×
20.04.2023
223.018.4cda

Результат интеллектуальной деятельности: Способ легирования кристаллов сульфида цинка железом или хромом

Вид РИД

Изобретение

Аннотация: Изобретение относится к области выращивания кристаллов. Способ легирования кристаллов сульфида цинка железом или хромом включает смешивание порошков сульфида цинка и порошка моносульфида легирующего металла с последующим выращиванием кристалла из расплава вертикальной зонной плавкой. Способ позволяет получать кристаллы ZnS с однородным распределением легирующей добавки по их длине и концентрацией легирующего металла (железа или хрома), совпадающей с его содержанием в исходной загрузке. 1 ил., 1 табл., 6 пр.

Изобретение относится к области выращивания кристаллов.

Кристаллы сульфида цинка, легированные железом или хромом применяются для изготовления пассивных модуляторов в резонаторах лазеров ближнего инфракрасного диапазона, а также для изготовления активных элементов таких лазеров.

Известен способ легирования кристаллов селенида цинка и сульфида цинка железом [S. Mirov, A. Gallian, A. Martinez, V. Fedorov. Saturable absorbers for Q- switching of middle infrared laser cavities. Patent Application Publication US 2080101423 A1] - аналог, в котором на поверхность кристаллического ZnSe или ZnS наносится пленка железа, а собственно легирование производится путем диффузионного отжига. К недостаткам этого способа можно отнести неоднородное распределение легирующей добавки по толщине изделия, характерное для диффузионных методов легирования, а также сложность многостадийного процесса, включающего рост кристалла, нанесение пленки железа и собственно диффузионное легирование.

Известен способ легирования кристаллов халькогенидов цинка хромом или железом [С.С.Балабанов, Е.М. Гаврищук, В.Б. Иконников, С.А. Родин, Д.В. Савин. Способ получения легированных халькогенидов цинка. Международная заявка WO 2016024877 А1]-прототип, в котором на поверхность халькогенида цинка наносят пленку хрома или железа, затем на этой пленке формируют слой халькогенида цинка методом химического осаждения из газовой фазы и полученную трехслойную структуру подвергают диффузионному отжигу. Основной недостаток этого способа - неоднородное распределение легирующей добавки по толщине изделия, характерное для диффузионных методов легирования. В легированных железом кристаллах сульфида цинка, полученных по способу-прототипу, отношение текущей концентрации металла (железа или кобальта) Сme к максимальной Сmax меняется на два порядка от края изделия к его середине даже при небольшой (5-8 мм) толщине изделия. К недостаткам способа-прототипа следует отнести и сложность многостадийного процесса.

Задачей предлагаемого решения является создание способа легирования кристаллов сульфида цинка железом или хромом, в котором распределение легирующей добавки в кристалле является однородным.

Поставленная задача решается в предлагаемом способе легирования кристаллов сульфида цинка железом или хромом за счет того, что легирующий металл добавляют в порошок сульфида цинка в виде порошка моносульфида железа или моносульфида хрома, а затем проводят выращивание кристалла вертикальной зонной плавкой.

Введение легирующих добавок в виде моносульфидов металлов обеспечивает валовое содержание железа или хрома в кристаллах совпадающее с содержанием добавок в исходной загрузке, что подтверждается данными, приведенными в Таблице, где концентрация Fe и Сr во всех случаях измерена в центре кристалла (как по длине, так и по радиусу). Это обусловлено близкими скоростями испарения ZnS, FeS и CrS, что предотвращает концентрирование или разбавление лигатуры в процессе роста за счет потерь ZnS на испарение, характерных для роста кристаллов ZnS из расплава.

Применение вертикальной зонной плавки позволяет выращивать кристаллы без радиального распределения легирующей добавки. При этом эффективные коэффициенты распределения железа, хрома и кобальта при вертикальной зонной плавке невелики, что обеспечивает не более чем двукратное изменение концентрации по длине кристалла в направлении роста, что экспериментально подтверждено в кристаллах длиной до 200 мм и диаметром до 40 мм.

Пример 1.

Порошки ZnS и FeS смешивают таким образом, чтобы концентрация железа в загрузке составляла 2,5×1017 см3. Полученную смесь порошков загружают в тигель и помещают в установку для выращивания кристаллов. Проводят процесс вертикальной зонной плавки. Выращенный кристалл извлекают, в середине кристалла (по длине) вырезают пластину толщиной 2 мм, которую полируют с двух сторон. Снимают спектр пропускания инфракрасного излучения пластинки и рассчитывают коэффициент поглощения на длине волны 2,8 мкм. Определяют концентрацию железа по зависимости коэффициента поглощения от концентрации. Найденная величина концентрации составляет 2,61×1017 см-3 (Таблица, строка 1).

