×
07.08.2020
220.018.3dda

Двухфазная смесь на основе цемента для композитов в технологии строительной 3D-печати

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к строительным материалам, которые адаптированы к режимам строительной 3D-печати. Изобретение содержит двухфазную смесь на основе цемента для композитов в технологии строительной 3D-печати. Двухфазная смесь содержит две фазы: твердую (фаза 1) - смесь из сухих компонентов и жидкую (фаза 2) - водный раствор. Соотношение двух фаз равно 4,8-5:1. Фаза 1 включает компоненты, % масс.: портландцемент ЦЕМ I 42,5 Н - 48,3-49,8, известняковую муку с содержанием СаСО3 не менее 95% - 49,8-51,1, камедь ксантановую с содержанием (С35H49О29)n не менее 91% - 0,1-0,15, тетракалий пирофосфат технический с содержанием K4Р2О5 не менее 98% - 0,1-0,15, полипропиленовую фибру длиной 12 мм - 0,2-0,3. Фаза 2 содержит воду и суперпластификатор на основе поликарбоксилатных эфиров. Массовые соотношения компонентов: вода - 96,2-97,8%, суперпластификатор - 2,2-3,8%. Технический результат – повышаются пластичность, формоустойчивость, прочность на сжатие, прочность на растяжение при изгибе, прочность сцепления слоев композита. 1 табл.
Реферат Свернуть Развернуть

Изобретение относится к строительным материалам, которые применяются для 3D-аддитивных строительных технологий трехмерной печати (3D-печать).

Применение классических цементных смесей для 3D-печати затруднено в связи с тем, что традиционные смеси по своим параметрам не адаптированы к режимам 3D-печати по реологическим характеристикам, а именно, не обладают пластичностью, необходимой для экструзии, формоустойчивостью, обеспечивающей восприятие нагрузки при послойной печати без опалубки, имеют поздние сроки схватывания, замедленное твердение.

Известен материал для строительной 3D-печати состоящий из следующих компонентов и частей по массе: цемент - 100, активные добавки - 0-80, суперпластификатор - 0,01-5, ускоритель твердения - 0,01-10, коагулянт - 0,01-5, наполнители - 0,1-25, связующее - 0-5, воздухововлекающая добавка - 0-1, пластификатор 0,01-25, гидрофобизатор - 0-5, эфир крахмала - 0-2, волокно - 0,01-0,5, наполнитель пороршкообразный - 0-150, мелкий заполнитель - 50-300, крупный заполнитель (гравий или галька) - 0-400 /Патент, CN, 3D printing cement-based material and preparation method thereof 104891891, опубл. 09.15.2015/. Недостатком данного технического решения является то, что смесь не удовлетворяет требуемым реологическим характеристикам для строительной 3D-печати, а именно, имеет быструю потерю пластичности, что негативно сказывается на процессе экструзии при печати. Кроме того, использование большого количества различных компонентов значительно усложняет технологию изготовления и увеличивает стоимость композиционного материала.

Известен композиционный материал для строительной 3D-печати полученный из следующих сырьевых компонентов в процентном соотношении по массе: цемент - 33%-40%, неорганический порошок - 0%-8%, песок - 32%-38%, полимерное связующее - 2,5%-3%, составной коагулянт - 0,2%-1% (ускоритель: карбонат лития - 0,05%-0,01%; замедлители: тетраборат натрия - 0,05%-0,35%, глюконат натрия - 0%-0,05%), стабилизатор - 1%-2%, тиксотропный агент - 0,5%-1,5%, суперпластификатор - 0,1%-0,5% и вода затворения - 16,7%-20% /Патент, CN, Cement-based composite material used for 3D printing technology as well as preparation method and application thereof 104310918, опубл. 28.01.2015/. Отсутствие данных о реологических характеристиках смеси не позволяет сделать вывод о ее пригодности к трехмерной строительной печати. Не определены наиболее характерные свойства, предъявляемые к смесям при 3D-печати: пластичность, отвечающая за нормальную экструзию смеси, и устойчивость к восприятию нагрузки при послойной печати конструкции без опалубки.

