×
02.08.2020
220.018.3c10

Результат интеллектуальной деятельности: СПОСОБ ПОСТРОЕНИЯ КРИВОЙ ДЕФОРМИРОВАНИЯ ГРУНТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области строительства и предназначено для оперативного построения предполагаемой кривой деформирования грунта и оценки физико-механических характеристик грунтов оснований, обеспечивающих методы расчета оснований, фундаментов и подземных сооружений исходной информацией. Способ построения кривой деформирования грунта включает испытания грунта, по которым производят графическое построение предполагаемой кривой деформирования грунта. Проводят полевые испытания образцов грунта методом многоканального анализа поверхностных волн, по результатам анализа строят профиль распределения скоростей поверхностных волн, по профилю распределения скоростей поверхностных волн оценивают удельный вес слоев грунта γ, начальный модуль сдвига G при малых деформациях, коэффициент корреляции k между начальным модулем сдвига и модулем деформации, модуль деформации Е для штампа площадью 5000 см, далее задают отношение r модуля деформации Е для штампа площадью 5000 см к упругому модулю деформации E, соответствующему максимальному касательному модулю деформации, для штампа площадью 5000 см в интервале 0,59-0,86 и рассчитывают упругий модуль деформации Е по первичной ветви нагружения по приведенной зависимости. Определяют скорость продольной волны V при полевых испытаниях или по приведенной зависимости. Далее оценивают удельное сцепление с и угол внутреннего трения ϕ грунта по приведенной зависимости. По результатам испытаний методом многоканального анализа поверхностных волн оценивают бытовое давление σ на требуемой глубине по приведенной зависимости. Далее выбирают форму предполагаемой кривой деформирования: гиперболическую или экспоненциальную, рассчитывают предельное девиаторное напряжение σ по приведенной зависимости. Производят графическое построение предполагаемой кривой деформирования по одной из формул - для гиперболической или экспоненциальной кривой деформирования. Технический результат состоит в обеспечении оперативно и недорого оценить физико-механические характеристики каждого слоя грунта, построить предполагаемую кривую деформирования грунта и выполнить предварительную оценку геотехнической ситуации площадки объекта нового строительства/реконструкции неразрушающим методом. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области строительства и предназначено для оперативного построения предполагаемой кривой деформирования грунта и оценки физико-механических характеристик грунтов оснований, используемых для последующего расчета оснований, фундаментов и подземных сооружений.

Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ построения кривой деформирования грунта по данным лабораторных испытаний образцов грунта на трехосное сжатие [ГОСТ 12248-2010 «Грунты. Методы лабораторного определения характеристик прочности и деформируемости»], включающий лабораторные испытания образцов грунта ненарушенной структуры или нарушенной структуры с заданными параметрами, на трехосное сжатие в стабилометрах до разрушения образцов грунта по консолидированно-дренированной схеме. По результатам нескольких испытаний при различном боковом давлении в камере трехосного сжатия, строят кривые деформирования ε1 = ƒ(σдев), представляющие собой зависимости относительной вертикальной деформации ε1 от девиаторного напряжения σдев, с помощью которых определяют деформационные и прочностные характеристики грунта. При необходимости проводят аппроксимацию полученных кривых деформирования по различным моделям вида σдев = ƒ(ε1) (т.е. девиаторное напряжение σдев изменяется в зависимости от относительной вертикальной деформации ε1 для удобства аппроксимации). Данный способ принят за прототип.

Недостатками известного способа, принятого за прототип, являются трудоемкость подготовительных операций и значительные сроки проведения испытаний.

Признаки прототипа, совпадающие с существенными признаками заявляемого способа - проводят испытания грунта, по которым производят графическое построение предполагаемой кривой деформирования грунта.

Задача, на решение которой направлено заявляемое изобретение - создание способа оперативного построения предполагаемой кривой деформирования грунта, сопоставимой с результатами испытаний на трехосное сжатие, по скорости поверхностной волны, позволяющего снизить трудоемкость подготовительных операций перед испытаниями и сократить сроки проведения испытаний.

Поставленная задача была решена за счет следующего порядка построения кривой деформирования согласно предлагаемому изобретению:

1. Проводят полевые испытания образцов грунта методом многоканального анализа поверхностных волн, по результатам анализа строят профиль распределения скоростей поверхностных волн.

