×
12.04.2023
223.018.4324

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ МЕТИОНИНА В МОДЕЛЬНЫХ ВОДНЫХ РАСТВОРАХ МЕТОДОМ ЦИКЛИЧЕСКОЙ ВОЛЬТАМПЕРОМЕТРИИ НА ГРАФИТОВОМ ЭЛЕКТРОДЕ, МОДИФИЦИРОВАННОМ КОЛЛОИДНЫМИ ЧАСТИЦАМИ ПАЛЛАДИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к аналитической химии. Способ определения метионина в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модифицированном коллоидными частицами палладия, включает модифицирование графитового электрода коллоидными частицами палладия из золя палладия в течение 60 с при потенциале накопления -1,0 В с последующей регистрацией катодных максимумов при скорости изменения потенциалов 100 мВ/с на фоне 0,1 М раствора NaCl в диапазоне потенциалов от -0,8 до 1,0 В. Концентрацию метионина определяют по величине катодных максимумов вольтамперных кривых в диапазоне потенциалов от минус 0,30 до минус 0,60 В относительно насыщенного хлоридсеребряного электрода методом добавок аттестованных смесей. Изобретение обеспечивает расширение диапазона определяемых концентраций от 1⋅10 до1⋅10моль/л и сокращение времени проведения анализа в 5 раз. 1 табл., 3 ил.

Изобретение относится к аналитической химии, а именно к способам определения содержания метионина в водных растворах методом циклической вольтамперометрии.

Известен способ определения метионина методом инверсионной вольтамперометрии на модифицированном углеродными нанотрубками, и пленкой витамином B12 углеродсодержащем электроде, основанный на реакции восстановления метионина до гомоцистеина в лекарственных препаратах. Предел обнаружения метионина составляет 1⋅10-7 моль/л. [Шелковников В.В., Алтыев А.М., Виноградов М.Е. Определение метионина в лекарственных препаратах методом инверсионной вольтамперометрии // Журнал аналитической химии. 2019. Т.74. №12. С. 934-940].

Недостатками данного способа является низкая чувствительность и узкий диапазон определяемых концентраций, составляющий 1,5 порядка, трудоемкость изготовления модифицированного электрода, использование графитовых нанотрубок, имеющих высокую стоимость. Известен способ определения метионина методом циклической вольтамперометрии в комбикормах [RU 2554280 C1, МПК G01N27/48 (2006.01), опубл.: 27.06.2015], включающий перевод вещества из пробы в раствор и проведение катодной вольтамперометрии на ртутно-пленочном электроде при потенциале -0,315 В относительно насыщенного хлорид-серебряного электрода на фоне боратного буферного раствора pH 9,18 при постоянно-токовой форме развертки потенциала со скоростью 0,06 В/с с областью определяемых содержаний метионина от 2,6⋅10-4 моль/л до 2,0⋅10-3 моль/л.

Недостатками данного способа является низкая чувствительность и узкий диапазон определяемых концентраций, равный одному порядку, использование токсичного элемента - ртути для модифицирования поверхности индикаторного ртутно-пленочного электрода.

Известен способ определения метионина в лекарственных формах [RU 2479840 C2, МПК G01N33/15 (2006.01), опубл. 20.04.2013], заключающийся в предварительном переводе анализируемого препарата в жидкую форму, помещении его в ячейку, содержащую определенное количество генерированного йода, полученного путем облучения стабилизированным источником света реакционной смеси, состоящей из 0,5М раствора йодида калия, буферного раствора и сенсибилизатора - эозината натрия, измерении силы тока в ячейке и по достижении постоянства тока продувании воздухом раствора в ячейке в течение 1-2 мин, облучении светом и измерении времени генерации, пошедшего на восполнение убыли йода, определении количества анализируемого препарата по калибровочному графику по изменению силы тока и времени генерации йода. Нижний предел определения метионина составляет 0,06 мкг.

Недостатками данного способа является использование йода, который в больших концентрациях токсичен для организма, а использование для генерации йода ультрафиолетового излучение опасно для органов зрения, что также приводит к образованию токсичного вещества первого класса опасности - озона.