Аналогом заявленного изобретения является модифицированный полимерцементный композиционный материал для 3D-печати /Патент, RU 2661970 С1, Модифицированный полимерциментный композиционный материал для 3D печати. Кл.С04В 28/04, С04В 14/02, С04В 22/08, С04В 26/00, С04В 111/20, публ. 23.07.2018/. Состав композиционного материала в следующих массовых соотношениях, %: портландцемент - 24,37-34,16, поливинилацетатная дисперсия - 2,44-2,56, песок - 50,74-61,38, жидкое стекло - 1,70-2,44, фиброволокно полипропиленовое - 0,02-0,03, флороглюцинфурфурольный модификатор - 0,05-0,07, вода - остальное. Недостатком технического решения является невысокая прочность на сжатие в возрасте 28 суток и низкая прочность на растяжение, во всех представленных составах прочность на сжатие не превышаем 27,4 МПа, прочность на растяжение менее 1,3 МПа. Также в патенте отсутствуют данные оценки критериальных для строительной 3D-печати реологических свойств свежей смеси: пластичности и формоустойчивости.

Наиболее близким к предлагаемому изобретению, принятым за прототип является двухкомпонентный композиционный материал на основе цемента /Патент, CN, Bi-component cement based composite material for 3D printing as well as preparation method and application thereof 105384416, опубл. 09.03.2016/. Материал получен путем смешивания двух компонентов в отношении 10 (15):1. Состав первого компонента: цемент - 34%-40%, неорганический порошок - 0%-6%, песок - 40%-44%, полимерное связующее - 2,5%-3%, замедлитель - 0,3%-1%, суперпластификатор - 5%-15%, стабилизатор объема - 1%-2%, пеногаситель - 0,05%-0,1%, вода затворения - 12%-13,4%. Состав второго компонента: ускоритель цемента - 2%-3%, тиксотропный агент - 3%-4%, пеногаситель - 1%-1,5%, вода затворения - 91,5%-94%.

Недостатком данного технического решения является то, что каждый компонент материала имеет ограниченный срок сохранения свойств, которые влияют на структуру получаемого материала, а время начала схватывания смеси менее 15 минут, во всех примерах, приведенных в патенте, что негативно отразится на прочности сцепления слоев композита. Также, отсутствие требований к реологическим свойствам смеси не позволяет судить о возможности ее применения для 3D печати.

Технический результат заявляемого изобретения направлен на повышение универсальности и расширение области применения 3D -аддитивных строительных технологий за счет получения смеси на основе цемента, состоящей из твердой и жидкой фаз, с требуемыми технологическими параметрами для процесса печати и физико-механическими свойствами материала. К технологическим параметрам смеси относятся ее реологические характеристики: пластичность, обеспечивающая экструзию; формоустойчивость, обеспечивающая послойную укладку смеси без деформирования слоя при его последующем нагружении; сроки схватывания. К физико-механическим свойствам материала относятся: прочность на сжатие, прочность на растяжение при изгибе, водопоглощение, прочность сцепления слоев композита.

Сопоставительный анализ с прототипом показывает, что заявляемая двухфазная смесь на основе цемента для строительной 3D печати включающая портландцемент, ускоритель, замедлитель, суперпластификатор, отличается тем, что для ее получения используется две фазы: фаза 1 - твердая, смесь из сухих компонентов, и фаза 2 -жидкая, водный раствор, в отношении 4,8-5:1. Фаза 1: портландцемент ЦЕМ I 42,5 Н, известняковая мука, с содержанием СаСО3 не менее 95%, камедь ксантановая, с содержанием (С35H49О29)n не менее 91%, тетракалий пирофосфат технический, с содержанием K4Р2О5 не менее 98%, полипропиленовая фибра длиной 12 мм. Массовые соотношения компонентов: портландцемент - 48,3-49,8%, известняковая мука - 49,8-51,1%, камедь ксантановая - 0,1-0,15%, тетракалий пирофосфат технический - 0,1-0,15%, полипропиленовая фибра - 0,2-0,3%. Фаза 2: вода и суперпластификатор на основе поликарбоксилатных эфиров. Массовые соотношения компонентов жидкой фазы: вода - 96,2-97,8%, суперпластификатор - 2,2-3,8%. Таким образом, заявляемое решение соответствует критерию изобретения «новизна».

