. После 45 часов старения большая часть светодиодов имела значения SJ=(4-5)10-17 А2/Гц при 5 А/см2, т.е. незначительные изменения относительно исходных. При этом гораздо меньшее число светодиодов (41 из 400), чем в Примере 1, имело повышенные значения SJ=(5-7)10-16 А2/Гц. Однако увеличение времени старения до 10000 часов на всех светодиодах и контроль значений SJ при 5 А/см2 после 50, 500, 1000, 5000 и 10000 часов показали, что среди светодиодов, имевших значения SJ после 45 часов старения, близкие к исходным, после 50 часов еще на 11 светодиодах увеличились значения SJ до SJ=(5-7)10-16 А2/Гц. Долговременные (до 10000 часов) испытания не увеличили общего количества (52 шт.) таких светодиодов. Поведение светодиодов с значениями SJ, близкими к исходным, и с значениями SJ, превышающими исходные более чем на порядок, при долговременных испытаниях соответствовало Примеру 1.

Таким образом, время старения меньше 50 часов недостаточно для достоверного выявления (отбраковки) ненадежных светодиодов с укороченным сроком службы.

Пример 4

То же, что в Примере 1 для 400 светодиодов фирмы Lumileds, но контроль SJ до и после 50 часов старения проводился каждый раз на всех светодиодах при следующих значениях плотности тока J: 0.15 А/см2; 5 А/см2, 9 А/см2. При этом, как в Примере 1, после старения большая часть светодиодов имела значения SJ=(5-6)10-17 А2/Гц, близкие между собой при всех трех значениях J и близкие к значениям до старения. Для остальных светодиодов (62 шт. из 400), так же как в Примере 1, наблюдался рост до SJ=(6-8)10-16 А2/Гц, т.е. больше чем на порядок относительно исходных. Причем эти значения SJ практически не отличались для всех трех значений J. Поведение светодиодов со значениями SJ, близкими к исходным, и со значениями SJ, превышающими исходные более чем на порядок, при долговременных испытаниях соответствовало Примеру 1.

Таким образом, контроль SJ при промежуточных значениях J из заявленного в формуле изобретения интервала 0.1<J<10 А/см2 вместе с другими признаками обеспечивает решение поставленных задач.

Пример 5

То же, что в Примере 1 для 400 светодиодов фирмы Lumileds, но контроль SJ до и после 50 часов старения проводился каждый раз и на всех светодиодах при J=5 А/см2 (в интервале из формулы изобретения) и J=0 1 А/см2 и J=10 А/см2 (вне интервала). На исходных светодиодах значения SJ=(4-5)10-17 А2/Гц при 5 А/см2 были такие же, как в Примере 1. Однако при J=0 1 А/см2 на всех светодиодах значения SJ выросли до (8-20)10-17 А2/Гц с одновременным увеличением разброса значений. Подобная картина наблюдалась и при контроле SJ при J=10 А/см2, значения SJ тоже увеличились до (8-10)10-17 А2/Гц. После 50 часов старения, как в Примере 1, большая часть светодиодов имела значения SJ=(5-6)10-17 А2/Гц при 5 А/см2, близкие к значениям до старения. Для остальных светодиодов (52 шт. из 400), так же как в Примере 1, наблюдался рост до SJ=(6-8)10-16 А2/Гц, т.е. больше чем на порядок относительно исходных значений. Однако при J=0.1 А/см2 на всех 400 светодиодах значения SJ выросли до (7-15)10-162 А2/Гц (больше чем на порядок относительно исходных) с одновременным увеличением разброса значений, а при J=10 А/см2 на всех 400 светодиодах - до SJ=(6-10)10-16 А2/Гц.

Т.е. контроль значений SJ при значениях J=0.1 А/см2 и J=10 А/см2 (вне предлагаемого диапазона) не позволяет выявить ненадежные светодиоды даже после 50 часов старения.

Предлагаемый способ свободен от недостатков известных способов, имеющих вероятностный характер определения годных светодиодов. Он позволяет прямыми измерениями и за меньшие на порядки времена старения отбраковать ненадежные светодиоды с укороченным сроком службы меньше 50000 часов и определить количественно светодиоды со сроком службы более 50000 часов. Благодаря тому, что выбранный для контроля параметр SJ отражает реальные свойства дефектной системы светодиодов, способ обеспечивает отбраковку ненадежных с укороченным сроком службы мощных InGaN/GaN светодиодов различных фирм-производителей (является более универсальным, чем известные способы), а также решает задачу ускорения процесса отбраковки светодиодов. Значительное снижение времени старения обеспечивает оперативность получения информации, что делает способ незаменимым при разработке технологии роста и сборки мощных InGaN/GaN светодиодов.

