×
16.05.2023
223.018.5ecf

Результат интеллектуальной деятельности: Электродуговой способ получения слитков TiMnAl

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, в частности к получению сплава Гейслера в виде слитков, пригодных для изучения свойств спин-поляризованного бесщелевого полупроводника TiMnAl. Способ получения слитков сплава TiMnAl из смеси алюминия, марганца и титана включает подготовку смеси алюминия, марганца и титана и ее плавление. Подготовленную смесь засыпают в тигель и осуществляют плавление в гарнисаже плазмой дугового разряда напряжением от 65 до 70 В и током от 8 до 10 А в атмосфере гелия при давлении от 0,8 до 1 атм в течение 20 минут с последующим снижением мощности до нуля. Обеспечивается равномерная кристаллизация слитка. 9 пр., 2 ил.

Изобретение относится к области металлургии, в частности к получению сплава Гейслера в виде слитков пригодных для изучения свойств спин-поляризованного бесщелевого полупроводника Ti2MnAl.

В области разработки новых материалов в настоящее время большой интерес представляют тройные сплавы Гейслера. Занимая промежуточное положение между бинарными интерметаллидами (фазы Юм-Розери, фазы Лавеса и др.) и высокоэнтропийными сплавами, сплавы Гейслера представляют большой интерес в физике твердого тела благодаря многообразию физических свойств, связанных с особенностями электронной структуры и магнитоупругих взаимодействий, обусловленных симметрией кристаллической решетки, что, в соответствии с принципом Кюри, приводит к наблюдению многообразных физических явлений: магнитной памяти формы, обменному смещению, магнитокалорическим эффектам, магнитосопротивлению и большим эффектам Холла [Manna, K., Sun, Y., Muechler, L. et al. Heusler, Weyl and Berry. Nat Rev Mater 3, 244-256 (2018)]. Исследование этих явлений невозможно без развития технологии получения слитков высокого структурного совершенства, получение которых является нетривиальной задачей. Поэтому поиск, развитие и совершенствование способов получения слитков является важным направлением прецизионной металлургии и служит основой для понимания физики магнитных явлений этого класса соединений.

Известен способ получения Ti2MnAl [Борисенко Д.Н., Девятое Э.В., Егоркин М.И., Есин В.Д., Колесников Н.Н., Швецов О.О. // Патент РФ №2725229 от 30.06.2020. Бюл. №19] - прототип. Задачей данного изобретения является получение Ti2MnAl в виде слитков. Технический результат достигается за счет того, что навески марганца и алюминия помещают в капсулу из титана, закрывают крышкой из титана, и затем подвергают плавке во взвешенном состоянии с использованием высокочастотного индукционного нагрева в атмосфере инертного газа при температуре от 1700 до 1730°С в течение от 15 до 20 мин, причем кристаллизация расплава осуществляется путем закалки до комнатной температуры. Слитки объемом не более 1 см3 имеют однородный состав и однородную мелкокристаллическую структуру. Недостатком предложенного способа получения является наличие в материале больших закалочных напряжений, что затрудняет его дальнейшую обработку и приводит к выкрашиванию при подготовке образцов, и требует проведение высокотемпературного отжига в течение нескольких часов. Стоит отметить, что применение левитационной плавки ограничивает масштабируемость процесса в силу эмпирического правила: на каждый 1 см3 слитка требуется до 30 кВт подводимой мощности. Такая плотность мощности делает предложенный способ получения Ti2MnAl очень энергозатратным и не позволяет получать слитки без закалочных напряжений, так как при небольшом снижении мощности для равномерной кристаллизации капля расплава сразу падает вниз и подвергается закалке.

Задачей настоящего изобретения является разработка электродугового способа получения слитков Ti2MnAl с равномерной кристаллизацией.

Технический результат достигается тем, что процесс получения слитков Ti2MnAl проводят электродуговой плавкой в атмосфере гелия в гарнисаже из смеси алюминия, марганца и титана, с плавным снижением мощности до нуля для равномерной кристаллизации.

Способ получения слитков Ti2MnAl включает в себя подготовку смеси алюминия, марганца и титана, которую засыпают в тигель и нагревают до плавления в гарнисаже плазмой дугового разряда в атмосфере инертного газа с образованием слитков Ti2MnAl с плавным снижением мощности до нуля для равномерной кристаллизации. Режимы получения подобраны экспериментально.