Пример 2.

Порошки ZnS и FeS смешивают таким образом, чтобы концентрация железа в за- грузке составляла 5,0×1018 см3. Полученную смесь порошков загружают в тигель и помещают в установку для выращивания кристаллов. Проводят процесс вертикальной зонной плавки. Выращенный кристалл извлекают, в середине кристалла (по длине) вырезают пластину толщиной 1 мм, которую полируют с двух сторон. Снимают спектр пропускания инфракрасного излучения пластинки и рассчитывают коэффициент поглощения на длине волны 2,8 мкм. Определяют концентрацию железа по зависимости коэффициента поглощения от концентрации. Найденная величина концентрации составляет 5,28×1018 см-3 (Таблица, строка 2).

Пример 3.

Порошки ZnS и FeS смешивают таким образом, чтобы концентрация железа в загрузке составляла 1,0×1019 см3. Полученную смесь порошков загружают в тигель и помещают в установку для выращивания кристаллов. Проводят процесс вертикальной зонной плавки. Выращенный кристалл извлекают, в середине кристалла (по длине) вырезают пластину толщиной 0,5 мм, которую полируют с двух сторон. Снимают спектр пропускания инфракрасного излучения пластинки и рассчитывают коэффициент поглощения на длине волны 2,8 мкм. Определяют концентрацию железа по зависимости коэффициента поглощения от концентрации. Найденная величина концентрации составляет 1,21×1019 см3 (Таблица, строка 3).

Пример 4.

Порошки ZnS и CrS смешивают таким образом, чтобы концентрация хрома в загрузке составляла 2,5×1017 см3. Полученную смесь порошков загружают в тигель и помещают в установку для выращивания кристаллов. Проводят процесс вертикальной зонной плавки. Выращенный кристалл извлекают, в середине кристалла (по длине) вырезают пластину толщиной 2 мм, которую полируют с двух сторон. Снимают спектр пропускания инфракрасного излучения пластинки и рассчитывают коэффициент поглощения на длине волны 1,7 мкм. Определяют концентрацию хрома по зависимости коэффициента поглощения от концентрации. Найденная величина концентрации составляет 2,58×1017 см-3 (Таблица, строка 4).

Пример 5.

Порошки ZnS и CrS смешивают таким образом, чтобы концентрация хрома в загрузке составляла 5×1018 см3. Полученную смесь порошков загружают в тигель и помещают в установку для выращивания кристаллов. Проводят процесс вертикальной зонной плавки. Выращенный кристалл извлекают, в середине кристалла (по длине) вырезают пластину толщиной 1 мм, которую полируют с двух сторон. Снимают спектр пропускания инфракрасного излучения пластинки и рассчитывают коэффициент поглощения на длине волны 1,7 мкм. Определяют концентрацию хрома по зависимости коэффициента поглощения от концентрации. Найденная величина концентрации составляет 5,21×1018 см-3 (Таблица, строка 5).

Пример 6.

Порошки ZnS и CrS смешивают таким образом, чтобы концентрация хрома в загрузке составляла 1,0×1019 см3. Полученную смесь порошков загружают в тигель и помещают в установку для выращивания кристаллов. Проводят процесс вертикальной зонной плавки. Выращенный кристалл извлекают, в середине кристалла (по длине) вырезают пластину толщиной 0,5 мм, которую полируют с двух сторон. Снимают спектр пропускания инфракрасного излучения пластинки и рассчитывают коэффициент поглощения на длине волны 1,7 мкм. Определяют концентрацию хрома по зависимости коэффициента поглощения от концентрации. Найденная величина концентрации составляет 1,19×1019 см-3 (Таблица, строка 6). На Фиг. 1 показаны (а) полированный образец из полученного кристалла ZnS:Cr и (б) оптические элементы, изготовленные из этого кристалла.