Известен способ вольтамперометрического определения метионина с амперометрическим детектированием в условиях проточно-инжекционного определения в модельных водных растворах на поверхности стеклоуглеродного электрода, модифицированного пленкой политетрасульфофталоцианина никеля (II). Данный способ включает использование многостадийного процесса модифицирования индикаторного электрода сложными по составу веществами. Нижняя граница определения метионина равна 1⋅10-9 М. [Шайдарова Л.Г. и др. Электрокаталитическое окисление и проточно-инжекционное определение серосодержащих аминокислот на стеклоуглеродном электроде, модифицированном пленкой политетрасульфофталоцианина никеля (II) // Журнал аналитической химии. 2013. Т. 68. № 6. С. 596.].

Недостатком данного способа является низкая чувствительность, трудоемкость изготовления индикаторного электрода, включающая использование сложных по составу веществ и многостадийность процесса модифицирования.

Наиболее близким решением к предлагаемому является способ определения метионина в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модифицированном коллоидными частицами золота [RU 2586961 C1, МПК G01N27/48 (2006.01), опубл. 10.06.2016], заключающийся в том, что проводят модифицирование графитовых электродов коллоидными частицами золота из золя золота в течение 300 с при потенциале накопления -1,0 В с последующей регистрацией обратных пиков электроокисления метионина на катодной кривой при скорости изенения потенциала 100 мВ/с на фоне 0,1 M раствора NaOH в диапазоне потенциалов от -1,0 до 1,0 В. Концентрацию метионина определяют по величине обратных максимумов вольтамперных кривых в диапазоне потенциалов от минус 0,20 до плюс 0,10 В относительно насыщенного хлоридсеребряного электрода методом добавок аттестованных смесей.

Однако, известный способ позволяет определять содержание метионина при минимальной концентрации, равной 1⋅10-13 моль/л в пределах одного порядка, а модифицирование графитовых электродов коллоидными частицами золота (III) ведут в течение 300 с.

Техническим результатом изобретения является создание способа определения метионина в модельных растворах методом циклической вольтампермометрии на графитовом электроде, позволяющего расширить диапазон определяемых концентраций метионина и повысить экспрессность определения.

Предложенный способ определения метионина в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модифицированном коллоидными частицами палладия, заключается в том, что проводят модифицирование графитового электрода коллоидными частицами палладия из золя палладия в течение 60 с при потенциале накопления -1,0 В с последующей регистрацией катодных максимумов при скорости изменения потенциала 100 мВ/с на фоне 0,1 М раствора NaCl в диапазоне потенциалов от - 0,8 до 1,0 В. Концентрацию метионина определяют по величине катодных максимумов вольтамперных кривых в диапазоне потенциалов от минус 0,30 до минус 0,60 В относительно насыщенного хлоридсеребряного электрода методом добавок аттестованных смесей.

Предлагаемый вольтамперометрический способ позволил улучшить метрологические характеристики анализа метионина, расширить диапазон определяемых концентраций на два порядка от 1⋅10-12 до 1⋅10-10 моль/л и повысить экспрессность определения в 5 раз по сравнению с прототипом.

В таблице 1 показаны результаты определения метионина в модельных водных растворах методом циклической вольтамперомотрии на графитовом электроде, модифицированном коллоидными наночастицами палладия.

На фиг. 1 представлены катодные вольтамперные кривые метионина, полученные на графитовом электроде, предварительно электрохимически модифицированном коллоидными частицами палладия, где кривая 1 - фон 0,1 M NaCl, кривая 2 - CMet = 2⋅10-12 моль/л, кривая 3 - CMet = 4⋅10-12 моль/л.

На фиг. 2 представлены катодные вольтамперные кривые метионина, полученные на графитовом электроде, предварительно электрохимически модифицированном коллоидными частицами палладия, где кривая 1 - фон физиологический раствор, кривая 2 - CMet = 5⋅10-11 моль/л, кривая 3 - CMet = 10⋅10-11 моль/л.

На фиг. 3 представлены катодные вольтамперные кривые метионина, полученные на графитовом электроде, предварительно электрохимически модифицированном коллоидными частицами палладия, где кривая 1 - фон физиологический раствор, кривая 2 - CMet = 1⋅10-10 моль/л, кривая 3 - CMet = 2⋅10-10 моль/л.

