×
20.04.2023
223.018.4c47

Результат интеллектуальной деятельности: Способ формирования пористого покрытия на рельефной поверхности

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу напыления трехмерных капиллярно-пористых (ТКП) покрытий на предварительно сформированную рельефную поверхность и может быть использовано в инженерной практике для повышения эффективности теплообмена на поверхности нагретых узлов в условиях смены агрегатного состояния хладагента, для формирования поверхностей носителей катализатора и для очистки жидкостей. Способ формирования металлического пористого покрытия на рельефной поверхности металлических деталей, работающих в условиях смены агрегатного состояния хладагента, включает формирование на поверхности детали рельефа путем создания прорезей в двух взаимно перпендикулярных направлениях, при этом в одном из направлений боковые поверхности рельефа наклонены под углами от 50 до 80° к его опорной поверхности, а плазменное покрытие в виде гребней и впадин напыляют под углом 90° к опорной поверхности рельефа. Изобретение направлено на повышение величины нормированной контактной поверхности. 4 пр., 4 ил.

Изобретение относится к области металлургии, а более конкретно к формированию рельефной пористой поверхности плазменным напылением и может быть использовано для повышения эффективности теплообмена на поверхности нагретых деталей и узлов в условиях смены агрегатного состояния хладагента, для формирования поверхностей носителей катализатора и для очистки жидкостей.

Известен способ нанесения пористого покрытия (Патент RU 623944 С1), когда покрытие наносится на базовую поверхность подложки сначала под углом 90°, а на второй стадии с углом меньшим 45° к ней. В этом случае на подложке формируется трехмерное капиллярно-пористое (ТКП) покрытие с бимодальной пористостью от 10 до 60%. Такие покрытия состоят из гребней и впадин с высотой равной толщине покрытия. Основной объем порового пространства этих покрытий составляют впадины с шириной от 50 до 600 мкм. Боковые стенки гребней содержат капилляры с размером менее 10 мкм. Недостатком данного способа напыления является невозможность формирования дополнительного пористого пространства с порами большего размера.

Известен способ плазменного напыления покрытий из проволоки (Рис. 1 позиция 1) на поверхность с локальным рельефом, который сформирован прорезями имеющими профиль типа «ласточкиного хвоста», полученными механической обработкой (Рис. 1 позиция 2) (Hoffmeister Н. W., Schnell С.Mechanical roughing of cylinder bores in light metal crankcases //Production Engineering. - 2008. - T. 2. - №. 4. - C. 365-370. Bobzin K. et al. Development of novel Fe-based coating systems for internal combustion engines //Journal of Thermal Spray Technology. - 2018. - T. 27. - №. 4. - C. 736-745.). Данный рельеф формируется для увеличения прочности соединения изделия с напыленным покрытием до 60 МПа. Глубина рельефа до напыления имеет размер 100-120 мкм. Углы наклона поверхности рельефа у его вершины составляют от 24 до 33°, а у основания 103-110°, относительно опорной поверхности рельефа. Ширина рельефа у основания 130-140 мкм, а ширина канавки между соседними элементами рельефа 170-190 мкм. Недостатком данного способа нанесения покрытий является невозможность формирования капиллярно-пористого покрытия на боковых поверхностях рельефа, так как они не образуют углов менее 45° относительно вектора движения напыляемых частиц.

Известна рельефная поверхность с покрытием, интенсифицирующая теплообмен при смене агрегатного состояния хладоагента (Авторское свидетельство SU1788425 А1). Рельеф формируется в виде ребер (Рис. 2, позиция 1), верхние части боковых поверхностей которых имеют однородное пористое покрытие (Рис. 2, позиция 2) с толщиной, переменной по высоте ребер, с увеличением толщины покрытия вершине ребра, а нижние части боковых поверхностей ребер снабжены микрорельефом (Рис. 2, позиция 3). Боковые поверхности ребер, на которые наносятся покрытия, имеют углы меньшие 90° относительно опорной поверхности рельефа. Опорная поверхность рельефа совпадает с базовой поверхности изделия. Поверхности покрытия на боковых поверхностях ребер перпендикулярны базовой поверхности изделия. В итоге поверхность изделия имеет два вида пористого пространства, бимодальная пористость: пористость покрытия на боковой поверхности ребер и пространство между ребрами.