Состав двухфазной смеси может быть использован для получения инновационных материалов для печати строительных объектов с помощью 3D -аддитивных технологий.

Сравнение заявляемого решения не только с прототипом, но и другими известными техническими решениями в данной области техники не выявило наличие в них признаков, совпадающих с предлагаемым техническим решением, или признаков, влияющих на достижение требуемого технического результата. Это дает возможность сделать вывод о соответствии изобретения критерию «изобретательский уровень». Характеристики исходных компонентов:

1. Портландцемент ЦЕМ I 42,5 Н (марка М500) по ГОСТ 31108-2016 «Цементы общестроительные. Технические условия». Минералогический состав: C3S - 62%, C2S - 13%, С3А - 7,5%, C4AF - 11,5%;

2. Известняковая мука, с содержанием СаСО3 не менее 95%, по ГОСТ 32761-2014 «Дороги автомобильные общего пользования. Порошок минеральный. Технические требования». Применяется в качестве микродисперсного наполнителя;

3. Камедь ксантановая, с содержанием (С35H49О29)n не менее 91%. Является модификатором вязкости - загустителем, повышающим формоустойчивость смеси, необходимую для послойной укладки смеси без деформирования нижележащих слоев при печати без опалубки;

4. Тетракалий пирофосфат технический, с содержанием K4Р2О5 не менее 98%. Является ускорителем и модификатором вязкости, регулирующим пластичность смеси, обеспечивающую экструзию смеси при печати;

5. Полипропиленовая фибра для бетона и строительного раствора, произведенная в соответствии со стандартом ISO 9001:2008 и удовлетворяет европейскому стандарту EN 14889-2:2008. Длина волокна 12 мм, диаметр 22-34 микрона, плотность 0,91 кг/дм, предел прочности 300-400 Н/мм2;

6. Суперпластификатор на основе поликарбоксилатных эфиров. Плотность 1,055-1,065 кг/дм3, рН=4,0-5,5;

7. Вода - соответствует ГОСТ 23732-79 «Вода для бетонов и растворов. Технические условия».

Технология получения двухфазной смеси для строительной 3D-печати.

На первом этапе получают фазу 1, которая состоит из сухих компонентов: портландцемент ЦЕМ I 42,5 Н - 48,3-49,8%, известняковая мука, с содержанием СаСО3 не менее 95% - 49,8-51,1%, камедь ксантановая, с содержанием (С35H49О29)n не менее 91% - 0,1-0,15%, тетракалий пирофосфат технический, с содержанием K4Р2О5 не менее 98% - 0,1-0,15%, полипропиленовая фибра длиной 12 мм - 0,2-0,3%. Компоненты твердой фазы загружают в смеситель и перемешивают их в течении 4-5 минут до равномерного распределения всех составляющих в объеме смеси.

Второй этап заключается в получении жидкой фазы 2, водного раствора, состоящей из воды - 96,2-97,8%, суперпластификатора на основе поликарбоксилатных эфиров - 2,2-3,8%. Суперпластификатор вводится в воду при интенсивном перемешивании.

Далее готовят двухфазную цементную смесь для строительной 3D -печати следующим образом: в готовую твердую фазу 1 вводится жидкая фаза 2 в отношении 4,8-5:1 и смесь интенсивно перемешивают в течении 3-5 минут до получения однородной массы.