Способ отбраковки мощных светодиодов на основе InGaN/GaN, включающий измерение значения спектральной плотности низкочастотного шума светодиодов при подаче напряжения в прямом направлении и плотности тока J из интервала 0.1
Источник поступления информации: Роспатент

Showing 1-10 of 115 items.
20.04.2013
№216.012.3815

Автономная система электроснабжения на основе солнечной фотоэлектрической установки

Изобретение относится к области солнечной энергетики, в частности к непрерывно следящим за Солнцем солнечным установкам как с концентраторами солнечного излучения, так и с плоскими кремниевыми модулями, предназначенным для питания потребителей, например, в районах ненадежного и...
Тип: Изобретение
Номер охранного документа: 0002479910
Дата охранного документа: 20.04.2013
27.05.2013
№216.012.454b

Способ оптического детектирования магнитного резонанса и устройство для его осуществления

Изобретение относится к технике спектроскопии магнитного резонанса, а именно оптического детектирования магнитного резонанса (ОДМР), включающего оптическое детектирование электронного парамагнитного резонанса (ЭПР), и может найти применение при исследованиях конденсированных материалов и...
Тип: Изобретение
Номер охранного документа: 0002483316
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.4592

Способ предэпитаксиальной обработки поверхности германиевой подложки

Изобретение относится к области полупроводниковой опто- и микроэлектроники. Способ предэпитаксиальной обработки поверхности подложки из германия включает удаление с поверхности подложки оксидного слоя, очистку поверхности германия от неорганических загрязнений и пассивацию поверхности подложки....
Тип: Изобретение
Номер охранного документа: 0002483387
Дата охранного документа: 27.05.2013
20.06.2013
№216.012.4e4d

Способ изготовления фотовольтаического преобразователя

Способ изготовления фотовольтаического преобразователя включает нанесение на периферийную область подложки из n-GaSb диэлектрической маски, формирование на открытых участках фронтальной поверхности подложки высоколегированного слоя р-типа проводимости диффузией цинка из газовой фазы, удаление...
Тип: Изобретение
Номер охранного документа: 0002485627
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4e4e

Способ изготовления чипов наногетероструктуры и травитель

Изобретение относится к созданию высокоэффективных солнечных элементов на основе полупроводниковых многослойных наногетероструктур для прямого преобразования энергии солнечного излучения в электрическую энергию с использованием солнечных батарей. Способ изготовления чипов наногетероструктуры,...
Тип: Изобретение
Номер охранного документа: 0002485628
Дата охранного документа: 20.06.2013
10.07.2013
№216.012.554f

Способ активации мембранно-электродного блока

Активацию мембранно-электродного блока осуществляют подачей увлажненного водорода к первому электроду и увлажненного кислорода ко второму электроду, по меньшей мере одним циклическим изменением напряжения на мембранно-электродном блоке в диапазоне от величины холостого хода до 0 В при комнатной...
Тип: Изобретение
Номер охранного документа: 0002487442
Дата охранного документа: 10.07.2013
27.07.2013
№216.012.5aff

Полупроводниковый приемник инфракрасного излучения

Полупроводниковый приемник инфракрасного излучения включает полупроводниковую подложку (1) AIIIBV с активной областью (2) в форме диска с отверстием в центре на основе гетероструктуры, выполненной из твердых растворов AIIIBV, первый омический контакт (4) и второй омический контакт (7). Первый...
Тип: Изобретение
Номер охранного документа: 0002488916
Дата охранного документа: 27.07.2013
10.09.2013
№216.012.691c

Способ изготовления чипов многослойных фотоэлементов

Способ изготовления чипов многослойных фотоэлементов включает выращивание фоточувствительной многослойной полупроводниковой структуры на германиевой подложке, последовательное создание на поверхности фоточувствительной многослойной структуры пассивирующего слоя и контактного слоя. Способ также...
Тип: Изобретение
Номер охранного документа: 0002492555
Дата охранного документа: 10.09.2013
20.09.2013
№216.012.6d4f

Способ изготовления чипов каскадных фотоэлементов

Способ изготовления чипов каскадных фотоэлементов относится к солнечной энергетике. Способ включает выращивание фоточувствительной многослойной полупроводниковой структуры на германиевой подложке, последовательное выращивание на поверхности фоточувствительной многослойной структуры...
Тип: Изобретение
Номер охранного документа: 0002493634
Дата охранного документа: 20.09.2013
20.10.2013
№216.012.7739

Фотоэлектрический концентраторный субмодуль

Изобретение относится к области солнечной энергетики. Фотоэлектрический концентраторный субмодуль содержит фронтальный стеклянный лист (1), на тыльной стороне которого расположен первичный оптический концентратор в виде линзы (2) квадратной формы с длиной стороны квадрата, равной W, и фокусным...
Тип: Изобретение
Номер охранного документа: 0002496181
Дата охранного документа: 20.10.2013
Showing 1-10 of 69 items.
20.04.2013
№216.012.3815