Пример 1. Измерения были проведены в модельном водном растворе. Графитовый электрод помещали в электрохимическую ячейку (кварцевый стаканчик), заполненную 10 мл золя палладия (мольное соотношение PdCl2:Na3C6H5O7 = 1:3). Провели электролиз раствора для модификации графитового электрода коллоидными частицами палладия при условии: Еэ = -1,0 В, τэ= 60 с. Полученный модифицированный графитовый электрод ополаскивали бидистиллированной водой и поместили в другую электрохимическую ячейку (кварцевый стаканчик), заполненную 10 мл 0,1 М раствора NaCl. Не проводя накопления, регистрировали анодную ветвь от потенциала от минус 0,8 В и заканчивая плюс 1,0 В, а затем катодную ветвь от потенциала плюс 1,0 B и заканчивая минус 0,8 В циклической вольтамперной кривой фонового электролита при скорости изменения потенциала 100 мВ/с. На катодной ветви вольтамперной кривой фонового электролита не наблюдается катодный максимум в диапазоне потенциалов от минус 0,3 B до минус 0,6 В (фиг. 1, кривая 1). При добавлении раствора метионина (первая добавка) происходит увеличение высоты катодного максимума в диапазоне потенциалов от минус 0,3 B до минус 0,6 В (фиг. 1, кривая 2). При добавлении второй добавки раствора метионина происходит пропорциональное увеличение высоты катодного максимума в диапазоне потенциалов от минус 0,3 B до минус 0,6 В (фиг 1. кривая 3).

Пример 2. Измерения были проведены в модельном водном растворе. Графитовый электрод помещали в электрохимическую ячейку (кварцевый стаканчик), заполненную 10 мл золя палладия (мольное соотношение PdCl2:Na3C6H5O7 = 1:3). Провели электролиз раствора для модификации графитового электрода коллоидными частицами палладия при условии: Еэ = -1,0 В, τэ= 60 с. Полученный модифицированный графитовый электрод ополаскивали бидистиллированной водой и поместили в другую электрохимическую ячейку (кварцевый стаканчик), заполненную 10 мл 0,1 М раствора NaCl. Не проводя накопления, регистрировали анодную ветвь от потенциала от минус 0,8 В и заканчивая плюс 1,0 В, а затем катодную ветвь от потенциала плюс 1,0 B и заканчивая минус 0,8 В циклической вольтамперной кривой фонового электролита при скорости изменения потенциала 100 мВ/с. На катодной ветви вольтамперной кривой фонового электролита не наблюдается катодный максимум в диапазоне потенциалов от минус 0,3 B до минус 0,6 В (фиг. 2, кривая 1). При добавлении раствора метионина (первая добавка) происходит увеличение высоты катодного максимума в диапазоне потенциалов от минус 0,3 B до минус 0,6 В (фиг. 2, кривая 2). При добавлении второй добавки раствора метионина происходит пропорциональное увеличение высоты катодного максимума в диапазоне потенциалов от минус 0,3 B до минус 0,6 В (фиг 2. кривая 3).

Пример 3. Измерения были проведены в физиологическом растворе. Графитовый электрод помещали в электрохимическую ячейку (кварцевый стаканчик), заполненную 10 мл золя палладия (мольное соотношение PdCl2:Na3C6H5O7 = 1:3). Провели электролиз раствора для модификации графитового электрода коллоидными частицами палладия при условии: Еэ= -1,0 В, τэ = 60 с. Потом полученный модифицированный графитовый электрод ополаскивали бидистиллированной водой и помещали в другую электрохимическую ячейку (кварцевый стаканчик), заполненную 10 мл физиологического раствора. Не проводя накопления, регистрировали анодную ветвь от потенциала от минус 0,8 В и заканчивая плюс 1,0 В, а затем катодную ветвь от потенциала плюс 1,0 B и заканчивая минус 0,8 В циклической вольтамперной кривой фонового электролита при скорости изменения потенциала 100 мВ/с. На катодной ветви вольтамперной кривой фонового электролита не наблюдается катодный максимум в диапазоне потенциалов от минус 0,3 B до минус 0,6 В (фиг. 3, кривая 1).

В физиологический раствор добавляли 0,01 мл аттестованной смеси метионина концентрации 1⋅10-10 моль/дм3 и не проводя накопления регистрировали анодную ветвь, а затем катодную ветвь циклической вольтамперной кривой при скорости изменения потенциала 100 мВ/с.

