×
14.05.2023
223.018.5485

Результат интеллектуальной деятельности: Передняя опора ротора компрессора

Вид РИД

Изобретение

Аннотация: Изобретение относится к авиационному двигателестроению, а именно к узлам опор роторов газотурбинных двигателей. Задача по повышению газодинамической эффективности компрессора за счет обеспечения стабильных оптимальных значений радиальных зазоров между лопатками ротора и статора компрессора решается тем, что в передней опоре ротора компрессора, включающей радиально-упорный шариковый подшипник 1, установленный своей наружной обоймой 2 в корпус подшипника 3 корпуса передней опоры 4 с тонкостенной конической диафрагмой 5 и фланцем 6, закрепленным к промежуточному корпусу двигателя 7, корпус передней опоры 4 снабжен соосной ему стяжной втулкой в виде тонкостенной конической диафрагмы 8, закрепленной к корпусу подшипника 3 и к промежуточному корпусу двигателя 7 с обеспечением сжимающего усилия в тонкостенной конической диафрагме 5 корпуса передней опоры. Таким образом, увеличение изгибной жесткости конической диафрагмы корпуса передней опоры ротора компрессора за счет ее предварительного нагружения сжимающим усилием для обеспечения стабильных оптимальных радиальных зазоров между лопатками ротора и статора компрессора обеспечивает высокий уровень газодинамической эффективности компрессора. 2 ил.

Изобретение относится к авиационному двигателестроению, а именно к узлам опор роторов газотурбинных двигателей.

Известна передняя опора ротора компрессора низкого давления авиационного двухконтурного турбореактивного двигателя АИ-25 (А.С. Виноградов, «Конструкция ТРДД АИ-25», СГАУ, г. Самара, 2013 г.) с шариковым радиально-упорным подшипником. Корпус передней опоры состоит из корпуса подшипника и тонкостенной конической диафрагмы с фланцем, который крепится к разделительному корпусу двигателя шпильками. Наружная обойма подшипника и втулка контактного уплотнения установлены в корпус подшипника и затянуты гайкой. Внутренняя обойма подшипника и роторные детали радиально-торцевого контактного графитового масляного уплотнения стянуты гайкой на валу ротора.

Недостаток известного устройства состоит в том, что в условиях работы двигателя летательного аппарата уровень изгибной жесткости тонкостенной конической диафрагмы корпуса передней опоры ротора компрессора недостаточен и радиальные зазоры между лопатками ротора и статора должны быть увеличены выше диапазона оптимальных значений, обеспечивающих высокий уровень газодинамической эффективности компрессора.

Общеизвестные методы повышения изгибной жесткости конических диафрагм корпусов опор: увеличение толщины, оребрение мест сопряжения конической диафрагмы с фланцем и т.п. малоэффективны из-за существенного роста массы конструкции.

Задачей изобретения является повышение газодинамической эффективности компрессора за счет обеспечения стабильных оптимальных значений радиальных зазоров между лопатками ротора и статора компрессора путем увеличения изгибной жесткости конической диафрагмы корпуса передней опоры ротора компрессора двигателя.

Указанная задача решается тем, что в передней опоре ротора компрессора, включающей радиально-упорный шариковый подшипник, установленный своей наружной обоймой в корпус подшипника корпуса передней опоры с тонкостенной конической диафрагмой и фланцем, закрепленным к промежуточному корпусу двигателя, корпус передней опоры снабжен соосной ему стяжной втулкой в виде тонкостенной конической диафрагмы, закрепленной к корпусу подшипника и к промежуточному корпусу двигателя с обеспечением сжимающего усилия в тонкостенной конической диафрагме корпуса передней опоры.

На фиг. 1 показан продольный разрез передней опоры ротора компрессора, на фиг. 2 - место соединения корпуса передней опоры и стяжной втулки.

Радиально-упорный шариковый подшипник 1 передней опоры компрессора своей наружной обоймой 2 установлен в корпус подшипника 3 корпуса передней опоры 4. Корпус передней опоры 4 состоит из корпуса подшипника 3, тонкостенной конической диафрагмы 5 и фланца 6. Корпус передней опоры 4 с помощью фланца 6 крепится к промежуточному корпусу двигателя 7. Стяжная втулка 8 выполнена в виде тонкостенной конической диафрагмы 9 с фланцами 10 и 11, с помощью которых осуществляется ее крепление винтами 12 в стыке 13 к корпусу подшипника 3 корпуса передней опоры 4 и к промежуточному корпусу двигателя 7.

