×
21.04.2023
223.018.4f71

Результат интеллектуальной деятельности: Способ производства листового проката из хладостойкой стали

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к производству хладостойкого листового проката, применяемого для объектов металлургической, нефтегазовой отраслей промышленности, строительства, транспортного и тяжелого машиностроения, мостостроения, производства подъемных механизмов и средств транспортировки грузов, работающих в экстремальных условиях Крайнего Севера. Осуществляют непрерывную разливку стали, содержащей, мас.%: углерод 0,15-0,25, кремний 0,35-0,60, марганец 1,30-1,90, молибден 0,01-0,30, алюминий 0,02-0,07, хром не более 0,15, никель не более 0,15, медь не более 0,10, титан не более 0,015, ванадий не более 0,01, ниобий не более 0,008, бор до менее 0,001, сера не более 0,005, фосфор не более 0,013, азот 0,001-0,008, железо – остальное, с получением слябов. Нагревают слябы до температуры 1180-1250°С и проводят многопроходную горячую прокатку листов с температурой конца чистовой прокатки 860-980°С. Полученные листы подвергают закалке в интервале температур от 850°С до менее 920°С с охлаждением водой и с последующим отпуском при температуре 550-700°С. Обеспечивается получение проката, обладающего высоким уровнем механических характеристик, а также хладостойкостью до минус 70°С. 4 табл., 1 пр.

Изобретение относится к области металлургии, в частности, к производству листового проката из стали класса прочности 500-900 МПа с хладостойкостью до минус 70°С, применяемого для объектов металлургической, нефтегазовой отраслей промышленности, строительства, транспортного и тяжелого машиностроения, мостостроения, производства подъемных механизмов и средств транспортировки грузов, работающих в экстремальных условиях Крайнего Севера.

Известен способ производства высокопрочной листовой стали, включающий получение непрерывнолитого сляба следующего химического состава, мас.%:

углерод 0,07-0,12
кремний 0,05-0,30
марганец 1,10-1,70
хром 0,30-0,70
никель 0,90-1,20
молибден 0,20-0,40
ванадий 0,03-0,07
алюминий 0,02-0,05
азот 0,006-0,010
медь 0,05-0,25
ниобий 0,02-0,09
титан 0,003-0,005
бор 0,001-0,005
сера не более 0,005
фосфор не более 0,015
железо остальное,

при этом осуществляют нагрев сляба, горячую прокатку, закалку листов при температуре 930-980°С, а отпуск при температуре 500-600°С (патент РФ №2599654, C21D 8/02).

Основным недостатком указанного способа производства является недостаточная стабильность характеристик работоспособности листового проката при температурах ниже минус 40°С, что не позволяет использовать данный прокат в условиях низких температур. Также недостатком известного способа является то, что состав имеет широкий диапазон легирующих элементов с более высоким их содержанием (ванадий, хром, молибден, ниобий и никель), что приводит к увеличению себестоимости производимой продукции.

Наиболее близким аналогом к заявляемому изобретению является способ производства высокопрочного хладостойкого листового проката из низколегированной стали, включающий непрерывную разливку стали в слябы, их нагрев в интервале температур 1180-1250°С, многопроходную горячую прокатку листов, закалку водой при температуре 920-970°С с последующим отпуском, при этом осуществляют непрерывную разливку стали, содержащей, мас.%:

углерод 0,16-0,27
кремний 0,33-0,62
марганец 1,30-1,90
молибден 0,01-0,30
алюминий 0,02-0,07
хром не более 0,15
никель не более 0,15
медь не более 0,10
титан 0,001-0,015
ванадий 0,001-0,01
ниобий 0,001-0,008
бор 0,001-0,005
азот 0,001-0,008
сера не более 0,005
фосфор не более 0,012
железо остальное,

причем температуру конца чистовой прокатки устанавливают от 860 до 980°С, а отпуск проводят при температуре 500-650°С (пат. РФ №2674797, C21D 8/02, С22С 38/00).

Недостатками указанного способа являются низкие прочностные и пластические свойства стали при температурах до минус 70°С, а также низкий уровень ударной вязкости стали при отрицательных температурах, вследствие повышенного содержания бора.