Автономная система электроснабжения на основе солнечной фотоэлектрической установки

Изобретение относится к области солнечной энергетики, в частности к непрерывно следящим за Солнцем солнечным установкам как с концентраторами солнечного излучения, так и с плоскими кремниевыми модулями, предназначенным для питания потребителей, например, в районах ненадежного и...
Тип: Изобретение
Номер охранного документа: 0002479910
Дата охранного документа: 20.04.2013
27.05.2013
№216.012.454b

Способ оптического детектирования магнитного резонанса и устройство для его осуществления

Изобретение относится к технике спектроскопии магнитного резонанса, а именно оптического детектирования магнитного резонанса (ОДМР), включающего оптическое детектирование электронного парамагнитного резонанса (ЭПР), и может найти применение при исследованиях конденсированных материалов и...
Тип: Изобретение
Номер охранного документа: 0002483316
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.4592

Способ предэпитаксиальной обработки поверхности германиевой подложки

Изобретение относится к области полупроводниковой опто- и микроэлектроники. Способ предэпитаксиальной обработки поверхности подложки из германия включает удаление с поверхности подложки оксидного слоя, очистку поверхности германия от неорганических загрязнений и пассивацию поверхности подложки....
Тип: Изобретение
Номер охранного документа: 0002483387
Дата охранного документа: 27.05.2013
20.06.2013
№216.012.4e4d

Способ изготовления фотовольтаического преобразователя

Способ изготовления фотовольтаического преобразователя включает нанесение на периферийную область подложки из n-GaSb диэлектрической маски, формирование на открытых участках фронтальной поверхности подложки высоколегированного слоя р-типа проводимости диффузией цинка из газовой фазы, удаление...
Тип: Изобретение
Номер охранного документа: 0002485627
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4e4e

Способ изготовления чипов наногетероструктуры и травитель

Изобретение относится к созданию высокоэффективных солнечных элементов на основе полупроводниковых многослойных наногетероструктур для прямого преобразования энергии солнечного излучения в электрическую энергию с использованием солнечных батарей. Способ изготовления чипов наногетероструктуры,...
Тип: Изобретение
Номер охранного документа: 0002485628
Дата охранного документа: 20.06.2013
10.07.2013
№216.012.554f

Способ активации мембранно-электродного блока

Активацию мембранно-электродного блока осуществляют подачей увлажненного водорода к первому электроду и увлажненного кислорода ко второму электроду, по меньшей мере одним циклическим изменением напряжения на мембранно-электродном блоке в диапазоне от величины холостого хода до 0 В при комнатной...
Тип: Изобретение
Номер охранного документа: 0002487442
Дата охранного документа: 10.07.2013
27.07.2013
№216.012.5aff

Полупроводниковый приемник инфракрасного излучения

Полупроводниковый приемник инфракрасного излучения включает полупроводниковую подложку (1) AIIIBV с активной областью (2) в форме диска с отверстием в центре на основе гетероструктуры, выполненной из твердых растворов AIIIBV, первый омический контакт (4) и второй омический контакт (7). Первый...
Тип: Изобретение
Номер охранного документа: 0002488916
Дата охранного документа: 27.07.2013
10.09.2013
№216.012.691c

Способ изготовления чипов многослойных фотоэлементов

Способ изготовления чипов многослойных фотоэлементов включает выращивание фоточувствительной многослойной полупроводниковой структуры на германиевой подложке, последовательное создание на поверхности фоточувствительной многослойной структуры пассивирующего слоя и контактного слоя. Способ также...
Тип: Изобретение
Номер охранного документа: 0002492555
Дата охранного документа: 10.09.2013
20.09.2013
№216.012.6d4f

Способ изготовления чипов каскадных фотоэлементов

Способ изготовления чипов каскадных фотоэлементов относится к солнечной энергетике. Способ включает выращивание фоточувствительной многослойной полупроводниковой структуры на германиевой подложке, последовательное выращивание на поверхности фоточувствительной многослойной структуры...
Тип: Изобретение
Номер охранного документа: 0002493634
Дата охранного документа: 20.09.2013
20.10.2013
№216.012.7739

Фотоэлектрический концентраторный субмодуль

Изобретение относится к области солнечной энергетики. Фотоэлектрический концентраторный субмодуль содержит фронтальный стеклянный лист (1), на тыльной стороне которого расположен первичный оптический концентратор в виде линзы (2) квадратной формы с длиной стороны квадрата, равной W, и фокусным...
Тип: Изобретение
Номер охранного документа: 0002496181
Дата охранного документа: 20.10.2013
+ добавить свой РИД