Этот источник является наиболее близким к способу формирования пористого покрытия на рельефной поверхности для формирования развитой поверхности изделия, его взяли в качестве прототипа.

Способ формирования пористости на рельефной поверхности, реализуемый в прототипе имеет недостатки, пористое покрытие, сформированное таким способом, состоит из равномерно распределенных плотных частиц и пор, а толщина пористого покрытие увеличивается по мере удаления от опорной поверхности рельефа. Такое пористое покрытие имеет небольшую величину контактной поверхности, не более чем в 1,5 раза превышающую площадь опорной поверхности, на которой сформировано покрытие. Это снижает эффективность отвода тепла от изделия. Такая пористая структура недостаточно эффективна, например, в процессе теплообмена, так через такую пористую структуру должен одновременно происходить подвод к изделию жидкого хладагента и обратный выброс газовой фазы из пористого пространства. Создание микрорельефа у основания ребер, требует дополнительной сложной механической обработки.

Задачей изобретения является: создание способа формирования пористого покрытия с большей величиной нормированной контактной поверхности на поверхности с предварительно сформированным рельефом.

Техническим результатом изобретения является: трехмерное капиллярно -пористое (ТКП) покрытие на рельефе, сформированном до напыления и образованном двумя рядами прорезей во взаимно перпендикулярных направлениях, в одном из рядов боковые поверхности наклонены под углами от 50° до 80° к опорной поверхности рельефа. ТКП покрытие состоит из гребней, высота которых равна толщине покрытия, и впадин между ними. У такого покрытия величина нормированной контактной поверхности повышается в 7-14 раз по отношению к опорной поверхности.

Технический результат достигается тем, что рельеф формируется прорезями в двух взаимно перпендикулярных направлениях, в одном из направлений боковые поверхности наклонены под углами от 50° до 80° к опорной поверхности рельефа, а покрытие в виде гребней и впадин напыляют под углом 90° к опорной поверхности рельефа.

Сущность получаемого технического результата заключается в том, что предварительный рельеф формируется рядами взаимно перпендикулярных прорезей (Рис. 3, параметры b и с), в одном из направлений боковые поверхности наклонены под углами от 50° до 80° (Рис. 3, параметр α) к опорной поверхности рельефа (Рис. 3, позиция 1). Процесс напыления ведут при угле 90° между траекторией движения напыляемых частиц и опорной поверхностью рельефа. Угол наклона боковых поверхностей рельефа от 50° до 80° определяет угол соударения напыляемых частиц с боковой поверхностью рельефа 40°-10°. При таких углах соударения за затвердевшими на боковых поверхностях рельефа частицами образуются теневые зоны, куда не могут попасть следующие напыляемые частицы. Из теневых зон формируются впадины ТКП покрытия (Рис. 4, позиция 1), а на уже закрепившихся на боковых поверхностях рельефа частицах осаждаются новые частицы и растут гребни (Рис. 4, позиция 2). Высота гребней и впадин равна толщине покрытия (Рис. 4, параметр δ). В результате пористость в ТКП покрытии формируется за счет объема впадин и капилляров между частицами покрытия, сформированных в боковых стенках гребней (Рис. 4, позиция 3). Впадины служат для подвода жидкого хладагента и удаления паровой фазы. Капилляры удерживают жидкую фазу и таким образом интенсифицируют теплообмен. Количественно рост эффективности теплообмена характеризуется увеличением нормированной контактной поверхности ТКП покрытия (отношения площади поверхности ТКП покрытия контактирующей с хладагентом к площади боковой поверхности рельефа, на который было нанесено покрытие) со значения 1,5 в прототипе и до 7-14 в данном изобретении.

Пример 1. Покрытие из бронзового порошка ПР-БрМц9-2 фракционного состава 20-32 мкм напыляли на латунную трубку с предварительно нанесенным на нее поверхностным рельефом двумя рядами взаимно перпендикулярных прорезей, в одном из которых угол наклона боковых поверхностей к базовой поверхности рельефа α=50°, высота рельефа h=0,1 мм, расстояние между элементами рельефа b=0,1 мм, с=0,5 мм. Отношение h/b=1.

Эффективная мощность плазменной струи 5,6 кВт, расход плазмообразующего газа Ar+10%N2 34 л/мин. На боковых поверхностях рельефа сформировалось ТКП покрытие толщиной 5=0,075 мм. Величина нормированной контактной поверхности ТКП покрытия равна 7.