Техническая проблема, решаемая заявляемым изобретением, заключается в получении качественного листового проката, эксплуатируемого в условиях Крайнего Севера, обладающего высоким уровнем механических характеристик, а также хладостойкостью до минус 70°С.

Технический результат, обеспечиваемый изобретением, заключается в получении требуемого комплекса свойств путем подбора оптимального химического состава стали и рационального режима ее термической обработки.

Поставленный результат достигается тем, что в способе производства листового проката из хладостойкой стали, включающем непрерывную разливку стали в слябы, их нагрев до температуры 1180-1250°С, многопроходную горячую прокатку листов с температурой конца чистовой прокатки 860-980°С, закалку водой с последующим отпуском, согласно изобретению, осуществляют непрерывную разливку стали, содержащей, мас.%:

углерод 0,15-0,25
кремний 0,35-0,60
марганец 1,30-1,90
молибден 0,01-0,30
алюминий 0,02-0,07
хром не более 0,15
никель не более 0,15
медь не более 0,10
титан не более 0,015
ванадий не более 0,01
ниобий не более 0,008
бор до менее 0,001
сера не более 0,005
фосфор не более 0,013
азот 0,001-0,008
железо остальное,

при этом закалку проводят в интервале температур от 850°С до менее 920°С с последующим отпуском при температуре 550-700°С.

Комплекс эксплуатационных и механических свойств заявляемого листового проката определяется микроструктурно-фазовым состоянием стали, которое зависит от химического состава и проводимой термической обработки.

Заявляемый химический состав стали выбран с учетом следующих особенностей.

Углерод является одним из упрочняющих элементов в стали. С целью обеспечения свариваемости, высоких показателей пластичности, низкотемпературной ударной вязкости, снижения хрупкости и исключения вероятности образования холодных трещин, содержание углерода в стали не должно превышать 0,25%. В то же время при концентрации углерода менее 0,15% не достигается требуемая прочность и твердость стали.

Кремний вводится для дополнительной прокаливаемости и отпускоустойчивости стали, раскисляет и упрочняет сталь, повышает ее упругие свойства, а именно ударную вязкость и температурный запас вязкости. При содержании кремния менее 0,35% прочность стали недостаточна, а при концентрации более 0,60% снижается ударная вязкость и пластичность стали, что приводит к ее охрупчиванию.

Марганец способствует твердорастворному упрочнению металла и повышению прочностных характеристик готового проката. Данный элемент в стали в количестве 1,30-1,90% обеспечивает раскисление стали, измельчает зерно и увеличивает вязкость феррита. При содержании марганца менее 1,30% упрочняющий эффект от него недостаточен. Содержание марганца свыше 1,9% приводит к получению неравновесных структур и, следовательно, к образованию трещин, а также к снижению ударной вязкости при низких температурах.

Легирование молибденом повышает прочность и коррозионную стойкость металла. Однако при увеличении его содержания возрастает себестоимость легирования, поэтому концентрацию молибдена ограничивают до 0,30%.

Алюминий раскисляет сталь и измельчает зерно. При содержании алюминия менее 0,02% его влияние недостаточно, вязкостные свойства стали ухудшаются. При увеличении содержания этого элемента более 0,07% он связывает азот, что ведет к снижению прочностных характеристик в связи с образованием неметаллических включений.

Хром повышает прочность, вязкость и износостойкость стали. Увеличение содержания хрома более 0,15% приводит к потере пластичности из-за роста карбидов.

Никель повышает вязкость стали, а также способствует повышению пластических свойств листовой стали при пониженных температурах эксплуатации, что понижает хладноломкость стали. Ограничение содержания никеля связано с его дефицитностью и дороговизной.

Добавление меди в пределах до 0,10%, повышает прочность и коррозионную стойкость стали, понижает склонность к коррозионному растрескиванию под напряжением. Большее содержание меди нецелесообразно ввиду дополнительных экономических затрат, а также опасности возникновения красноломкости.