Для оценки пластичности и способности к экструзии вязко-пластичной смеси определялся предел текучести при сдавливании непосредственно после ее изготовления. Для этого производился сдавливающий тест с постоянной скоростью деформирования 5 мм/с, так как при данной скорости проведения испытаний наиболее адекватно моделируется поведение системы в процессе экструзии /Toutou Z., Roussel N., Lanos, С.The squeezing test: A tool to identify firm cement-based material's rheological behaviour and evaluate their extrusion ability // Cement and Concrete Research. - 2005. - No 35(10). - P. 1891-1899./.

Для оценки формоустойчивости непосредственно после изготовления смеси определялись следующие характеристики:

- структурная прочность, характеризующая способность вязко-пластичной смеси воспринимать нагрузку без деформирования напечатанного слоя,

- пластическая прочность, характеризующая способность вязкопластичной смеси воспринимать нагрузку без трещинообразования;

- относительная деформация слоя вязко-пластичной смеси до начала образования трещин.

Для оценки характеристик формоустойчивости производился сдавливающий тест при постоянной скорости нагружения 0,5 Н/с (соответствует скорости при печати строительных объектов промышленно производимыми принтерами), что моделирует воздействие нагрузки от вышележащих слоев на первоначально уложенные слои /Славчева Г.С., Шведова М.А., Бабенко Д.С, Анализ и критериальная оценка реологического поведения смесей для строительной 3D-печати // Строительные материалы. - 2018. - №12. - С. 30-35./.

Для определения физико-механических свойств композиционного материала для строительной 3D-печати на основе цементной смеси готовят образцы в форме куба с длиной ребер 70×70×70 мм и в форме призм квадратного сечения 70×70×280 мм и проводят испытания на сжатие и растяжение согласно ГОСТ 10180-2012, определение плотности и водопоглощения согласно ГОСТ 12730.3-78.

Для определения прочности сцепления слоев свежеуложенной смеси из вязко-пластичной смеси изготавливались две серии образцов размером 140×70×20 мм. Изготовление образцов производилось в два этапа, вначале изготавливались образцы размером 70×70×20 мм, которые соединялись в единый образец с размерами 140×70×20 мм через 5 минут для первой серии, и через 15 минут для второй серии. Образцы двух серий после 28 суток твердения испытывались на трехточечный изгиб, нагрузка прикладывалась по шву сцепления образцов. Формирование шва между двумя свежими поверхностями, наиболее достоверно позволяет оценить связь слоев при печати, в отличие от стандартных методик, определяющих прочность адгезионного шва, в которых вязко-пластичную смесь укладывают на затвердевший образец, что не соответствует условиям 3D-печати.

Свойства двухфазной вязко-пластичной смеси и физико-механические свойства композита на основе двухфазной смеси для строительной 3D-печати представлены в табл. 1.

Основным параметром, влияющим на критериальные для процесса строительной 3D-печати реологические характеристики вязко-пластичной смеси, является отношение твердой и жидкой фаз в смеси. Технологически необходимая пластичность, агрегативная устойчивость и структурная прочность смесей достигается путем оптимизации соотношения фаз.

Применение известняковой муки как полифракционного наполнителя (дисперсности d=2-550 мкм) позволяет эффективно регулировать структурно-механические свойства цементных систем. При этом ее аморфная структура обеспечивает более высокую пластичность, агрегативную устойчивость и структурную прочность свежеприготовленной смеси при действии нагрузки, из-за способности к формированию большего числа полимолекулярных слоев адсорбированной воды на поверхности. Двухфазная цементная смесь обладает способностью к вязко-пластическому теченению без разрушения структуры при экструзии и достаточной структурной прочностью, обеспечивающей формоустойчивость при оптимизированной дозировке известняковой муки.

Полипропиленовая фибра длиной 12 мм повышает устойчивость к трещинообразованию, увеличивает прочность на растяжение при изгибе.