2. По скоростям поверхностных волн оценивают удельный вес слоев грунта γ, начальный модуль сдвига G0 при малых деформациях, коэффициент корреляции k между начальным модулем сдвига и модулем деформации, модуль деформации Е, соответствующий модулю деформации для штампа площадью 5000 см2.

3. Задают отношение r модуля деформации Е для штампа площадью 5000 см2 к упругому модулю деформации Еупр (максимальный касательный модуль деформации) для штампа площадью 5000 см2 в интервале 0,59-0,86 (рекомендуется при отсутствии данных о величине r предварительно принимать ее значение 0,65) и рассчитывают упругий модуль деформации Еупр по формуле:

где Е - модуль деформации грунта для штампа площадью 5000 см2, МПа;

r - заданное отношение модуля деформации Е для штампа площадью 5000 см2 к упругому модулю деформации Еупр для штампа площадью 5000 см2, МПа.

4. Определяют скорость продольной волны Vp при полевых испытаниях или производят ее расчет при динамическом коэффициенте Пуассона νдин, заданном по таблице Г.1 [Прил. Г, СП 23.13330.2018 «Основания гидротехнических сооружений»], по формуле:

где νдин - заданный динамический коэффициент Пуассона;

VR - скорость поверхностной волны рэлеевского типа, м/с, определяется по результатам полевых испытаний методом многоканального анализа поверхностных волн;

5. По формулам (3, 4) оценивают удельное сцепление с и угол внутреннего трения ϕ грунта.

где ρ - плотность грунта, рассчитывается по величине удельного веса, кг/м3;

VR - скорость поверхностной волны рэлеевского типа, м/с, определяется по результатам полевых испытаний методом многоканального анализа поверхностных волн;

Vp - скорость продольной волны, м/с, определяется по результатам полевых испытаний одним из методов, доступных для параллельного выполнения на той же расстановке, на которой выполняется многоканальный анализ поверхностных волн, или рассчитывается по скорости поверхностной волны и заданному динамическому коэффициенту Пуассона;

6. По результатам испытаний методом многоканального анализа поверхностных волн оценивают бытовое давление σбыт на требуемой глубине по формуле (5) [СП 22.13330.2016. Основания зданий и сооружений. Введ. 2017-06-17. Москва: Минстрой России, 2016. 226 с.]:

где n - количество слоев грунта до требуемой глубины;

γi - удельный вес i-го грунтового слоя, кН/м3;

hi - высота i-го грунтового слоя, м;

7. Выбирают предпочитаемую форму кривой деформирования - гиперболическую или экспоненциальную. Выбор модели определяется личными предпочтениями, т.к. разница между ними минимальна и выражается в разных формах графиков (фиг. 1).

8. Рассчитывают предельное девиаторное напряжение σдев,пр по формуле (6) [Plaxis Material Models Manual 2019 [Electronic resource] / R. B. J. Brinkgreve (ed.) et al. 256 p. Access mode: URL: https://www.plaxis.com/?plaxis_download=2D-3-Material-Models.pdf; Wong, K. S. Hyperbolic Stress-Strain Parameters for Nonlinear Finite Element Analyses of Stress and Movements in Soil Masses / K. S. Wong, J. M. Duncan. University of California, Berkeley. Institute of Transportation and Traffic Engineering. Report No. TE-74-3. Berkeley: College of Engineering, University of California, 1974. 90 p.]

где Rƒ - критерий обрушения, принимается в интервале 0,75-1,0 и обычно задается равным 0,9 для гиперболической кривой деформирования и 1,0 для экспоненциальной кривой деформирования;

с - удельное сцепление, кПа;

ϕ - угол внутреннего трения, град;

σбыт - вертикальное бытовое давление;

9. Выполняют графическое построение предполагаемой кривой деформирования выбранной формы (гиперболическая или экспоненциальная) по одной из формул - (7) [Kondner, R. L. Hyperbolic Stress-Strain Response: Cohesive Soils // Journal of the Soil Mechanics and Foundation Division. 1963. Vol. 89, is. 1. P. 115-144] либо (8), предложенной авторами:

или

где σдев - девиаторное напряжение, МПа;

ε1 - вертикальная осевая деформация, д. ед.;

Еупр - упругий модуль деформации по ветви первичного нагружения для штампа площадью 5000 см2, МПа;

σдев,пр - предельное девиаторное напряжение, МПа;

ехр - основание натурального логарифма;

m1 = Еупр / σдев,пр - скоростной коэффициент первого порядка, равный отношению упругого модуля деформации Еупр для штампа площадью 5000 см2 к предельному девиаторному напряжению σдев,пр.