Титан, являясь сильным карбидообразующим элементом, способствует повышению прочностных свойств проката при одновременном повышении ударной вязкости при отрицательных температурах. При содержании титана выше 0,015% избыточное количество образующихся карбонитридов значительно упрочняет сталь и снижает пластичность, что приводит к снижению вязкостных свойств металла.

Ванадий значительно повышает пластичность и ударную вязкость сталей в нормализованном состоянии и немного улучшает их прочностные характеристики, так как является хорошим раскислителем. Содержание ванадия более 0,01% могут привести к хрупкости и красноломкости стали.

Микролегирование стали ниобием в указанных пределах способствует получению дислокационной микроструктуры стали, обеспечивающей сочетание требуемых прочностных и пластических свойств металла. Мелкодисперсные карбиды ниобия препятствуют росту зерна аустенита в процессе горячей прокатки, что способствует получению мелкозернистой структуры. При содержании ниобия более 0,008% он значительно подавляет процессы рекристаллизации при деформационной обработке.

Микролегирование сталей бором оказывает большое влияние на комплекс механических свойств стали - в самых минимальных концентрациях он значительно повышает прокаливаемость стали. Данный состав стали предполагает содержание бора до менее 0,001%, это связано с тем, что при большем его содержании возможно снижение горячей пластичности и ударной вязкости стали.

Сера и фосфор в стали являются вредными примесями, их концентрация должна быть минимальной. Сера отрицательно влияет на изотропность механических свойств стали, пластичность и вязкость при низких температурах.

Увеличение содержания фосфора приводит к снижению ударной вязкости при отрицательных температурах, оказывая резко отрицательное действие на хладостойкость стали. При концентрации серы не более 0,005% и фосфора и не более 0,013% их отрицательное влияние на свойства стали незначительно. В то же время, более глубокая десульфурация и дефосфорация стали существенно удорожат ее производство, что нецелесообразно.

Азот обеспечивает упрочнение стали за счет выделения из твердого раствора мелкодисперсных нитридных и карбонитридных частиц. При содержании азота менее 0,001% прочность стали недостаточна. Увеличение содержания азота более 0,008% ведет к снижению вязкостных свойств листовой стали при отрицательных температурах.

Таким образом, заявляемый химический состав стали обеспечивает высокий уровень хладостойкости и трещиностойкости при температурах до минус 70°С.

Заявляемые температурные режимы обусловлены следующими особенностями.

Нагрев слябов из стали заявленного химического состава до температуры не ниже 1180°С обеспечивает ее аустенитизацию, полное растворение в аустенитной матрице сульфидов, фосфидов, нитридов, легирующих и примесных соединений, карбонитридных упрочняющих частиц. Благодаря этому повышается технологическая пластичность и деформируемость стали при прокатке. Нагрев слябов выше 1250°С нецелесообразен из-за чрезмерного роста аустенитного зерна и энергетических затрат.

Далее проводят многопроходную горячую прокатку листов, причем температуру конца чистовой прокатки устанавливают 860 - 980°С. Для обеспечения однородности фазового состава стали за счет окончания пластической деформации всех участков листа в нижней части аустенитной области, чистовую стадию горячей прокатки заканчивают при температуре не менее 860°С. При температуре более 980°С не обеспечивается требуемый уровень пределов текучести и прочности.

Закалка водой горячекатаных листов осуществляется при температуре от 850°С до менее 920°С. Температура менее 850°С не обеспечивает стабильного получения заданных прочностных свойств, а температура выше 950°С приводит к недопустимому снижению ударной вязкости листовой стали при низких температурах.

Для снижения или полного устранения внутренних напряжений, уменьшения хрупкости и получения требуемой структуры и механических свойств закаленной стали, ее подвергают отпуску в интервале температур 550-700°С. Указанный интервал температур обеспечивает получение наилучшего сочетания прочности и вязкости. В результате происходит практически полное снятие внутренних напряжений и образование структур в виде сорбита и троостита отпуска в зависимости от температуры.

Отпуск закаленных листов при температуре выше 700°С нецелесообразен, так как снижает прочностные свойства листового проката ниже допустимого уровня. Температура отпуска ниже 550°С не достигается уровень пластических и вязкостных свойств высокопрочных листов, что уменьшает их выход годного.