Введение тетракалия пирофосфата, который является ускорителем и модификатором вязкости, регулирующим пластичность смеси, позволяет повысить плотность и устойчивость смеси, за счет взаимодействия с ионами жидкой фазы; с другой стороны, откладывающиеся на зернах вяжущих продукты взаимодействия в виде пленок разной плотности и проницаемости, сохраняют свои свойства (форму), но под действием внешней нагрузки, пленки способны разрушаться, вода вновь поступает к частицам смеси, тем самым смесь становится пластичной и проявляет тякучесть.

В качестве модификатора вязкости - загустителя, выступает камедь ксантановая, которая химически инертна по отношению к минералам смеси, но изменяет плотность и вязкость смеси, увеличивая структурную прочность системы, что в результате, повышает формоустойчивость смеси, необходимую для послойной укладки смеси без деформирования нижележащих слоев при печати без опалубки. С другой стороны, в силу структурирования жидкой фазы, происходит регулирование процесса схватывания и твердения, изменяется количество активной воды, необходимой для гидратации цемента.

Введение суперпластификатора на основе поликарбоксилатных эфиров в оптимальной концентрации является фактором изменения свойств жидкой фазы и позволяет эффективно регулировать пластичность, структурную и пластическую прочность смеси.

Достижение требуемого технического результата при осуществлении изобретения состоит в том, что две фазы, входящие в состав смеси на основе цемента для 3D-печати заданы в определенном отношении, при заданных процентных соотношениях компонентов в этих фазах, при взаимодействии обеспечивающих пластичность, влияющую на экструзию, формоустойчивость, необходимую для послойной укладки смеси без деформирования слоя при его последующем нагружении, определенные сроки схватывания, необходимые исходя из технологии послойной трехмерной печати, прочность на сжатие, прочность на растяжение материала при изгибе, водопоглощение, прочность сцепления слоев композита.

Источник поступления информации: Роспатент

Showing 1-10 of 124 items.
13.01.2017
№217.015.8ae6

Солнечный тепловой коллектор

Изобретение относится к гелиотехнике, в частности к солнечным тепловым коллекторам, используемым в теплоснабжении зданий и сооружений. В солнечном тепловом коллекторе может нагреваться как жидкий теплоноситель, подаваемый потребителю, так и воздух, направляемый в отапливаемые помещения. Жидкий...
Тип: Изобретение
Номер охранного документа: 0002604119
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.90f0

Сооружение коллективной защиты на базе пневматической опалубки

Сооружение коллективной защиты на базе пневматической опалубки может быть использовано для быстрого возведения сооружений типа оболочек в районах чрезвычайных ситуаций для временного размещения людей и материальных ценностей, а также в других случаях. Сооружение на базе пневматической опалубки...
Тип: Изобретение
Номер охранного документа: 0002603975
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.a567

Способ формирования на поверхности изделия из никелевого сплава композитного покрытия

Изобретение относится к напылению теплозащитных покрытий и может быть использовано в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок. Способ формирования на поверхности изделия из никелевого сплава композитного покрытия, содержащего оксид...
Тип: Изобретение
Номер охранного документа: 0002607677
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b861

Метод возведения волнистых монолитных сводов и опалубка для его осуществления

Изобретение относится к строительству и может быть использовано для возведения сводов криволинейного очертания из монолитного фибробетона. Опалубочная система для возведения волнистых монолитных сводов состоит из отдельных пневмокаркасных арочных элементов, позволяющих формирование опалубки на...
Тип: Изобретение
Номер охранного документа: 0002615202
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.c991

Способ плазменного напыления покрытия

Изобретение относится к области нанесения покрытий и может быть использовано для упрочнения режущего инструмента и металлических деталей машин. Способ плазменного нанесения покрытия на металлическую заготовку включает нагрев поверхности заготовки и плазменное напыление слоя покрытия на ее...
Тип: Изобретение
Номер охранного документа: 0002619410
Дата охранного документа: 15.05.2017
13.02.2018
№218.016.1ff1

