×
12.04.2023
223.018.446c

Результат интеллектуальной деятельности: СПОСОБ ФОРМИРОВАНИЯ ОПОРНОЙ ЧАСТИ СКАФФОЛДА ДЛЯ БИОФАБРИКАЦИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к тканевой инженерии и регенеративной медицине и раскрывает способ формирования опорной части скаффолда для биофабрикации, включающий создание 3D-модели и её печать с использованием экструзионного биопринтинга. Способ характеризуется тем, что в качестве основного материала используют коллаген, а в качестве опорного материала используют желатин, опору модели скаффолда формируют на основе срезов в горизонтальной плоскости, для каждого среза создают объем от начала сечения до основания модели и получают общую модель для двух материалов, далее посредством булевой операции вычитают основную модель из общей формы для двух материалов и получают модель опорной части скаффолда, опору удаляют в ходе инкубации при 37°C. Способ позволяет получать устойчивую конструкцию в ходе печати, воспроизводить заданную геометрию и может быть использован для создания тканеинженерных конструкций, где основной материал требует точки опоры. 5 ил, 3 пр., 1 табл.

Изобретение относится к тканевой инженерии и регенеративной медицине, и может быть использовано для создания тканеинженерных конструкций, где основной материал требует точки опоры.

В последние годы трехмерная 3D-биопечать стала широко использоваться в тканевой инженерии. Появилось несколько методов биопечати для изготовления искусственных тканей и органов с точным позиционированием биоматериалов, биомолекул и клеток. Одним из наиболее распространенных методов печати является экструзионная 3D-печать.

Известен вариант использования жертвенного материала для изготовления микрососудистых сетей в гидрогелевой матрице с применением метода всенаправленной печати (ODP), который значительно расширяет пространство проектирования сети, устраняя необходимость в послойном структурировании (Wu et al. Omnidirectional printing of 3D microvascular networks / Wu W, DeConinck A, Lewis JA // 2011.Adv. 23(24):H178-83). При таком подходе жертвенные нити печатаются в фотоотверждаемом резервуаре с гелем, а после печати удаляются под действием вакуума.

Известен способ изготовления скаффолда (Bhattacharjee, T. et al. Writing in the granular gel medium/ Bhattacharjee T, Zehnder SM, Rowe KG, Jain S, Nixon RM, Sawyer WG, Angelini TE // 2015. Sci Adv. 1(8), e1500655) c использованием в качестве поддерживающей матрицы гранулированной гелевой среды Carbopol для печати тонких колец флуоресцентно меченных эндотелиальных клеток.

Наиболее близким к заявляемому изобретению является способ, предложенный Hinton и соавт. (Hinton, TJ. et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels / Hinton TJ, Jallerat Q, Palchesko RN, Park JH, Grodzicki MS, Shue HJ, Ramadan MH, Hudson AR, Feinberg AW// Sci Adv. 2015. 1(9): e1500758) с применением метода печати, который называется обратимым встраиванием суспендированных гидрогелей (FRESH) в произвольной форме. То есть происходило встраивание печатного гидрогеля во вторичный гидрогель, который служит временной термообратимой и биосовместимой опорой. Данный метод печати позволяет использовать мягкие материалы, которые разрушились бы при печати на воздухе. Таким образом были получены сложные 3D-отпечатки альгината, фибрина, матригеля и коллагена, а также перфузионная модель дерева правой коронарной артерии и трабекулированное сердце куриного эмбриона.

Недостатком всех выше представленных способов являются большие затраты жертвенного материала, кроме того трение внутри гелевой среды может исказить печать.

В результате поиска по источникам патентной и научно-технической информации не выявлено сведений о способе формирования опорной части скаффолда для биофабрикации с использованием экструзионного биопринтинга.

Технический результат направлен на печать изделия с использованием опорного каркаса для укрепления конструкции в местах «свисания» основного материала.

Указанный технический результат при осуществлении изобретения достигается за счет того, что так же как и в известном способе создают 3D-модель и осуществляют печать с применением основного и жертвенного материала.