При добавлении раствора метионина (первая добавка) происходит увеличение высоты катодного максимума в диапазоне потенциалов от минус 0,3 B до минус 0,6 В (фиг. 3, кривая 2).

Затем добавляли 0,01мл аттестованной смеси метионина концентрации 1⋅10-10 моль/дм3 (суммарная концентрация в растворе составила 2⋅10-10 моль/дм3) и не проводя накопления регистрировали анодную ветвь, а затем катодную ветвь циклической вольтамперной кривой при скорости изменения потенциала 100 мВ/с. На катодной ветви вольтамперной кривой наблюдается пропорциональный рост максимума в диапазоне потенциалов от минус 0,3 B до минус 0,6 В (фиг. 3, кривая 3).

Предложенный способ прост, при его осуществлении не используются токсические вещества. Способ может быть использован в любой лаборатории, имеющей компьютеризированные анализаторы типа ТА или полярограф.

Способ определения метионина в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модифицированном коллоидными частицами палладия, отличающийся тем, что проводят модифицирование графитового электрода коллоидными частицами палладия из золя палладия в течение 60 с при потенциале накопления -1,0 В с последующей регистрацией катодных максимумов при скорости изменения потенциала 100 мВ/с на фоне 0,1 М раствора NaCl в диапазоне потенциалов от -0,8 до 1,0 В, концентрацию метионина определяют по величине катодных максимумов вольтамперных кривых в диапазоне потенциалов от минус 0,30 до минус 0,60 В относительно насыщенного хлоридсеребряного электрода методом добавок аттестованных смесей.
СПОСОБ ОПРЕДЕЛЕНИЯ МЕТИОНИНА В МОДЕЛЬНЫХ ВОДНЫХ РАСТВОРАХ МЕТОДОМ ЦИКЛИЧЕСКОЙ ВОЛЬТАМПЕРОМЕТРИИ НА ГРАФИТОВОМ ЭЛЕКТРОДЕ, МОДИФИЦИРОВАННОМ КОЛЛОИДНЫМИ ЧАСТИЦАМИ ПАЛЛАДИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕТИОНИНА В МОДЕЛЬНЫХ ВОДНЫХ РАСТВОРАХ МЕТОДОМ ЦИКЛИЧЕСКОЙ ВОЛЬТАМПЕРОМЕТРИИ НА ГРАФИТОВОМ ЭЛЕКТРОДЕ, МОДИФИЦИРОВАННОМ КОЛЛОИДНЫМИ ЧАСТИЦАМИ ПАЛЛАДИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕТИОНИНА В МОДЕЛЬНЫХ ВОДНЫХ РАСТВОРАХ МЕТОДОМ ЦИКЛИЧЕСКОЙ ВОЛЬТАМПЕРОМЕТРИИ НА ГРАФИТОВОМ ЭЛЕКТРОДЕ, МОДИФИЦИРОВАННОМ КОЛЛОИДНЫМИ ЧАСТИЦАМИ ПАЛЛАДИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ МЕТИОНИНА В МОДЕЛЬНЫХ ВОДНЫХ РАСТВОРАХ МЕТОДОМ ЦИКЛИЧЕСКОЙ ВОЛЬТАМПЕРОМЕТРИИ НА ГРАФИТОВОМ ЭЛЕКТРОДЕ, МОДИФИЦИРОВАННОМ КОЛЛОИДНЫМИ ЧАСТИЦАМИ ПАЛЛАДИЯ
Источник поступления информации: Роспатент

Showing 201-210 of 255 items.
21.03.2019
№219.016.eb53

Индуктивно-импульсный генератор

Изобретение относится к импульсной технике и может быть использовано для питания ускорителей, плазмотронов, лазеров, электрогидравлических устройств. Генератор содержит первую катушку индуктивности, подключенную через коммутатор к одному зажиму источника постоянного тока, конденсатор,...
Тип: Изобретение
Номер охранного документа: 0002682394
Дата охранного документа: 19.03.2019
21.03.2019
№219.016.ebe1

Устройство сигнализации о лесном пожаре

Изобретение относится устройствам подачи сигналов тревоги о лесном пожаре с использованием радиосвязи для оповещения служб лесоохраны. Техническим результатом изобретения является создание устройства сигнализации о лесном пожаре с длительным сроком дежурства в зоне охраны, способного передавать...
Тип: Изобретение
Номер охранного документа: 0002682421
Дата охранного документа: 19.03.2019
29.03.2019
№219.016.ee48