Конструкция фундаментной плиты с регулируемыми усилиями

Изобретение относится к строительству, а именно к плитным фундаментам мелкого заложения для каркасных зданий и сооружений. Конструкция фундаментной плиты с регулируемыми усилиями, разделенная на секции узлами шарнирного действия, в которой оси шарниров образуют в плане прямоугольную сетку,...
Тип: Изобретение
Номер охранного документа: 0002641356
Дата охранного документа: 17.01.2018
13.02.2018
№218.016.2024

Узел шарнирного действия для фундаментной плиты с регулируемыми усилиями

Изобретение относится к строительству, а именно к фундаментам мелкого заложения для зданий и сооружений. Узел шарнирного действия для фундаментной плиты с регулируемыми усилиями включает ось вращения шарнирного узла, выполненного из стальной трубы с приваренными стальными пластинами,...
Тип: Изобретение
Номер охранного документа: 0002641357
Дата охранного документа: 17.01.2018
04.04.2018
№218.016.350c

Генератор индукторный

Изобретение относится к индукторным сегментным генераторам. Генератор индукторный содержит роторные элементы с валом, статор, элементы крепления и подшипники. Статор выполнен в виде полого прямоугольного профиля, одна сторона которого закреплена на несущем элементе, на противоположной стороне...
Тип: Изобретение
Номер охранного документа: 0002645949
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3595

Ветроколесо электрогенератора сегментного типа

Изобретение относится к ветроэнергетике. Ветроколесо ветроэлектрогенератора сегментного типа содержит ступицу, спицы, обод, лопасти с устройством крепления к ободу. Устройство крепления лопастей к ободу выполнено в виде уголка, установленного снаружи обода, коробчатой скобы с торцевой...
Тип: Изобретение
Номер охранного документа: 0002645877
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.375b

Лабораторная установка по гидравлическим исследованиям

Изобретение относится к устройствам для обучения при проведении лабораторных работ по курсу «Гидравлика». Оно состоит из напорного бака с подводом воды, водомерного устройства, пьезометра-уровнемера из прозрачной трубки, водовыпускных отверстий, выполненных непосредственно в щите-затворе, ось...
Тип: Изобретение
Номер охранного документа: 0002646559
Дата охранного документа: 05.03.2018
Showing 1-3 of 3 items.
06.08.2020
№220.018.3d63

Двухфазная смесь на основе цемента для композитов в технологии строительной 3d-печати

Изобретение относится к строительным материалам, которые адаптированы к режимам строительной 3D-печати. Изобретение содержит двухфазную смесь на основе цемента для композитов в технологии строительной 3D-печати. Двухфазная смесь содержит две фазы: твердую (фаза 1) - смесь из сухих компонентов и...
Тип: Изобретение
Номер охранного документа: 0002729085
Дата охранного документа: 04.08.2020
06.08.2020
№220.018.3d85

Двухфазная смесь на основе цемента для композитов в технологии строительной 3d-печати

Изобретение относится к строительным материалам, адаптированным к режимам строительной 3D-печати. Изобретение содержит двухфазную смесь на основе цемента для композитов в технологии строительной 3D-печати. Двухфазная смесь содержит две фазы: твердую (фаза 1) – смесь из сухих компонентов, и...
Тип: Изобретение
Номер охранного документа: 0002729086
Дата охранного документа: 04.08.2020
16.06.2023
№223.018.79af

Двухфазная смесь на основе цемента для композитов в технологии строительной 3d-печати

Изобретение относится к строительным материалам, которые адаптированы к режимам строительной 3D-печати. Изобретение содержит двухфазную смесь на основе цемента для композитов в технологии строительной 3D-печати. Двухфазная смесь содержит две фазы: твердую (фаза 1) - смесь из сухих компонентов и...
Тип: Изобретение
Номер охранного документа: 0002729283
Дата охранного документа: 05.08.2020
+ добавить свой РИД