Особенностью заявляемого способа является то, что для печати 3D-модели используют экструзионный биопринтинг с двумя и более диспенсерами, где в качестве «основного» материала используют любой материал в состоянии геля, а в качестве «жертвенного» - материал, способный сохранять свойства геля и легко удаляемый при t 37°С, причем «жертвенную» часть модели скаффолда формируют на основе срезов с шагом от 0,5-8 мм в горизонтальной плоскости, после чего каждый срез «выдавливают» до основания модели и получают общую модель для двух материалов, далее посредством булевой операции вычитают основную модель из общей формы для двух материалов и получают модель опорной части скаффолда, перед биофабрикацией проводят модификацию толщины стенок опоры в областях, где она меньше диаметра сопла, опорную часть конструкции располагают в местах свисания «основного» материала, а «жертвенный» элемент удаляют в ходе инкубации при 37°C.

Изобретение поясняется подробным описанием, примерами использования и иллюстрациями, на которых изображено:

Фиг. 1 – Полученная модель щитовидного хряща: a) Объект в формате твердого тела; b, c) Положение мест планируемых опор (отмечено светло серым).

Фиг. 2 – Алгоритм создания опор: a) Создание срезов; b) Создание объема от каждого сечения до основания детали; c) Итоговая модель опоры, полученная вычитанием модели из фигуры на фиг. 2b.

Фиг. 3 – Скаффолд щитовидного хряща сразу после окончания печати.

Фиг. 4 – Влияние количества срезов на качество опорной части скаффолда: a) Зависимость объема опорной части и количества полигонов от шага срезов модели щитовидного хряща в диапазоне 0.5÷8 мм; b) Изменение (увеличение) объема опоры с каждым новым срезом (шаг 2 мм), размер (площадь) каждого среза.

Фиг. 5 – Оценка толщины стенок опоры и варианты ее оптимизации: a, b, c) Участки стенки опоры толщиной менее 0,52 см для вариантов с различным шагом срезов 0,5, 2,0 и 8 соответственно; d, e, f, g) Результат применения процедур 1, 2 и 3 для варианта опоры с шагом среза 2,0 мм (b).

Способ осуществляют следующим образом.

Получают необходимую 3D-модель (Фиг. 1a) и проводят её обработку и модификацию для печати двумя материалами: основным и опорным (жертвенным) (Фиг.1 b, c). Для формирования опорной части скаффолда используют проекции в плоскости XY модели. Для создания опорной части скаффолда были сделаны срезы модели (Фиг.2a). Каждый срез «выдавливают» до основания модели (Фиг.2b) и получают общую модель для двух материалов. Посредством булевой операции вычитают основную модель из общей формы для двух материалов и получают модель опорной части скаффолда (Фиг.2c). Для оптимизации процесса печати (время печати, количество материала) опорную часть конструкции располагают в местах «свисания» основного материал (Фиг. 1 b, c). Опорную часть конструкции (жертвенный элемент) удаляют в ходе инкубации при 37°C.

Таким образом, предложенный способ позволяет получать устойчивую конструкцию в ходе печати и воспроизведение заданной геометрии хряща после биофабрикации.

Предлагаемый способ подтверждается конкретными примерами использования.

Пример 1.

Тестирование описанного подхода проводилось печатью бесклеточного скаффолда щитовидного хряща в масштабе 1:2. Печать осуществляли двумя материалами: основным (коллаген) и опорным (желатин). Полученный скаффолд представлен на Фиг. 3. Слева от основного изделия расположен дополнительный элемент, необходимый для сброса давления в шприце с материалом при смене печатающих головок. Напечатанный скаффолд в целом соответствует заданной модели щитовидного хряща. Опора из желатина хорошо визуализирована на Фиг.3 и обеспечивает поддержку основной части конструкции из коллагена.

Пример 2.

Опорная часть скаффолда была сформирована через множество поперечных срезов каркаса (Фиг. 2). В зависимости от заданной модели количество срезов может варьироваться в сторону большей точности, или сокращения времени создания опоры. Данные по влиянию количества срезов на качество получаемых опор представлены на Фиг. 4. Можно отметить, что с увеличением количества срезов объем опорной части так же увеличивается, то есть наблюдается линейная зависимость.

Анализ влияния каждого среза (Фиг. 4b) на формирование опорной части скаффолда показал, что наибольший прирост объема опоры происходит за счет двух групп срезов. Первая из них находится в диапазоне 2÷6 мм и отвечает за основание опоры. Вторая группа срезов (12÷24 мм) вносит свой вклад за счет наклона стенок щитовидного хряща. Меньший вклад имеет группа срезов в диапазоне 30÷34 мм, однако она отвечает за важный участок модели: нависающие элементы в верхней части щитовидного хряща, которые особенно нуждаются в поддержке.