Пример 1. В тигель, расположенный в герметичной камере, позволяющей вести процесс в гарнисаже, в контролируемой атмосфере, засыпают смесь из титана, марганца и алюминия. Над тиглем помещают электрод для создания электрической дуги. Плавку проводят в атмосфере аргона при давлении 0,5 атм, напряжении 50 В и токе 8 А. Продолжительность процесса 20 минут. Процесс прерывается, плавления нет. Слиток Ti2MnAl получить не удалось.

Пример 2. То же по примеру 1, но плавку проводят в атмосфере аргона при давлении 1 атм, напряжении 65 В и токе 10 А. Продолжительность процесса 20 минут. Процесс идет неустойчиво, плавления нет. Слиток Ti2MnAl получить не удалось.

Пример 3. То же по примеру 1, но плавку проводят в атмосфере аргона при давлении 1,5 атм, напряжении 70 В и токе 10 А. Продолжительность процесса 20 минут. Процесс не идет. Слиток Ti2MnAl получить не удалось.

Пример 4. То же по примеру 1, но плавку проводят в атмосфере гелия при давлении 1,5 атм, напряжении 70 В и токе 10 А. Продолжительность процесса 20 минут. Процесс прерывается, нет плавления. Слиток Ti2MnAl получить не удалось.

Пример 5. То же по примеру 1, но плавку проводят в атмосфере гелия при давлении 0,9 атм, напряжении 68 В и токе 9 А. Продолжительность процесса 20 минут. Процесс плавления идет устойчиво. Плавным снижением мощности до нуля удается получить слиток Ti2MnAl с равномерной кристаллизацией.

Пример 6. То же по примеру 1, но плавку проводят в атмосфере гелия при давлении 0,8 атм, напряжении 65 В и токе 9 А. Продолжительность процесса 20 минут. Процесс плавления идет устойчиво. Плавным снижением мощности до нуля удается получить слиток Ti2MnAl с равномерной кристаллизацией.

Пример 7. То же по примеру 1, но плавку проводят в атмосфере гелия при давлении 1 атм, напряжении 65 В и токе 8 А. Продолжительность процесса 20 минут. Процесс плавления идет устойчиво. Плавным снижением мощности до нуля удается получить слиток Ti2MnAl с равномерной кристаллизацией.

Пример 8. То же по примеру 1, но плавку проводят в атмосфере гелия при давлении 1 атм, напряжении 70 В и токе 10 А. Продолжительность процесса 20 минут. Процесс плавления идет устойчиво. Плавным снижением мощности до нуля удается получить слиток Ti2MnAl с равномерной кристаллизацией.

Пример 9. То же по примеру 1, но плавку проводят в атмосфере гелия при давлении 0,8 атм, напряжении 55 В и токе 8 А. Продолжительность процесса 20 минут. Процесс не идет. Слиток Ti2MnAl получить не удалось.

Таким образом, предложенный способ получения слитков Ti2MnAl по примерам 5, 6, 7 и 8 является перспективным направлением прецизионной металлургии для создания сплавов Гейслера. На фиг. 1 представлен тигель (1) с гарнисажем (2) и слитки Ti2MnAl (3). На фиг. 2 представлены результаты рентгено-спектрального микроанализа (ат.%) в 5 точках, полученного слитка Ti2MnAl.

Способ получения слитков сплава TiMnAl из смеси алюминия, марганца и титана, включающий подготовку смеси алюминия, марганца и титана и ее плавление, отличающийся тем, что подготовленную смесь засыпают в тигель и осуществляют плавление в гарнисаже плазмой дугового разряда напряжением от 65 до 70 В и током от 8 до 10 А в атмосфере гелия при давлении от 0,8 до 1 атм в течение 20 минут с последующим снижением мощности до нуля.
Источник поступления информации: Роспатент

Showing 1-10 of 91 items.
10.01.2013
№216.012.1846

Устройство для получения массивов углеродных нанотрубок на металлических подложках

Изобретение относится к нанотехнологии. Устройство для получения массивов углеродных нанотрубок (УНТ) на металлических подложках состоит из двух электродов 7 и 8, расположенных соосно и перемещаемых навстречу друг другу водоохлаждаемыми штоками 8 и 9, скользящих графитовых токоподводов 11 и 12,...
Тип: Изобретение
Номер охранного документа: 0002471706
Дата охранного документа: 10.01.2013
10.02.2013
№216.012.2477

Устройство и способ с речевым интерфейсом определения водолазом направления на источник тонального звукового сигнала

