×
20.04.2023
223.018.4c47

Результат интеллектуальной деятельности: Способ формирования пористого покрытия на рельефной поверхности

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу напыления трехмерных капиллярно-пористых (ТКП) покрытий на предварительно сформированную рельефную поверхность и может быть использовано в инженерной практике для повышения эффективности теплообмена на поверхности нагретых узлов в условиях смены агрегатного состояния хладагента, для формирования поверхностей носителей катализатора и для очистки жидкостей. Способ формирования металлического пористого покрытия на рельефной поверхности металлических деталей, работающих в условиях смены агрегатного состояния хладагента, включает формирование на поверхности детали рельефа путем создания прорезей в двух взаимно перпендикулярных направлениях, при этом в одном из направлений боковые поверхности рельефа наклонены под углами от 50 до 80° к его опорной поверхности, а плазменное покрытие в виде гребней и впадин напыляют под углом 90° к опорной поверхности рельефа. Изобретение направлено на повышение величины нормированной контактной поверхности. 4 пр., 4 ил.

Изобретение относится к области металлургии, а более конкретно к формированию рельефной пористой поверхности плазменным напылением и может быть использовано для повышения эффективности теплообмена на поверхности нагретых деталей и узлов в условиях смены агрегатного состояния хладагента, для формирования поверхностей носителей катализатора и для очистки жидкостей.

Известен способ нанесения пористого покрытия (Патент RU 623944 С1), когда покрытие наносится на базовую поверхность подложки сначала под углом 90°, а на второй стадии с углом меньшим 45° к ней. В этом случае на подложке формируется трехмерное капиллярно-пористое (ТКП) покрытие с бимодальной пористостью от 10 до 60%. Такие покрытия состоят из гребней и впадин с высотой равной толщине покрытия. Основной объем порового пространства этих покрытий составляют впадины с шириной от 50 до 600 мкм. Боковые стенки гребней содержат капилляры с размером менее 10 мкм. Недостатком данного способа напыления является невозможность формирования дополнительного пористого пространства с порами большего размера.

Известен способ плазменного напыления покрытий из проволоки (Рис. 1 позиция 1) на поверхность с локальным рельефом, который сформирован прорезями имеющими профиль типа «ласточкиного хвоста», полученными механической обработкой (Рис. 1 позиция 2) (Hoffmeister Н. W., Schnell С.Mechanical roughing of cylinder bores in light metal crankcases //Production Engineering. - 2008. - T. 2. - №. 4. - C. 365-370. Bobzin K. et al. Development of novel Fe-based coating systems for internal combustion engines //Journal of Thermal Spray Technology. - 2018. - T. 27. - №. 4. - C. 736-745.). Данный рельеф формируется для увеличения прочности соединения изделия с напыленным покрытием до 60 МПа. Глубина рельефа до напыления имеет размер 100-120 мкм. Углы наклона поверхности рельефа у его вершины составляют от 24 до 33°, а у основания 103-110°, относительно опорной поверхности рельефа. Ширина рельефа у основания 130-140 мкм, а ширина канавки между соседними элементами рельефа 170-190 мкм. Недостатком данного способа нанесения покрытий является невозможность формирования капиллярно-пористого покрытия на боковых поверхностях рельефа, так как они не образуют углов менее 45° относительно вектора движения напыляемых частиц.

Известна рельефная поверхность с покрытием, интенсифицирующая теплообмен при смене агрегатного состояния хладоагента (Авторское свидетельство SU1788425 А1). Рельеф формируется в виде ребер (Рис. 2, позиция 1), верхние части боковых поверхностей которых имеют однородное пористое покрытие (Рис. 2, позиция 2) с толщиной, переменной по высоте ребер, с увеличением толщины покрытия вершине ребра, а нижние части боковых поверхностей ребер снабжены микрорельефом (Рис. 2, позиция 3). Боковые поверхности ребер, на которые наносятся покрытия, имеют углы меньшие 90° относительно опорной поверхности рельефа. Опорная поверхность рельефа совпадает с базовой поверхности изделия. Поверхности покрытия на боковых поверхностях ребер перпендикулярны базовой поверхности изделия. В итоге поверхность изделия имеет два вида пористого пространства, бимодальная пористость: пористость покрытия на боковой поверхности ребер и пространство между ребрами.

Этот источник является наиболее близким к способу формирования пористого покрытия на рельефной поверхности для формирования развитой поверхности изделия, его взяли в качестве прототипа.