Наиболее целесообразно использовать шаг 2 мм, поскольку это позволит получить качественную опору с меньшими затратами по времени. Использование меньшего шага значительно увеличило бы время создания модели опоры, её печати и ужесточило требования к применяемым вычислительным средствам (ЭВМ, программное обеспечение).

Пример 3.

Обработка опоры включала в себя модификацию ширины стенок. Процесс формирования опоры мог привести к формированию областей со слишком тонкими стенками (меньше диаметра сопла дозатора). В этом случае слайсинг модели перед печатью пройдет с ошибками, что в конечном счете приведет к областям, где основной материал не будет иметь поддержки. На иллюстрации (Фиг. 5a, b) представлен анализ посредством ПО Meshmixer для изделия с различным шагом срезов. Несоответствие по минимальной ширине стенки характерно для всех вариантов опоры. Для решения этого вопроса были применены три варианта процедур (См. табл.).

Таблица

Параметры перевода в твердое тело посредством ПО Meshmixer

Процедура Значение точности Плотность сетки Минимальная толщина, мм
1 128 128 0.52
2 128 128 1.03
3 96 512 0.52

Согласно таблице процедуры 1 и 3 включали в себя требование к минимальной толщине на уровне диаметра сопла (два диаметра сопла в случае процедуры 2). Значение точности «Значение точности» в случае процедуры 3 так же соответствовало диаметру сопла (96 единиц – 0,517 мм). Полученные данные представлены на Фиг. 5 d, e, f. Все подходы позволяли значительно улучшить толщину стенки. В случае процедуры 2 это приводило к нежелательному утолщению опоры в верхней части: имеет место наложение материала опоры на основной материал модели. Получение опоры по процедуре 3 приводило к необоснованному усложнению модели (количество полигонов увеличилось в 15 раз). Был рассмотрен еще один вариант оптимизации: повторное применение процедуры 1 (Фиг. 5g). В этом случае эффект был наилучшим и не сопряжен с усложнением модели опоры. Можно отметить, что все указанные процедуры не сопровождались значительным изменением объема опоры. В зависимости от задач, которые ставятся перед печатью, проблема излишне тонких стенок может оказаться нерешенной.

Таким образом, предложенный способ позволяет осуществлять печать изделия с использованием опорного каркаса для укрепления конструкции в местах «свисания» основного материала. Способ предоставляет возможность получать устойчивую конструкцию в ходе печати и воспроизводить заданную геометрию.

Способ формирования опорной части скаффолда для биофабрикации, включающий создание 3D-модели и её печать с использованием экструзионного биопринтинга, отличающийся тем, что для печати используют экструзионный биопринтинг с двумя и более диспенсерами, где в качестве основного материала используют коллаген, а в качестве опорного материала используют желатин, причем опору модели скаффолда формируют на основе срезов в горизонтальной плоскости, после чего для каждого среза создают объем от начала сечения до основания модели и получают общую модель для двух материалов, далее посредством булевой операции вычитают основную модель из общей формы для двух материалов и получают модель опорной части скаффолда, перед биофабрикацией проводят модификацию толщины стенок опоры в областях, где она меньше диаметра сопла, каждый слой основного материала ложится либо на печатный столик, либо на слой основного или опорного материала (напечатанных ранее), опору удаляют в ходе инкубации при 37°C.
Источник поступления информации: Роспатент

Showing 111-120 of 188 items.
23.08.2019
№219.017.c310

Радиофармацевтический препарат для терапии первичной гепатоцеллюлярной карциномы и метастатических образований в печень, а также состав и способ его получения

Группа изобретений относится к области ядерной медицины. Набор для приготовления суспензии полипептидных биодеградабельных микрочастиц для проведения трансартериальной радиоэмболизации капилляров печени, находящихся в изотоническом 0,9% водном растворе хлорида натрия, меченных изотопом рения,...
Тип: Изобретение
Номер охранного документа: 0002698111
Дата охранного документа: 22.08.2019
23.08.2019
№219.017.c346

Радиофармацевтическая композиция для терапии воспалительных заболеваний суставов на основе радионуклида 188re и микросфер альбумина крови человека, а также состав и способ её получения

Группа изобретений относится к области ядерной медицины. Набор для приготовления суспензии полипептидных биодеградабельных микрочастиц для радиосиновэктомии, находящихся в изотоническом 0,9%-ном водном растворе хлорида натрия, меченных изотопом рения, состоит из вспомогательных реагентов:...
Тип: Изобретение
Номер охранного документа: 0002698101
Дата охранного документа: 22.08.2019
27.08.2019
№219.017.c3d3