Использование: для определения водолазом направления на источник тонального звукового сигнала. Сущность: сигнал источника принимается на две ненаправленные антенны, расстояние между которыми λ/4. Сигнал от первой антенны подается на вход сумматора, сигнал от второй антенны последовательно...
Тип: Изобретение
Номер охранного документа: 0002474837
Дата охранного документа: 10.02.2013
10.04.2013
№216.012.3480

Способ определения глубины погружения приводняющегося объекта

Использование: для измерения глубины погружения приводняющегося объекта с использованием гидролокатора ближнего действия, установленного на движущемся носителе относительно горизонта его движения. Сущность: с помощью гидролокатора производят излучение зондирующих сигналов гидролокатором, прием...
Тип: Изобретение
Номер охранного документа: 0002478983
Дата охранного документа: 10.04.2013
20.06.2013
№216.012.4cb3

Способ получения монокристаллов теллурида галлия (ii)

Изобретение относится к технологии получения кристаллов GaTe, которые могут быть использованы в нелинейной оптике, а именно для оптических преобразователей частоты ИК и ТГц диапазонов. Кристаллы теллурида галлия (II) выращивают вертикальной зонной плавкой в графитовых тиглях под давлением...
Тип: Изобретение
Номер охранного документа: 0002485217
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4cb4

Способ получения кристаллов вольфрамата натрия-висмута

Изобретение относится к области выращивания из расплава нелегированных кристаллов вольфрамата натрия-висмута NaBi(WO), являющегося перспективным материалом для Черепковских детекторов. Выращивание кристаллов осуществляют методом Чохральского в воздушной атмосфере со скоростью вытягивания 4-5...
Тип: Изобретение
Номер охранного документа: 0002485218
Дата охранного документа: 20.06.2013
27.10.2013
№216.012.783c

Крионаконечник с сапфировым хладопроводом-облучателем

Изобретение относится к хирургическим инструментам, применяемым для локального замораживания и деструкции выделенных участков биологической ткани, и может быть использовано в общей и детской хирургии, в онкологии, дерматологии, отоларингологии, гинекологии, косметологии. Крионаконечник с...
Тип: Изобретение
Номер охранного документа: 0002496442
Дата охранного документа: 27.10.2013
20.01.2014
№216.012.98be

Устройство для визуализации электрических полей свч в пространстве

Использование: относится к области визуализации распределения в пространстве электрических полей СВЧ диапазона. Сущность: в установке визуализации СВЧ полей применены измерительная камера «открытого» типа из двух расположенных горизонтально параллельных медных дисков, антенна-зонд,...
Тип: Изобретение
Номер охранного документа: 0002504801
Дата охранного документа: 20.01.2014
27.03.2014
№216.012.adf5

Способ удаления опухолей мозга с выделением границ опухоли флуоресцентной диагностикой с одновременной коагуляцией и аспирацией и устройство для его осуществления

Группа изобретений относится к медицине. Устройство включает сапфировый зонд с продольными каналами, в которых размещены оптические волокна, одни из которых предназначены для подачи излучения, возбуждающего флуоресценцию и коагулирующего излучения в зону деструкции ткани от присоединенных...
Тип: Изобретение
Номер охранного документа: 0002510248
Дата охранного документа: 27.03.2014
10.06.2014
№216.012.d04b

Способ эксфолиации слоистых кристаллических материалов

Изобретение относится к нанотехнологиям. Способ включает эксфолиацию заготовок из слоистых кристаллических материалов, закрепленных с одной стороны на опоре из глипталя, с использованием клейкой ленты, глипталь по окончании эксфолиации растворяют в ацетоне, где образуется взвесь кристаллических...
Тип: Изобретение
Номер охранного документа: 0002519094
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d5ae

Способ получения слоев карбида кремния

Изобретение относится к области получения карбида кремния, используемого в полупроводниковой промышленности в качестве материала для радиопоглощающих покрытий, диодов, светодиодов, солнечных элементов и силовых вентилей. Карбид кремния получают перемещением ленты углеродной фольги в...
Тип: Изобретение
Номер охранного документа: 0002520480
Дата охранного документа: 27.06.2014
Showing 1-10 of 49 items.
10.01.2013
№216.012.1846

Устройство для получения массивов углеродных нанотрубок на металлических подложках

Изобретение относится к нанотехнологии. Устройство для получения массивов углеродных нанотрубок (УНТ) на металлических подложках состоит из двух электродов 7 и 8, расположенных соосно и перемещаемых навстречу друг другу водоохлаждаемыми штоками 8 и 9, скользящих графитовых токоподводов 11 и 12,...
Тип: Изобретение
Номер охранного документа: 0002471706
Дата охранного документа: 10.01.2013
20.06.2013
№216.012.4cb3