Способ легирования кристаллов сульфида цинка железом или хромом, отличающийся тем, что легирующий металл добавляют в порошок сульфида цинка в виде порошка моносульфида железа или моносульфида хрома, а затем проводят выращивание кристалла вертикальной зонной плавкой.
Источник поступления информации: Роспатент

Showing 51-60 of 91 items.
19.07.2019
№219.017.b631

Способ получения кристаллов cdas

Изобретение относится к области выращивания кристаллов диарсенида трикадмия. Кристаллы CdAs получают кристаллизацией капель расплава стехиометрического состава, свободно падающих в атмосфере аргона, находящегося под давлением 5±0,5 МПа, причем градиент температуры на пути падения капель...
Тип: Изобретение
Номер охранного документа: 0002694768
Дата охранного документа: 16.07.2019
17.08.2019
№219.017.c102

Детектор субтерагерцового излучения на основе графена

Изобретение относится к области детекторов электромагнитного излучения в терагерцовом диапазоне частот с использованием нелинейного плазменного отклика двумерной электронной системы. Сущность изобретения: детектор на основе графена, содержащий нелинейный элемент на наноструктуре с двумерной...
Тип: Изобретение
Номер охранного документа: 0002697568
Дата охранного документа: 15.08.2019
02.10.2019
№219.017.cd28

Шнековый дозатор порошков тугоплавких металлов

Изобретение относится к устройствам для подачи порошков тугоплавких металлов и может быть использовано в различных отраслях промышленности, где требуется прецизионная подача порошков. Задачей настоящего изобретения является разработка шнекового дозатора порошков тугоплавких металлов для...
Тип: Изобретение
Номер охранного документа: 0002701277
Дата охранного документа: 25.09.2019
03.10.2019
№219.017.d196

Способ изготовления образцов фуллерена с для спектроскопии

Изобретение относится к области исследования и анализа материалов и может быть использовано в инфракрасной спектроскопии. Образцы фуллерена C для съемки спектров пропускания инфракрасного излучения изготавливают механическим втиранием порошка C в полированную поверхность бромида калия. Способ...
Тип: Изобретение
Номер охранного документа: 0002701823
Дата охранного документа: 01.10.2019
03.10.2019
№219.017.d1c0

Искусственный эритроцинкит

Изобретение относится к искусственным ювелирным кристаллам. Предлагается искусственный эритроцинкит, имеющий в своем составе сульфид цинка, сульфид марганца и сульфид алюминия при следующем соотношении компонентов, мас.%: сульфид алюминия AlS - 0,001-0,01, сульфид марганца MnS - 0,2-0,5,...
Тип: Изобретение
Номер охранного документа: 0002701822
Дата охранного документа: 01.10.2019
04.10.2019
№219.017.d219

Тигель для выращивания кристаллов халькогенидов металлов вертикальной зонной плавкой

Изобретение относится к устройствам для выращивания кристаллов халькогенидов металлов: ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, вертикальной зонной плавкой, осуществляемой путем перемещения тигля через неподвижно закрепленный нагреватель. Графитовый тигель состоит из корпуса и крышки 1, имеющей...
Тип: Изобретение
Номер охранного документа: 0002701832
Дата охранного документа: 01.10.2019
04.10.2019
№219.017.d285

Способ получения кристаллов cosns

Изобретение относится к технологии выращивания кристаллов CoSnS, которые могут быть использованы в области экспериментальной физики как полуметаллический ферромагнетик, обладающий также свойствами полуметалла Вейля. Способ получения кристаллов CoSnS в вакуумированной ампуле из расплава...
Тип: Изобретение
Номер охранного документа: 0002701915
Дата охранного документа: 02.10.2019
26.10.2019
№219.017.db19

Способ пастилляции селенида цинка

Изобретение относится к технологии получения селенида цинка – широкозонного полупроводника, применяемого в технике в виде объемных поли- и монокристаллов, а также тонких пленок, получаемых термическим распылением кристаллической крошки, для которого наиболее подходящим является материал с...
Тип: Изобретение
Номер охранного документа: 0002704191
Дата охранного документа: 24.10.2019
19.12.2019
№219.017.ef3e

Устройство для измерения поверхностного натяжения расплавов сталагмометрическим методом

Устройство относится к измерительной технике для физических исследований свойств жидкостей. Устройство позволяет измерять поверхностное натяжение химически агрессивных расплавов тугоплавких веществ с высокими (больше 0,1 МПа) давлениями собственных паров над жидкой фазой, находящихся в инертной...
Тип: Изобретение
Номер охранного документа: 0002709422
Дата охранного документа: 17.12.2019
21.12.2019
№219.017.f00f

Способ электроэрозионной обработки поверхности молибдена

Изобретение относится к электроэрозионной обработке поверхности металлов и сплавов, используемой для повышения твердости, жаропрочности и коррозионной стойкости деталей машин. Предложен способ получения покрытия из карбида молибдена на детали из молибдена, включающий электроэрозионную обработку...
Тип: Изобретение
Номер охранного документа: 0002709548
Дата охранного документа: 18.12.2019
Showing 41-49 of 49 items.
20.04.2023
№223.018.4abb