Сборку передней опоры ротора компрессора начинают с монтажа фланца 6 корпуса передней опоры 4 на промежуточный корпус двигателя 7. Затем устанавливают стяжную втулку 8 фланцем 11 на промежуточный корпус двигателя 7, при этом до затяжки винтов 12 в стыке 13 сопрягаемых плоскостей корпуса подшипника передней опоры 3 и фланца 10 должен быть обеспечен монтажный зазор. После затяжки винтов 12 с выборкой зазора и обеспечением плотности стыка 13 на тонкостенную коническую диафрагму 5 корпуса передней опоры 4 действует усилие предварительного сжатия. Таким образом, в конической диафрагме 5 корпуса передней опоры 4 формируются предварительные напряжения сжатия, а в тонкостенной конической диафрагме 9, соответственно, предварительные напряжения растяжения. После контроля соосности опор двигателя в корпус подшипника 3 монтируют радиально-упорный шариковый подшипник 1 с наружной обоймой 2.

Выбор величины монтажного зазора в стыке 13 и, соответственно, усилий предварительного сжатия и растяжения осуществляют по следующим критериям:

1. Предварительные напряжения сжатия σпр.сж в тонкостенной конической диафрагме 5 корпуса передней опоры 4 должны превышать максимальные действующие рабочие напряжения растяжения σр, т.е. σпр.сжр;

2. Суммарные напряжения сжатия σсж.∑ в тонкостенной конической диафрагме 5 корпуса передней опоры 4, равные сумме величин напряжений предварительного сжатия σпр.сж и максимальных действующих рабочих напряжений сжатия σсж., не должны превышать величину напряжений σпц предела пропорциональности для материала тонкостенной конической диафрагмы 5, т.е. σсж.∑пр.сжсжпц и относительные деформации ее материала должны находиться в упругой области.

3. Величина напряжений в тонкостенной конической диафрагме 9 не должна превышать величину напряжений σпц предела пропорциональности для ее материала и относительные деформации должны находиться в упругой области.

Повышение изгибной жесткости при приложении сжимающего осевого усилия N для упрощения показано на примере консольной тонкостенной цилиндрической диафрагмы длиной L с диаметром D и толщиной стенки δ, нагруженной изгибающим моментом M или радиальным усилием Р, M=Р×L.

Геометрические характеристики ее плоского сечения перпендикулярного оси:

F - площадь, F=π×D×δ;

Jo - момент инерции относительно центра сечения,

Jo=π×D3×δ/8;

Bo - изгибная жесткость при чистом изгибе - нагружение только изгибающим моментом M, Bo=Е×Jo, где Е - модуль упругости. При изгибе консольной тонкостенной цилиндрической диафрагмы предварительно нагруженной сжимающим осевым усилием N происходит смещение нейтральной линии сечения от его центра (Рудицын М.Н., Артемов П.Я., «Справочное пособие по сопротивлению материалов», г. Минск. 1961 г.) на величину а, а=Jo×N/F/M;

Ja - момент инерции сечения с учетом смещения нейтральной линии,

Ja=Jo+а2×F.

Ва - изгибная жесткость с учетом смещения нейтральной линии,

Ва=Е×Ja=Е×(Jo2×F)=Во×(1+Jo×N2/F/M2) или

Ва=K×Во, где K=1+Jo×N2/F/M2;

Таким образом, значение коэффициента К больше единицы (К>1) свидетельствует о том, что предварительное нагружение сжимающим осевым усилием N консольной тонкостенной цилиндрической диафрагмы ведет к повышению ее изгибной жесткости.

Аналогичные зависимости характеризуют повышение изгибной жесткости консольной конической тонкостенной диафрагмы в предварительно напряженном состоянии под действием сжимающего осевого усилия.

При работе двигателя радиальное и осевое усилия от ротора компрессора (не показан) через наружную обойму 2 радиально-упорного шарикового подшипника 1 передаются на корпус подшипника 3. Результирующее усилие с корпуса подшипника 3 передается на корпус передней опоры 4 и далее на промежуточный корпус двигателя 7 по тонкостенной конической диафрагме 5 через фланец 6, а так же через стык 13, стянутый винтами 12, по фланцу 10, тонкостенной конической диафрагме 9 и фланцу 11 стяжной втулки 8.

Таким образом, увеличение изгибной жесткости конической диафрагмы корпуса передней опоры ротора компрессора за счет ее предварительного нагружения сжимающим усилием для обеспечения стабильных оптимальных радиальных зазоров между лопатками ротора и статора компрессора, обеспечивает высокий уровень газодинамической эффективности компрессора.