Таким образом, заявляемые температурные режимы производства листового проката позволяют сформировать оптимальный фазовый состав с комплексом высоких эксплуатационных и механических свойств стали.

Требуемый комплекс свойств листового проката после термической обработки по режимам закалки и последующего отпуска представлен в таблице 1.

Пример осуществления способа

Выплавку стали выбранных систем легирования осуществляли с использованием вакуумной индукционной печи ZG-0.06L. В качестве исходной металлошихты использовалось технически чистое железо (Армко-железо). Для обеспечения требуемого химического состава в расплав вводились легирующие добавки в виде ферросплавов или чистых металлов (табл. 2).

Нагрев заготовок под прокатку производился в электрической камерной печи с выкатным подом ПВП-300. Температура нагрева металла под прокатку составляла 1180-1250°С. Заготовки загружались в разогретую печь, время выдержки определялось из расчета 2,5 минуты на 1 мм толщины.

Обжатие слитков проводили с применением гидравлического пресса (черновая стадия) и одноклетьевого реверсивного стана горячей прокатки 500 ДУО (чистовая стадия). Температура конца чистовой прокатки варьировалась в диапазоне от 860 до 980°С.

Термическую обработку (дополнительный нагрев под закалку, отпуск) проката осуществляли в электрической камерной печи по режимам закалки с температуры 850-950°С и последующим отпуском при температуре 550-700°С (табл. 3).

Результаты анализа полученных микроструктур образцов свидетельствуют, что после операции закалки все образцы имеют структуру реечного мартенсита. После отпуска образуются карбиды, мартенсит обедняется углеродом и распадается на феррито-цементитную смесь, которая представляет собой троостосорбит отпуска или сорбит отпуска. Причем с повышением температуры отпуска с 550 до 700°С в микроструктуре стали реечное строение α-фазы нарушается, количество стерженьковых карбидных частиц уменьшается, а растет число карбидных частиц сферической формы, что свидетельствует о развитии интенсивного процесса сфероидизации.

Далее из полученных раскатов изготавливались образцы для проведения механических испытаний на растяжение, твердость и ударный изгиб (табл. 4).

Механические свойства определяли по стандартным методикам:

- испытания на растяжение проводили по ГОСТ 1497-84;

- испытания на ударный изгиб проводили в соответствии с ГОСТ 9454-78 на образцах с V-образным надрезом при температуре -70°С;

- испытание на твердость по Бринеллю проводили в соответствии с ГОСТ 9012-59.

Результаты испытаний, представленные в таблице 3, показали, что в листовой стали, полученной по предложенному способу (опыты №2-5), достигается сочетание необходимых прочностных, пластических и вязкостных свойств. В случаях отклонений от заявленных параметров (опыты №1 и 6), а также при использовании способа-прототипа не обеспечивается заявленный комплекс механических свойств.

Таким образом, заявляемое изобретение обеспечивает достижение высокого уровня механических характеристик, а также повышенной хладостойкости до минус 70°С: временное сопротивление разрыву 580-950 Н/мм2; относительное удлинение не менее 20%; твердость по Бринеллю -160-280 ед, работа удара KV-70 не менее 80 Дж.

Источник поступления информации: Роспатент

Showing 1-9 of 9 items.
14.12.2018
№218.016.a783

Способ производства высокопрочного хладостойкого листового проката из низколегированной стали

Изобретение относится к области производства высокопрочного хладостойкого листового проката из низколегированной стали с повышенной хладостойкостью для транспортного и тяжелого машиностроения. Получение экономнолегированного листового проката, обладающего повышенной хладостойкостью и...
Тип: Изобретение
Номер охранного документа: 0002674797
Дата охранного документа: 13.12.2018
18.01.2019
№219.016.b0fb

Способ производства листового проката из конструкционной хладостойкой стали (варианты)

Изобретение относится к области металлургии, в частности к производству листового проката из конструкционных сталей северного исполнения. Для повышения хладостойкости и трещиностойкости при сохранении достаточного уровня прочностных и пластических свойств в прокате выплавляют сталь,...
Тип: Изобретение
Номер охранного документа: 0002677445
Дата охранного документа: 16.01.2019
02.08.2019
№219.017.bb71