Пример 2. Покрытие из порошка нержавеющей стали Х18Н25 фракционного состава 32-56 мкм напыляли на медный цилиндр с предварительно нанесенным на него поверхностным рельефом из прорезей в двух взаимно перпендикулярных направлениях, в одном из направлений угол наклона боковых поверхностей к базовой поверхности рельефа α=80°, высота рельефа h=1 мм, расстояние между элементами рельефа b=0,5 мм, с=0,5 мм. Отношение h/b=2. Эффективная мощность плазменной струи 5,6 кВт, расход плазмообразующего газа Ar+10%N2 34 л/мин. На боковых поверхностях рельефа сформировалось пористое покрытие толщиной δ=0,150 мм. Величина нормированной контактной поверхности ТКП покрытия равна 14.

Пример 3. Покрытие из бронзового порошка ПР-БрМц9-2 фракционного состава 20-32 мкм напыляли на алюминиевую трубку с предварительно нанесенным на нее поверхностным рельефом из прорезей в двух взаимно перпендикулярных направлениях, на одном из которых угол наклона боковых поверхностей к базовой поверхности рельефа α=60°, высота рельефа h=3 мм, расстояние между элементами рельефа b=1 мм с=1 мм. Отношение h/b=3. Эффективная мощность плазменной струи 4,8 кВт, расход плазмообразующего газа Ar+10%N2 20 л/мин. На боковых поверхностях рельефа сформировалось пористое покрытие толщиной δ=0,315 мм. Величина нормированной контактной поверхности ТКП покрытия равна 9.

Пример 4. Покрытие из бронзового порошка ПР-БрМц9-2 фракционного состава 71-100 мкм напыляли на латунную трубку с предварительно нанесенным на нее поверхностным рельефом из прорезей в двух взаимно перпендикулярных направлениях, на одном из которых угол наклона боковых поверхности к базовой поверхности рельефа α=75°, высота рельефа h=3,0 мм, расстояние между элементами рельефа b=0,1 мм с=0,5 мм. Отношение h/b=30. Эффективная мощность плазменной струи 8,5 кВт, расход плазмообразующего газа Ar+10%N2 34 л/мин. На боковых поверхностях рельефа сформировалось пористое покрытие толщиной δ=0,075 мм. Величина нормированной контактной поверхности ТКП покрытия равна 12.

Способ формирования металлического пористого покрытия на рельефной поверхности металлических деталей, работающих в условиях смены агрегатного состояния хладагента, включающий плазменное нанесение металлического покрытия на поверхность металлической детали с предварительно нанесенным на нее рельефом, отличающийся тем, что рельеф формируют путем создания прорезей в двух взаимно перпендикулярных направлениях, при этом в одном из направлений боковые поверхности рельефа наклонены под углами от 50 до 80° к его опорной поверхности, а плазменное покрытие в виде гребней и впадин напыляют под углом 90° к опорной поверхности рельефа.
Источник поступления информации: Роспатент

Showing 1-10 of 108 items.
20.06.2013
№216.012.4b44

Композиционный материал на основе кальцийфосфатного цемента для заполнения костных дефектов

Изобретение относится к области медицины и касается цементных материалов для пластической реконструкции поврежденных костных тканей. Композиционный материал выполнен на основе реакционно-твердеющей смеси порошков: трикальцийфосфата, содержащих частицы гидроксиапатита размером от 38 до 220 мкм....
Тип: Изобретение
Номер охранного документа: 0002484850
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.4fa1

Пористый кальций-фосфатный цемент

Изобретение относится к медицине. Описан пористый кальций-фосфатный гидравлический цемент для восстановления костных тканей, содержащий порошок β-трикальцийфосфата, монокальцийфосфата моногидрата, затворяющую жидкость, представляющую собой 7-9%-ный водный раствор лимонной кислоты, а также...
Тип: Изобретение
Номер охранного документа: 0002485978
Дата охранного документа: 27.06.2013
10.10.2013
№216.012.732b

Способ термической обработки деформируемых магнитотвердых сплавов на основе системы железо-хром-кобальт