Передняя опора ротора компрессора, включающая радиально-упорный шариковый подшипник, установленный своей наружной обоймой в корпус подшипника корпуса передней опоры с тонкостенной конической диафрагмой и фланцем, закрепленным к промежуточному корпусу двигателя, отличающаяся тем, что корпус передней опоры снабжен соосной ему стяжной втулкой в виде тонкостенной конической диафрагмы, закрепленной к корпусу подшипника и к промежуточному корпусу двигателя с обеспечением сжимающего усилия в тонкостенной конической диафрагме корпуса передней опоры.
Источник поступления информации: Роспатент

Showing 11-13 of 13 items.
23.07.2020
№220.018.356c

Способ управления расходом топлива в форсажную камеру сгорания двухконтурного турбореактивного двигателя

Изобретение относится к области авиационного двигателестроения и может быть использовано в автоматической системе управления двухконтурного турбореактивного двигателя с форсажной камерой сгорания (ТРДДФ) со смешением потоков контуров. Способ управления расходом топлива в форсажную камеру...
Тип: Изобретение
Номер охранного документа: 0002726966
Дата охранного документа: 20.07.2020
02.08.2020
№220.018.3c3e

Способ оценки прочности сцепления многослойного покрытия

Изобретение относится к исследованиям механических свойств покрытий, а именно к способам определения прочности сцепления покрытия с основой, и может быть использовано для оценки прочности сцепления слоев в многослойном покрытии. Способ оценки прочности сцепления многослойного покрытия...
Тип: Изобретение
Номер охранного документа: 0002728732
Дата охранного документа: 30.07.2020
21.04.2023
№223.018.50a4

Способ автоматической сварки плавлением гетерогенных никелевых сплавов

Изобретение относится к автоматической сварке плавящимся электродом в среде защитного газа соединений из жаропрочных гетерогенных никелевых сплавов толщиной 4,0-5,0 мм и может использоваться для изготовления и ремонта корпусных деталей и узлов авиационного двигателя. Cпособ автоматической...
Тип: Изобретение
Номер охранного документа: 0002794085
Дата охранного документа: 11.04.2023
Showing 11-16 of 16 items.
05.07.2019
№219.017.a646

Способ защиты блиска газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии

Изобретение относится к способу защиты блиска газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии и может быть использовано в авиационном двигателестроении и энергетическом турбостроении. Осуществляют упрочняющую обработку и ионно-имплантационную обработку лопаток ионами...
Тип: Изобретение
Номер охранного документа: 0002693414
Дата охранного документа: 02.07.2019
31.07.2019
№219.017.bab2

Лопаточный аппарат статора осевого компрессора

Изобретение относится к области авиационного двигателестроения, а именно к конструкции лопаточного аппарата статора осевого компрессора газотурбинного двигателя. Лопаточный аппарат статора осевого компрессора содержит наружную обечайку 1, внутреннюю обечайку 2 и лопатки 3 с наружными 4 и...
Тип: Изобретение
Номер охранного документа: 0002695872
Дата охранного документа: 29.07.2019
09.10.2019
№219.017.d377

Устройство для поворота реактивного сопла турбореактивного двигателя

Изобретение относится к авиационному двигателестроению, а именно к устройствам поворота реактивных сопел турбореактивных двигателей. Устройство для поворота реактивного сопла турбореактивного двигателя содержит неподвижный корпус с двумя дополнительными опорами в виде кронштейнов Г-образной...
Тип: Изобретение
Номер охранного документа: 0002702325
Дата охранного документа: 07.10.2019
15.10.2019
№219.017.d58a

Опора ротора газотурбинного двигателя

Изобретение относится к авиационному двигателестроению, а именно к опорам роторов газотурбинных двигателей. Опора ротора газотурбинного двигателя, включающая подшипник, установленный на валу ротора и в корпусе опоры, масляную полость опоры и воздушную предмасляную полость с масляным и воздушным...
Тип: Изобретение
Номер охранного документа: 0002702778
Дата охранного документа: 11.10.2019
08.12.2019
№219.017.ea86

Межвальное контактное уплотнение

Изобретение относится к авиационному двигателестроению, а именно к уплотнениям масляных полостей опор роторов газотурбинных двигателей. Задача по расширению арсенала технических средств - надежных межвальных контактных уплотнений соосных высокоскоростных роторов со встречным направлением...
Тип: Изобретение
Номер охранного документа: 0002708279
Дата охранного документа: 05.12.2019
23.07.2020
№220.018.356c

Способ управления расходом топлива в форсажную камеру сгорания двухконтурного турбореактивного двигателя

Изобретение относится к области авиационного двигателестроения и может быть использовано в автоматической системе управления двухконтурного турбореактивного двигателя с форсажной камерой сгорания (ТРДДФ) со смешением потоков контуров. Способ управления расходом топлива в форсажную камеру...
Тип: Изобретение
Номер охранного документа: 0002726966
Дата охранного документа: 20.07.2020
+ добавить свой РИД