Способ производства листового проката из низколегированной трубной стали

Изобретение относится к прокатному производству и может быть использовано при производстве широких горячекатаных листов из марок стали трубного сортамента, класса прочности К60. Для повышения хладостойкости, трещиностойкости и коррозионной стойкости при сохранении достаточного уровня...
Тип: Изобретение
Номер охранного документа: 0002696186
Дата охранного документа: 31.07.2019
06.10.2019
№219.017.d35c

Способ производства толстолистового проката из низколегированной стали для труб

Изобретение относится к области черной металлургии, в частности к производству толстолистового проката из низколегированной стали повышенной прочности, используемой при производстве электросварных прямошовных труб для строительства магистральных нефте- и газопроводов в северных широтах. Для...
Тип: Изобретение
Номер охранного документа: 0002702171
Дата охранного документа: 04.10.2019
17.10.2019
№219.017.d6dd

Способ производства листов из криогенной конструкционной стали

Изобретение относится к черной металлургии, в частности к производству нового высокоэффективного вида металлопродукции - листового проката из криогенной конструкционной стали для производства, транспортировки и хранения сжиженного природного газа. Для обеспечения высокой хладостойкости стали...
Тип: Изобретение
Номер охранного документа: 0002703008
Дата охранного документа: 15.10.2019
11.04.2020
№220.018.141d

Способ производства холоднокатаного высокопрочного проката различных классов прочности из двухфазной ферритно-мартенситной стали

Изобретение относится к области металлургии, а именно к производству холоднокатаного высокопрочного проката различных классов прочности из двухфазной ферритно-мартенситной стали, который может быть использован в автомобильной промышленности. Для повышения пластичности, а также расширения...
Тип: Изобретение
Номер охранного документа: 0002718604
Дата охранного документа: 08.04.2020
01.05.2020
№220.018.1a9f

Способ производства рулонов горячекатаной полосы из криогенной конструкционной стали

Изобретение относится к черной металлургии, в частности к производству горячекатаного рулонного проката из криогенной конструкционной стали для производства, транспортировки и хранения сжиженных газов. Возможность получения полосы с высокой хладостойкостью при -196°С при одновременном сочетании...
Тип: Изобретение
Номер охранного документа: 0002720286
Дата охранного документа: 28.04.2020
21.06.2020
№220.018.28d8

Способ производства холоднокатаного высокопрочного листового проката из низколегированной стали

Изобретение относится к области металлургии, а именно к способу производства холоднокатаного листового проката из высокопрочных низколегированных сталей, используемого в автомобильной промышленности. Выплавляют сталь, содержащую, мас.%: С 0,05-0,07, Mn 0,35-0,60, Al 0,03-0,06, N не более 0,007,...
Тип: Изобретение
Номер охранного документа: 0002723872
Дата охранного документа: 17.06.2020
16.06.2023
№223.018.7a60

Высокопрочная свариваемая хладостойкая сталь и изделие, выполненное из нее

Изобретение относится к области металлургии, а именно к производству листового проката в толщинах до 50 мм из высокопрочной свариваемой хладостойкой стали для изготовления тяжелонагруженной техники, подъемно-транспортного оборудования и ледостойких морских платформ, эксплуатирующихся в условиях...
Тип: Изобретение
Номер охранного документа: 0002731223
Дата охранного документа: 31.08.2020
Showing 41-50 of 56 items.
19.06.2019
№219.017.84a3

Способ горячей прокатки полос

Изобретение относится к прокатному производству и может быть использовано при производстве широких горячекатаных полос. Задачей, решаемой заявляемым изобретением, является уменьшение поперечной разнотолщинности широкого проката. В способе горячей прокатки полос, включающем прокатку полос на...
Тип: Изобретение
Номер охранного документа: 0002288051
Дата охранного документа: 27.11.2006
19.06.2019
№219.017.85dc