Способ формирования пористости на рельефной поверхности, реализуемый в прототипе имеет недостатки, пористое покрытие, сформированное таким способом, состоит из равномерно распределенных плотных частиц и пор, а толщина пористого покрытие увеличивается по мере удаления от опорной поверхности рельефа. Такое пористое покрытие имеет небольшую величину контактной поверхности, не более чем в 1,5 раза превышающую площадь опорной поверхности, на которой сформировано покрытие. Это снижает эффективность отвода тепла от изделия. Такая пористая структура недостаточно эффективна, например, в процессе теплообмена, так через такую пористую структуру должен одновременно происходить подвод к изделию жидкого хладагента и обратный выброс газовой фазы из пористого пространства. Создание микрорельефа у основания ребер, требует дополнительной сложной механической обработки.

Задачей изобретения является: создание способа формирования пористого покрытия с большей величиной нормированной контактной поверхности на поверхности с предварительно сформированным рельефом.

Техническим результатом изобретения является: трехмерное капиллярно -пористое (ТКП) покрытие на рельефе, сформированном до напыления и образованном двумя рядами прорезей во взаимно перпендикулярных направлениях, в одном из рядов боковые поверхности наклонены под углами от 50° до 80° к опорной поверхности рельефа. ТКП покрытие состоит из гребней, высота которых равна толщине покрытия, и впадин между ними. У такого покрытия величина нормированной контактной поверхности повышается в 7-14 раз по отношению к опорной поверхности.

Технический результат достигается тем, что рельеф формируется прорезями в двух взаимно перпендикулярных направлениях, в одном из направлений боковые поверхности наклонены под углами от 50° до 80° к опорной поверхности рельефа, а покрытие в виде гребней и впадин напыляют под углом 90° к опорной поверхности рельефа.

Сущность получаемого технического результата заключается в том, что предварительный рельеф формируется рядами взаимно перпендикулярных прорезей (Рис. 3, параметры b и с), в одном из направлений боковые поверхности наклонены под углами от 50° до 80° (Рис. 3, параметр α) к опорной поверхности рельефа (Рис. 3, позиция 1). Процесс напыления ведут при угле 90° между траекторией движения напыляемых частиц и опорной поверхностью рельефа. Угол наклона боковых поверхностей рельефа от 50° до 80° определяет угол соударения напыляемых частиц с боковой поверхностью рельефа 40°-10°. При таких углах соударения за затвердевшими на боковых поверхностях рельефа частицами образуются теневые зоны, куда не могут попасть следующие напыляемые частицы. Из теневых зон формируются впадины ТКП покрытия (Рис. 4, позиция 1), а на уже закрепившихся на боковых поверхностях рельефа частицах осаждаются новые частицы и растут гребни (Рис. 4, позиция 2). Высота гребней и впадин равна толщине покрытия (Рис. 4, параметр δ). В результате пористость в ТКП покрытии формируется за счет объема впадин и капилляров между частицами покрытия, сформированных в боковых стенках гребней (Рис. 4, позиция 3). Впадины служат для подвода жидкого хладагента и удаления паровой фазы. Капилляры удерживают жидкую фазу и таким образом интенсифицируют теплообмен. Количественно рост эффективности теплообмена характеризуется увеличением нормированной контактной поверхности ТКП покрытия (отношения площади поверхности ТКП покрытия контактирующей с хладагентом к площади боковой поверхности рельефа, на который было нанесено покрытие) со значения 1,5 в прототипе и до 7-14 в данном изобретении.

Пример 1. Покрытие из бронзового порошка ПР-БрМц9-2 фракционного состава 20-32 мкм напыляли на латунную трубку с предварительно нанесенным на нее поверхностным рельефом двумя рядами взаимно перпендикулярных прорезей, в одном из которых угол наклона боковых поверхностей к базовой поверхности рельефа α=50°, высота рельефа h=0,1 мм, расстояние между элементами рельефа b=0,1 мм, с=0,5 мм. Отношение h/b=1.

Эффективная мощность плазменной струи 5,6 кВт, расход плазмообразующего газа Ar+10%N2 34 л/мин. На боковых поверхностях рельефа сформировалось ТКП покрытие толщиной 5=0,075 мм. Величина нормированной контактной поверхности ТКП покрытия равна 7.