Устройство защиты цепей питания постоянного тока от короткого замыкания

Изобретение относится к электротехнике и может использоваться в силовой электронике для повышения надежности работы цепей питания постоянного тока напряжением 310 В при работе на индуктивную нагрузку. Технический результат достигается за счет того, что в схеме прототипа драйвер «нижнего плеча»...
Тип: Изобретение
Номер охранного документа: 0002778553
Дата охранного документа: 22.08.2022
20.04.2023
№223.018.4c95

Способ легирования кристаллов селенида цинка хромом

Изобретение относится к области выращивания кристаллов. Способ легирования кристаллов селенида цинка хромом включает смешивание порошков селенида цинка и легирующей добавки и последующее выращивание кристалла из расплава под давлением аргона, при этом хром вводится в исходную загрузку в виде...
Тип: Изобретение
Номер охранного документа: 0002751059
Дата охранного документа: 07.07.2021
21.04.2023
№223.018.4fc4

Способ синтеза шпинели ganbse

Изобретение может быть использовано при создании мемристивных структур на основе шпинелей семейства «изоляторов Мотта». Способ синтеза шпинели GaNbSe из элементарных веществ включает твердофазную химическую реакцию в вакуумированной и герметично запаянной кварцевой ампуле. Твердофазную...
Тип: Изобретение
Номер охранного документа: 0002745973
Дата охранного документа: 05.04.2021
14.05.2023
№223.018.56cc

Осевой неразгруженный компенсатор

Изобретение относится к технологическому оборудованию, предназначенному для выращивания кристаллов халькогенидов в условиях микрогравитации – важном направлении в космическом материаловедении. Осевой компенсатор пружинно-поршневого типа содержит неразгруженный компенсирующий элемент,...
Тип: Изобретение
Номер охранного документа: 0002732334
Дата охранного документа: 15.09.2020
15.05.2023
№223.018.5c25

Сверхпроводящая цепь с эффектом близости

Устройство относится к сверхпроводящим цепям с эффектом близости, позволяющим управлять спектром связанных Андреевских состояний. Предлагается сверхпроводящая цепь с эффектом близости, включающая монокристаллическую пластину силицида кобальта CoSi, ориентированную в кристаллографической...
Тип: Изобретение
Номер охранного документа: 0002753673
Дата охранного документа: 19.08.2021
15.05.2023
№223.018.5c26

Сверхпроводящая цепь с эффектом близости

Устройство относится к сверхпроводящим цепям с эффектом близости, позволяющим управлять спектром связанных Андреевских состояний. Предлагается сверхпроводящая цепь с эффектом близости, включающая монокристаллическую пластину силицида кобальта CoSi, ориентированную в кристаллографической...
Тип: Изобретение
Номер охранного документа: 0002753673
Дата охранного документа: 19.08.2021
15.05.2023
№223.018.5c68

Опора тигля для выращивания кристаллов

Изобретение относится к оборудованию для выращивания кристаллов прямоугольной формы из расплава. Опора тигля выполнена в виде прямоугольного в поперечном сечении корпуса 1 с посадкой для установки тигля на опору 6 и посадкой для установки опоры на шток 5, и имеющего сквозные пазы 4,...
Тип: Изобретение
Номер охранного документа: 0002759623
Дата охранного документа: 16.11.2021
16.05.2023
№223.018.5ecf

Электродуговой способ получения слитков timnal

Изобретение относится к области металлургии, в частности к получению сплава Гейслера в виде слитков, пригодных для изучения свойств спин-поляризованного бесщелевого полупроводника TiMnAl. Способ получения слитков сплава TiMnAl из смеси алюминия, марганца и титана включает подготовку смеси...
Тип: Изобретение
Номер охранного документа: 0002754540
Дата охранного документа: 03.09.2021
16.05.2023
№223.018.6357

Электродуговой способ получения прецизионного сплава timnal

Изобретение относится к области металлургии прецизионных сплавов и может быть использовано для получения сплава Гейслера. Осуществляют сплавление смеси порошков алюминия, марганца и титана в гарнисаже плазмой дугового разряда напряжением от 65 до 70 В и током от 8 до 10 А в атмосфере гелия...
Тип: Изобретение
Номер охранного документа: 0002776576
Дата охранного документа: 22.07.2022
+ добавить свой РИД