Способ производства рулонов горячекатаной трубной стали

Изобретение предназначено для повышения выхода годного металлопроката при производстве широких горячекатаных полос, преимущественно трубных марок стали с содержанием углерода 0,17-0,22%, толщиной 4-16 мм, производимых на станах горячей прокатки с максимальным усилием прокатки в каждой клети...
Тип: Изобретение
Номер охранного документа: 0002343019
Дата охранного документа: 10.01.2009
19.06.2019
№219.017.8763

Способ производства подката для жести

Изобретение предназначено для повышения потребительских свойств жести за счет улучшения геометрии подката для ее изготовления. Способ включает горячую прокатку полосовой заготовки по заданным режимам и холодную прокатку полос требуемой геометрии на непрерывных станах. Возможность получения...
Тип: Изобретение
Номер охранного документа: 0002371263
Дата охранного документа: 27.10.2009
19.06.2019
№219.017.876e

Способ эксплуатации рабочих валков станов холодной прокатки

Изобретение предназначено для продления срока эксплуатации рабочих валков станов холодной прокатки полосовой стали и сокращения производственных затрат. Способ включает завалку валков в клети стана и вывалку из клетей при определенной степени износа бочек валков. Сокращение съема металла валков...
Тип: Изобретение
Номер охранного документа: 0002377086
Дата охранного документа: 27.12.2009
19.06.2019
№219.017.8773

Способ производства рулонов горячекатаной трубной стали

Изобретение предназначено для обеспечения в горячекатаном прокате толщиной 4,5-10 мм из стали трубного сортамента, имеющей пониженное содержание углерода и микролегированной ниобием, механических свойств, соответствующих классу прочности Х52. Способ включает нагрев сляба под горячую прокатку,...
Тип: Изобретение
Номер охранного документа: 0002373003
Дата охранного документа: 20.11.2009
19.06.2019
№219.017.8837

Способ производства углеродистой конструкционной листовой стали

Изобретение относится к прокатному производству, в частности к изготовлению холоднокатаной листовой стали с глянцевой поверхностью. Для повышения потребительских свойств листвой стали с содержанием углерода 0,07…0,14 мас.% проводят холодную прокатку полос на непрерывном стане в насеченных...
Тип: Изобретение
Номер охранного документа: 0002365635
Дата охранного документа: 27.08.2009
19.06.2019
№219.017.89e1

Способ производства толстолистового проката из свариваемой хромомарганцевой стали

Изобретение относится к черной металлургии и термической обработке и может быть использовано при получении высокопрочной листовой низколегированной стали для металлоконструкций, эксплуатируемых в районах Крайнего Севера. Способ включает непрерывную разливку стали в слябы, их нагрев,...
Тип: Изобретение
Номер охранного документа: 0002455105
Дата охранного документа: 10.07.2012
29.06.2019
№219.017.9c49

Способ производства горячекатаного подката стальной полосы толщиной 1,8-2,0 мм для эмалирования

Изобретение относится к области металлургии, в частности к технологии получения горячекатаного подката тонких толщин из стали для последующей переработки в холоднокатаную полосу для эмалирования. Для улучшения потребительских свойств при получении эмалированной полосы за счет исключения дефекта...
Тип: Изобретение
Номер охранного документа: 0002392335
Дата охранного документа: 20.06.2010
29.06.2019
№219.017.9def

Способ производства рулонов горячекатаной трубной стали

Изобретение предназначено для повышения выхода годного металлопроката толщиной 6-14 мм из трубных марок при производстве широких горячекатаных полос. Способ включает горячую прокатку полосы до требуемой конечной толщины на широкополосном стане горячей прокатки с охлаждением ее поверхности водой...
Тип: Изобретение
Номер охранного документа: 0002379139
Дата охранного документа: 20.01.2010
29.06.2019
№219.017.a0ef

Способ производства рулонов горячекатаной трубной стали

Изобретение предназначено для выравнивания механических свойств стали при производстве прокаткой широких горячекатаных полос, преимущественно из трубных марок стали класса прочности Х65. Способ включает выплавку, разливку стали с получением кристаллизованного сляба, его горячую прокатку с...
Тип: Изобретение
Номер охранного документа: 0002430799
Дата охранного документа: 10.10.2011
+ добавить свой РИД