Контрольное устройство

Изобретение относится к области испытаний электрических систем. Контрольное устройство содержит генератор импульсов, выход которого соединен с входом счетчика импульсов, выходы которого связаны с входом индикатора. Выходы объекта контроля подключены к входам многоканального аналого-цифрового...
Тип: Изобретение
Номер охранного документа: 0002682802
Дата охранного документа: 21.03.2019
30.03.2019
№219.016.fa11

Устройство для очистки дорожных покрытий от наледи и снега

Изобретение относится к машинам для скалывания льда и уплотненного снега с дорог и дорожных покрытий. Устройство для очистки дорожных покрытий от наледи и снега содержит раму, которая присоединена к транспортному средству, груз, смонтированный с возможностью перемещения, колесо с разрушающими...
Тип: Изобретение
Номер охранного документа: 0002683477
Дата охранного документа: 28.03.2019
19.04.2019
№219.017.1d3a

Устройство для исследования процесса горения порошков металлов или их смесей

Изобретение относится к области квантовой электроники, а именно к неразрушающему контролю и диагностике оптическими методами, и может быть использовано для исследования процессов высокотемпературного горения порошков металлов, а также процессов взаимодействия лазерного излучения с веществом....
Тип: Изобретение
Номер охранного документа: 0002685040
Дата охранного документа: 16.04.2019
19.04.2019
№219.017.1d43

Способ исследования процесса горения порошков металлов или их смесей

Изобретение относится к области квантовой электроники, а именно неразрушающему контролю и диагностике оптическими методами, и может быть использовано для исследования процессов высокотемпературного горения порошков металлов, а также процессов взаимодействия лазерного излучения с веществом....
Тип: Изобретение
Номер охранного документа: 0002685072
Дата охранного документа: 16.04.2019
20.04.2019
№219.017.352d

Битумно-смоляная композиция

Изобретение относится к области получения составов для нанесения защитных покрытий на основе битуминозных материалов и может быть использовано в качестве гидроизоляционной и антикоррозионной защиты трубопроводного транспорта, а также в качестве других гидроизоляционных и противокоррозионных...
Тип: Изобретение
Номер охранного документа: 0002685327
Дата охранного документа: 17.04.2019
21.04.2019
№219.017.3636

Комбинированное устройство для удаления разливов нефти и нефтепродуктов с поверхности воды

Изобретение относится к устройствам для поддержания в надлежащем состоянии или очистки поверхности открытых водоемов от нефти и подобных плавающих материалов и может быть использовано для устранения последствий разлива нефти и нефтепродуктов с поверхности воды. Комбинированное устройство для...
Тип: Изобретение
Номер охранного документа: 0002685481
Дата охранного документа: 18.04.2019
29.04.2019
№219.017.3e4d

Микромеханический гироскоп

Изобретение относится к гироскопам вибрационного типа, в частности к микромеханическим гироскопам, которые предназначены для измерения угловой скорости движения основания. Сущность изобретения заключается в том, что в системе возбуждения и стабилизации первичных колебаний микромеханического...
Тип: Изобретение
Номер охранного документа: 0002686441
Дата охранного документа: 25.04.2019
01.05.2019
№219.017.47a3

Способ вихретокового контроля внутреннего диаметра металлических труб

Изобретение относится к методам неразрушающего контроля металлических труб и может быть использовано для контроля их внутреннего диаметра. Сущность: внутри трубы размещают две пары расположенных соосно на фиксированном расстоянии один от другого накладных вихретоковых преобразователей при...
Тип: Изобретение
Номер охранного документа: 0002686520
Дата охранного документа: 29.04.2019
Showing 11-11 of 11 items.
21.06.2020
№220.018.2918

Способ выделения яиц гельминтов флотационным методом

Изобретение относится к ветеринарии и медицине, в частности к способу выделения яиц гельминтов флотационным методом. Способ характеризуется тем, что к предварительно растертым 1-3 граммам естественно инвазированных фекалий добавляют 10-15 мл воды, перемешивают и фильтруют. Полученный раствор...
Тип: Изобретение
Номер охранного документа: 0002723939
Дата охранного документа: 18.06.2020
+ добавить свой РИД