Изобретение относится к области металлургии, в частности к обработке магнитотвердых сплавов на основе системы Fe-Cr-Co, которые применяются в приборостроении, релейной технике, электромашиностроении, медицине, автомобильной промышленности и т.д. Для повышения коэрцитивной силы изделий из...
Тип: Изобретение
Номер охранного документа: 0002495140
Дата охранного документа: 10.10.2013
27.12.2013
№216.012.8fe0

Брушитовый гидравлический цемент (варианты)

Изобретение относится к медицине. Описан брушитовый гидравлический цемент для восстановления костных тканей, содержащий порошок α-трикальцийфосфата и затворяющую жидкость, представляющую собой раствор фосфата магния в фосфорной кислоте, где цементный порошок содержит гранулы карбоната кальция...
Тип: Изобретение
Номер охранного документа: 0002502525
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.8fe1

Покрытие на имплант из титана и его сплавов и способ его приготовления

Изобретение относится к области медицины. Описано покрытие на имплант из титана и его сплавов, состоящее из двух слоев. Первый слой состоит из оксидов титана, в основном TiO, второй слой состоит из оксида алюминия гамма-модификации, общая толщина двухслойного покрытия составляет от 40 до 180...
Тип: Изобретение
Номер охранного документа: 0002502526
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.9004

Способ приготовления катализатора для очистки отработавших газов двигателей внутреннего сгорания и катализатор, полученный этим способом

Изобретение относится к способам получения блочных катализаторов, катализаторам очистки отработавших газов (ОГ) двигателей внутреннего сгорания (ДВС). Описан способ приготовления катализатора для очистки ОГ ДВС, в котором для нанесения промежуточного покрытия и активной фазы используют водную...
Тип: Изобретение
Номер охранного документа: 0002502561
Дата охранного документа: 27.12.2013
10.02.2014
№216.012.9e48

Способ получения мезопористого наноразмерного порошка диоксида церия (варианты)

Изобретение относится к химической промышленности, к производству наноразмерных порошков оксидов металлов для мелкозернистой керамики широкого спектра. Способ получения порошка диоксида церия включает стадии: получение водного 0,05М раствора нитрата церия или ацетата церия, используя Се(NО)·6НO...
Тип: Изобретение
Номер охранного документа: 0002506228
Дата охранного документа: 10.02.2014
10.04.2014
№216.012.b16d

Способ термической обработки магнитотвердых сплавов системы железо-хром-кобальт

Изобретение относится к области металлургии, в частности к производству магнитотвердых сплавов на основе системы Fe-Cr-Co, которые применяются в приборостроении, релейной технике, электромашиностроении, медицине, автомобильной промышленности. Для повышения остаточной индукции сплав...
Тип: Изобретение
Номер охранного документа: 0002511136
Дата охранного документа: 10.04.2014
20.04.2014
№216.012.b9ef

Способ переработки лопаритового концентрата

Изобретение относится к переработке лопаритового концентрата. Заявляемый способ пирометаллургической переработки лопаритового концентрата включает три этапа: восстановительный, плавильный и окислительный. Восстановительный этап включает углетермическое восстановление концентрата при...
Тип: Изобретение
Номер охранного документа: 0002513327
Дата охранного документа: 20.04.2014
20.05.2014
№216.012.c4fc

Высокоазотистая мартенситная никелевая сталь

Изобретение относится к области металлургии, а именно к высокопрочной мартенситной стали, используемой для изготовления высоконагруженных изделий криогенной техники. Сталь содержит следующие компоненты, в мас.%: углерод 0,02-0,06, хром 1,5-2,0, никель 8,5-10,5, азот 0,08-0,22, марганец 0,3-0,6,...
Тип: Изобретение
Номер охранного документа: 0002516187
Дата охранного документа: 20.05.2014
Showing 1-10 of 32 items.
20.02.2013
№216.012.26d5

Способ получения пористой керамики из гидроксиапатита, обладающей антимикробной активностью

Разработан способ получения пористой керамики из гидроксиапатита, обладающей антимикробной активностью, для использования в реконструктивно-пластической хирургии и стоматологии при замещении костных дефектов. Способ включает синтез цинк-, медь-, железо- или сереброзамещенного гидроксиапатита из...
Тип: Изобретение
Номер охранного документа: 0002475461
Дата охранного документа: 20.02.2013
20.06.2013
№216.012.4b44

Композиционный материал на основе кальцийфосфатного цемента для заполнения костных дефектов