Фрикционный гаситель колебаний тележки грузового вагона

Изобретение относится к железнодорожному транспорту, в частности к фрикционным гасителям колебаний тележек грузовых вагонов. Гаситель колебаний содержит рессорный комплект и два фрикционных клина. Клинья расположены в карманах надрессорной балки и состоят из двух зеркальных частей. На боковые...
Тип: Изобретение
Номер охранного документа: 0002698273
Дата охранного документа: 23.08.2019
29.08.2019
№219.017.c45c

Способ фиксации бедренной части модульного эндопротеза к вертлужной впадине

Изобретение относится к медицине, к травматологии и ортопедии, а именно к реконструктивной хирургии, и может быть использовано для фиксации бедренной части модульного эндопротеза. Лавсановую нить в проксимальном отделе фиксируют к модульному эндопротезу вертлужной впадины и троекратно...
Тип: Изобретение
Номер охранного документа: 0002698450
Дата охранного документа: 26.08.2019
29.08.2019
№219.017.c48a

Способ реконструкции комбинированного дефекта подвздошной области

Изобретение относится к медицине, а именно к хирургии, и может быть применимо для реконструкции комбинированного дефекта подвздошной области. Формируют каркас брюшной стенки пролен-викриловой сеткой. Пролен-викриловую сетку винтообразно фиксируют в крыло подвздошной кости при помощи трех или...
Тип: Изобретение
Номер охранного документа: 0002698415
Дата охранного документа: 26.08.2019
18.10.2019
№219.017.d81e

Способ комбинированного лечения больных нерезектабельным раком внепеченочных желчных протоков

Изобретение относится к медицине, а именно к хирургии, гепатологии, онкологии, и может быть использовано для комбинированного лечения больных нерезектабельным раком внепеченочных желчных протоков. Для этого проводят курсы системной химиотерапии с использованием препаратов платины,...
Тип: Изобретение
Номер охранного документа: 0002703330
Дата охранного документа: 16.10.2019
26.10.2019
№219.017.dae9

Способ неоадъювантного термохимиолучевого лечения рака прямой кишки

Изобретение относится к медицине, а именно к лучевой терапии, и может быть использовано для неоадъювантного термохимиолучевого лечения рака прямой кишки. Проводят лучевую терапию с фракционированием дозы в разовой очаговой дозе (РОД) 2 Гр до суммарной очаговой дозы (СОД) 50 Гр в течение 5...
Тип: Изобретение
Номер охранного документа: 0002704205
Дата охранного документа: 24.10.2019
07.11.2019
№219.017.dedc

Способ лечения плоскоклеточного рака полости рта и глотки в сочетании с лучевым и лекарственным воздействием

Изобретение относится к области медицины, а именно к способам лечения плоскоклеточного рака полости рта и глотки в сочетании с лучевым и лекарственным воздействием. Способ включает введение цисплатина с первого дня в виде внутривенной инфузии в дозе 100 мг/м 1 раз в 3 недели в сочетании с...
Тип: Изобретение
Номер охранного документа: 0002705109
Дата охранного документа: 05.11.2019
08.11.2019
№219.017.df07

Способ одномоментной реконструкции молочной железы при раке с использованием аллоимплантата на основе твердой мозговой оболочки и силиконового эндопротеза

Изобретение относится к медицине, а именно к реконструктивно-пластическим хирургии молочной железы. Большую грудную мышцу мобилизуют путем отсечения от нижнего края ее прикрепления, латеральнее до уровня, соответствующего 9 часам по циферблату. Нижнелатеральную часть большой грудной мышцы...
Тип: Изобретение
Номер охранного документа: 0002705265
Дата охранного документа: 06.11.2019
08.11.2019
№219.017.df24

Способ оценки эффективности неоадъювантной химиолучевой терапии больных раком прямой кишки

Изобретение относится к медицине и может быть использовано для оценки результата лечения онкологических больных при использовании неоадьювантной химиолучевой терапии (НХЛТ) больных раком прямой кишки. Для текстурного анализа используют MP-изображения в режиме Т2-ВИ в аксиальной плоскости на...
Тип: Изобретение
Номер охранного документа: 0002705257
Дата охранного документа: 06.11.2019
+ добавить свой РИД