Способ получения монокристаллов теллурида галлия (ii)

Изобретение относится к технологии получения кристаллов GaTe, которые могут быть использованы в нелинейной оптике, а именно для оптических преобразователей частоты ИК и ТГц диапазонов. Кристаллы теллурида галлия (II) выращивают вертикальной зонной плавкой в графитовых тиглях под давлением...
Тип: Изобретение
Номер охранного документа: 0002485217
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4cb4

Способ получения кристаллов вольфрамата натрия-висмута

Изобретение относится к области выращивания из расплава нелегированных кристаллов вольфрамата натрия-висмута NaBi(WO), являющегося перспективным материалом для Черепковских детекторов. Выращивание кристаллов осуществляют методом Чохральского в воздушной атмосфере со скоростью вытягивания 4-5...
Тип: Изобретение
Номер охранного документа: 0002485218
Дата охранного документа: 20.06.2013
10.06.2014
№216.012.d04b

Способ эксфолиации слоистых кристаллических материалов

Изобретение относится к нанотехнологиям. Способ включает эксфолиацию заготовок из слоистых кристаллических материалов, закрепленных с одной стороны на опоре из глипталя, с использованием клейкой ленты, глипталь по окончании эксфолиации растворяют в ацетоне, где образуется взвесь кристаллических...
Тип: Изобретение
Номер охранного документа: 0002519094
Дата охранного документа: 10.06.2014
20.03.2015
№216.013.3499

Люминесцентное литий-боратное стекло

Изобретение относится к области люминесцентных стекол для преобразования ультрафиолетового излучения в белый цвет. Техническим результатом изобретения является создание люминесцентного стекла с высокой прозрачностью в видимом диапазоне. Люминесцентное литий-боратное стекло на основе тетрабората...
Тип: Изобретение
Номер охранного документа: 0002544940
Дата охранного документа: 20.03.2015
10.04.2015
№216.013.3f8e

Ампула для выращивания кристаллов в условиях микрогравитации

Изобретение относится к технологическому оборудованию, предназначенному для выращивания кристаллов в условиях микрогравитации. Ампула содержит герметичный корпус 1 из кварцевого стекла и коаксиально размещенный в нем герметичный кварцевый тигель 4 с загрузкой селенида галлия 5 и графитовые...
Тип: Изобретение
Номер охранного документа: 0002547758
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.437b

Способ определения доброкачественных и злокачественных новообразований щитовидной железы человека

Изобретение относится к области молекулярной биологии и медицины и предназначено для определения доброкачественных и злокачественных новообразований щитовидной железы (ЩЖ) человека. Осуществляют взятие образца ткани опухоли ЩЖ и прилежащей неизмененной ткани железы в качестве контроля,...
Тип: Изобретение
Номер охранного документа: 0002548773
Дата охранного документа: 20.04.2015
20.11.2015
№216.013.92a0

Способ дифференциальной диагностики новообразований щитовидной железы человека

Изобретение касается способа дифференциальной диагностики новообразований щитовидной железы (ЩЖ) человека. Способ включает выделение из образца опухолевой ткани ЩЖ человека и образца прилежащей неизмененной ткани железы (в качестве контроля) суммарного пула РНК (в том числе содержащий и...
Тип: Изобретение
Номер охранного документа: 0002569154
Дата охранного документа: 20.11.2015
10.01.2016
№216.013.9ea0

Холодный катод

Изобретение относится к области получения углеродных наноструктур, а именно слоев углеродных нанотрубок на металлических подложках, применяемых в качестве холодных катодов (автоэлектронных источников эмиссии). Технический результат - создание простого в изготовлении холодного катода без...
Тип: Изобретение
Номер охранного документа: 0002572245
Дата охранного документа: 10.01.2016
10.05.2016
№216.015.3dc7

Фотохромное люминесцентное стекло

Изобретение относится к области материалов для твердотельных индикаторов ультрафиолетового излучения. Фотохромное люминесцентное стекло содержит оксид европия EuO в концентрации 0,43-0,49% (мас.) и тетраборат лития LiBO (остальное). Стекло интенсивно люминесцирует при воздействии...
Тип: Изобретение
Номер охранного документа: 0002583967
Дата охранного документа: 10.05.2016
+ добавить свой РИД