Изобретение относится к области медицины и касается цементных материалов для пластической реконструкции поврежденных костных тканей. Композиционный материал выполнен на основе реакционно-твердеющей смеси порошков: трикальцийфосфата, содержащих частицы гидроксиапатита размером от 38 до 220 мкм....
Тип: Изобретение
Номер охранного документа: 0002484850
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.4fa1

Пористый кальций-фосфатный цемент

Изобретение относится к медицине. Описан пористый кальций-фосфатный гидравлический цемент для восстановления костных тканей, содержащий порошок β-трикальцийфосфата, монокальцийфосфата моногидрата, затворяющую жидкость, представляющую собой 7-9%-ный водный раствор лимонной кислоты, а также...
Тип: Изобретение
Номер охранного документа: 0002485978
Дата охранного документа: 27.06.2013
27.09.2013
№216.012.6f09

Способ упрочнения пористой кальцийфосфатной керамики

Изобретение относится к композиционным материалам на основе кальцийфосфатной керамики с улучшенными прочностными характеристиками и может быть использовано для заполнения костных дефектов в травматологии и ортопедии, челюстно-лицевой хирургии и хирургической стоматологии. Для получения...
Тип: Изобретение
Номер охранного документа: 0002494076
Дата охранного документа: 27.09.2013
27.12.2013
№216.012.8fe0

Брушитовый гидравлический цемент (варианты)

Изобретение относится к медицине. Описан брушитовый гидравлический цемент для восстановления костных тканей, содержащий порошок α-трикальцийфосфата и затворяющую жидкость, представляющую собой раствор фосфата магния в фосфорной кислоте, где цементный порошок содержит гранулы карбоната кальция...
Тип: Изобретение
Номер охранного документа: 0002502525
Дата охранного документа: 27.12.2013
27.07.2014
№216.012.e5c8

Способ увеличения прочности цементов для медицины

Изобретение относится к области медицины и касается цементных материалов для пластической реконструкции поврежденных костных тканей. Описаны кальцийфосфатные цементные материалы, которые получают на основе порошков тетракальциевого фосфата и/или трикальцийфосфата. В качестве цементной жидкости...
Тип: Изобретение
Номер охранного документа: 0002524614
Дата охранного документа: 27.07.2014
27.04.2015
№216.013.46d6

Состав жидкости для получения пористых керамических образцов на основе фосфатов кальция для костной инженерии при 3d формовании и/или 3d печати

Изобретение относится к материалам, пригодным для метода 3D формования и/или 3D печати, и может быть использовано для получения формованных изделий на основе фосфатов кальция, применяемых в медицине для костной инженерии в качестве матриксов, обладающих биологической совместимостью и...
Тип: Изобретение
Номер охранного документа: 0002549638
Дата охранного документа: 27.04.2015
10.07.2015
№216.013.5cff

Способ получения пористых керамических гранул на основе карбоната кальция и гидроксиапатита и/или карбонатгидроксиапатита для заполнения костных дефектов при реконструктивно-пластических операциях

Изобретение относится к области медицины и касается керамических материалов для реконструктивно-пластических операций при поврежденных костных тканях. Описаны материалы на основе системы карбонат кальция - гидроксиапатит и/или каронатгидроксиапатит, содержащие от 20 до 80 масс. % карбоната...
Тип: Изобретение
Номер охранного документа: 0002555348
Дата охранного документа: 10.07.2015
27.05.2016
№216.015.42be

Способ получения биодеградируемого полимерного покрытия с контролируемым выходом лекарственного средства для малоинвазивной хирургии

Изобретение относится к медицине, а именно малоинвазивной медицине. Способ получения биодеградируемого полимерного покрытия для контролируемого выхода лекарственного средства включает растворение хитозана в кислотах, добавление лекарственного средства, окунание проволоки из никелида титана в...
Тип: Изобретение
Номер охранного документа: 0002585576
Дата охранного документа: 27.05.2016
13.01.2017
№217.015.71fd

Способ получения керамики на основе октакальциевого фосфата

Группа изобретений относится к области изготовления керамических материалов для замещения дефектов костных тканей в области ортопедии, стоматологии, челюстно-лицевой хирургии, нейрохирургии, онкологии. Предлагается способ изготовления керамического материала фазового состава: 80-100 масс. %...
Тип: Изобретение
Номер охранного документа: 0002596504
Дата охранного документа: 10.09.2016
+ добавить свой РИД