Пример 2. Покрытие из порошка нержавеющей стали Х18Н25 фракционного состава 32-56 мкм напыляли на медный цилиндр с предварительно нанесенным на него поверхностным рельефом из прорезей в двух взаимно перпендикулярных направлениях, в одном из направлений угол наклона боковых поверхностей к базовой поверхности рельефа α=80°, высота рельефа h=1 мм, расстояние между элементами рельефа b=0,5 мм, с=0,5 мм. Отношение h/b=2. Эффективная мощность плазменной струи 5,6 кВт, расход плазмообразующего газа Ar+10%N2 34 л/мин. На боковых поверхностях рельефа сформировалось пористое покрытие толщиной δ=0,150 мм. Величина нормированной контактной поверхности ТКП покрытия равна 14.

Пример 3. Покрытие из бронзового порошка ПР-БрМц9-2 фракционного состава 20-32 мкм напыляли на алюминиевую трубку с предварительно нанесенным на нее поверхностным рельефом из прорезей в двух взаимно перпендикулярных направлениях, на одном из которых угол наклона боковых поверхностей к базовой поверхности рельефа α=60°, высота рельефа h=3 мм, расстояние между элементами рельефа b=1 мм с=1 мм. Отношение h/b=3. Эффективная мощность плазменной струи 4,8 кВт, расход плазмообразующего газа Ar+10%N2 20 л/мин. На боковых поверхностях рельефа сформировалось пористое покрытие толщиной δ=0,315 мм. Величина нормированной контактной поверхности ТКП покрытия равна 9.

Пример 4. Покрытие из бронзового порошка ПР-БрМц9-2 фракционного состава 71-100 мкм напыляли на латунную трубку с предварительно нанесенным на нее поверхностным рельефом из прорезей в двух взаимно перпендикулярных направлениях, на одном из которых угол наклона боковых поверхности к базовой поверхности рельефа α=75°, высота рельефа h=3,0 мм, расстояние между элементами рельефа b=0,1 мм с=0,5 мм. Отношение h/b=30. Эффективная мощность плазменной струи 8,5 кВт, расход плазмообразующего газа Ar+10%N2 34 л/мин. На боковых поверхностях рельефа сформировалось пористое покрытие толщиной δ=0,075 мм. Величина нормированной контактной поверхности ТКП покрытия равна 12.

Способ формирования металлического пористого покрытия на рельефной поверхности металлических деталей, работающих в условиях смены агрегатного состояния хладагента, включающий плазменное нанесение металлического покрытия на поверхность металлической детали с предварительно нанесенным на нее рельефом, отличающийся тем, что рельеф формируют путем создания прорезей в двух взаимно перпендикулярных направлениях, при этом в одном из направлений боковые поверхности рельефа наклонены под углами от 50 до 80° к его опорной поверхности, а плазменное покрытие в виде гребней и впадин напыляют под углом 90° к опорной поверхности рельефа.
Источник поступления информации: Роспатент

Showing 91-100 of 108 items.
21.07.2020
№220.018.3528

Способ изготовления сосудистого импланта из сплавов с эффектом памяти формы, сплетенного единой нитью

Изобретение относится к области медицины, а именно к рентгеноэндоваскулярной дилатации. Способ изготовления сосудистого импланта из сплавов с эффектом памяти формы, сплетенного единой нитью, включает автоматизированное плетение импланта на оправку модифицированным намоточным станком по...
Тип: Изобретение
Номер охранного документа: 0002727031
Дата охранного документа: 17.07.2020
20.04.2023
№223.018.4b20

Способ получения материала ионотранспортной мембраны

Изобретение относится к способу получения материала ионотранспортной мембраны, включающему твердофазный синтез BiErO в течение 20 часов при 800°С из оксидов BiO и ErO, синтез AgO осаждением из водного раствора нитрата серебра и горячее прессование шихты BiErO, AgO и металлического индия в среде...
Тип: Изобретение
Номер охранного документа: 0002775471
Дата охранного документа: 01.07.2022
20.04.2023
№223.018.4b25

Способ спекания смеси порошков alo и aln

Изобретение относится к технологии получения поликристаллической керамики на основе оксинитрида алюминия с достаточной степенью прозрачности в оптическом диапазоне, которая может быть использована в производстве защитных устройств, электронике и других областях техники. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002775445
Дата охранного документа: 30.06.2022
20.04.2023
№223.018.4b7e

Сварочная проволока с высоким содержанием азота

Изобретение может быть использовано для ручной сварки в среде защитных газов деталей и конструкций из немагнитных высокопрочных аустенитных сталей с высокими концентрациями азота, например в нефтегазовой, судостроительной или машиностроительной промышленности. Сварочная проволока содержит...
Тип: Изобретение
Номер охранного документа: 0002768949
Дата охранного документа: 25.03.2022
20.04.2023
№223.018.4ca5

Способ получения 21r-сиалоновой керамики

Изобретение относится к получению 21R-сиалоновой керамики, которую используют в качестве режущих пластин для резки металлов и в других областях при износе и ударе. Порошок 21R-сиалона, полученного методом самораспространяющегося высокотемпературного синтеза, и спекающую добавку в виде смеси...
Тип: Изобретение
Номер охранного документа: 0002757607
Дата охранного документа: 19.10.2021
22.04.2023
№223.018.514d

Устройство для получения металлических порошков сферической формы

Изобретение относится к порошковой металлургии, а именно к устройствам для получения металлических порошков сферической формы методом плазменной атомизации проволоки. Устройство состоит из источника питания, камеры распыления с водным охлаждением, емкости для сбора порошка, установленной в...
Тип: Изобретение
Номер охранного документа: 0002794209
Дата охранного документа: 12.04.2023
17.05.2023
№223.018.64a8

Способ получения керамики на основе оксинитрида алюминия

Изобретение относится к способам получения керамики на основе оксинитрида алюминия, которая может быть использована для изготовления режущего инструмента, огнеупоров и материалов в металлургической промышленности, инфракрасных и видимых окон, а также для прозрачной брони. Заявляемый способ...
Тип: Изобретение
Номер охранного документа: 0002794376
Дата охранного документа: 17.04.2023
21.05.2023
№223.018.6837

Способ оценки длины волокна заготовки при плоском деформированном состоянии

Изобретение относится к области обработки металлов давлением, а именно к способу оценки длины волокна при плоском деформированном состоянии. Способ оценки длины волокна заготовки при плоском деформированном состоянии заключается в том, что осуществляют деформацию заготовки в рамках исследуемого...
Тип: Изобретение
Номер охранного документа: 0002794566
Дата охранного документа: 21.04.2023
21.05.2023
№223.018.6984

Способ получения антибактериальных металлических фильтров из сферического порошка коррозионно-стойкой стали с серебром

Изобретение относится к области металлургии. Способ получения антибактериальных металлических фильтров включает выплавку слитка коррозионно-стойкой стали 03Х17Н10М2 с добавлением 0,2 мас.% серебра, гомогенизационный отжиг слитков, первичную деформацию литых заготовок, ротационную ковку,...
Тип: Изобретение
Номер охранного документа: 0002794905
Дата охранного документа: 25.04.2023
01.06.2023
№223.018.7486

Способ получения керамического образца на основе β-трикальцийфосфата с использованием метода стереолитографии для восстановления костной ткани

Изобретение относится к медицине, в частности биокерамическим материалам, предназначенным для изготовления костных имплантатов и/или замещения дефектов при различных костных патологиях. Технический результат изобретения - получение керамических образцов на основе β-трикальцийфосфата с общей...
Тип: Изобретение
Номер охранного документа: 0002729761
Дата охранного документа: 12.08.2020
Showing 31-32 of 32 items.
01.06.2023
№223.018.74c6

Способ упрочнения цилиндрического изделия с покрытием поверхностно-пластическим деформированием

Изобретение относится к области металлургии, а более конкретно к формированию коррозионно- и износостойких покрытий с высокой плотностью и твердостью. Способ упрочнения цилиндрического изделия с покрытием поверхностно-пластическим деформированием включает равномерное перемещение покрытия...
Тип: Изобретение
Номер охранного документа: 0002765559
Дата охранного документа: 01.02.2022
19.06.2023
№223.018.824f

Способ получения мезопористых порошков гидроксиапатита методом химического соосаждения

Изобретение относится к методу получения мезопористых порошков гидроксиапатита, применяемых в катализе. Описан способ получения мезопористых порошков гидроксиапатита методом химического соосаждения, включающий приготовление растворов нитрата кальция и фосфата аммония, перемешивание раствора...
Тип: Изобретение
Номер охранного документа: 0002797213
Дата охранного документа: 31.05.2023
+ добавить свой РИД