10. После построения кривой деформирования рекомендуется проводить аппроксимацию полученной кривой деформирования. Для этого на построенной кривой деформирования отмечают точку линейной аппроксимации модулем деформации Ешт = Е для штампа площадью 5000 см2 с координатами (εшт; σшт), рассчитываемыми по формулам (9, 10).

где m1 = Еупр / σдев,пр - скоростной коэффициент первого порядка, равный отношению упругого модуля деформации Еупр для штампа площадью 5000 см2 к предельному девиаторному напряжению σдев,пр;

σдев,пр - предельное девиаторное напряжение, МПа;

r - заданное отношение модуля деформации Е для штампа площадью 5000 см2 к упругому модулю деформации Еупр для штампа площадью 5000 см2, МПа;

х - коэффициент, который находится при заданном параметре r путем решения уравнения (11) для гиперболической кривой или (12) для экспоненциальной.

При предварительно принятом отношении r = 0,65 коэффициент х принимает значение 0,538 для гиперболической кривой деформирования или 0,934 для экспоненциальной кривой деформирования.

Признаки заявляемого технического решения, отличительные от прототипа - проводят полевые испытания образцов грунта методом многоканального анализа поверхностных волн; по результатам анализа строят профиль распределения скоростей поверхностных волн; по профилю распределения скоростей поверхностных волн оценивают удельный вес слоев грунта γ, начальный модуль сдвига G0 при малых деформациях, коэффициент корреляции k между начальным модулем сдвига и модулем деформации, модуль деформации Е для штампа площадью 5000 см2; задают отношение r модуля деформации Е для штампа площадью 5000 см2 к упругому модулю деформации Еупр (максимальный касательный модуль деформации) для штампа площадью 5000 см2 и рассчитывают упругий модуль деформации Еупр по формуле (1); определяют скорость продольной волны Vp при полевых испытаниях или производят ее расчет при заданном динамическом коэффициенте Пуассона νдин по скорости поверхностной волны VR по формуле (2); оценивают удельное сцепление с и угол внутреннего трения ϕ грунта по формулам (3) и (4); оценивают бытовое давление σбыт на требуемой глубине по формуле (5); выбирают предпочитаемую форму предполагаемой кривой деформирования - гиперболическую или экспоненциальную; рассчитывают предельное девиаторное напряжение σдев,пр по формуле (6); производят графическое построение предполагаемой кривой деформирования по формуле (7) или (8) в зависимости от выбранной формы кривой деформирования; на построенной кривой деформирования отмечают точку линейной аппроксимации модулем деформации Ешт = Е для штампа площадью 5000 см2 с координатами (εшт; σшт), рассчитываемыми по формулам (9) и (10).

Предлагаемый способ построения кривой деформирования грунта по скорости поверхностной волны, получаемой неразрушающим методом волнового анализа поверхностных волн, позволяет оперативно и с минимальными затратами оценить геотехническую ситуацию площадок строительства / реконструкции.

Поиск по патентным и научно-техническим источникам информации позволил установить, что способы оперативного построения кривых деформирования по данным многоканального анализа поверхностных волн о распределении скоростей поверхностных волн в грунтовом разрезе не обнаружены.

Предлагаемый способ поясняется чертежами, представленными на фиг. 1-2.

На фиг. 1 представлены формы предполагаемых кривых деформирования.

На фиг. 2 представлена схема кривой деформирования с отмеченной точкой линейной аппроксимации модулем деформации для штампа площадью 5000 см2.

Способ построения кривой деформирования грунта включает следующие этапы.

1. Проведение полевых испытаний неразрушающим волновым методом регистрации поверхностных волн, ориентированным на построение профиля скоростей поверхностных волн методом многоканального анализа поверхностных волн, обработка экспериментальных данных и построение волновых разрезов распределения скоростей поверхностных волн в грунтовом массиве.

2. Оценка удельного веса слоев грунта γ, начального модуля сдвига G0 при малых деформациях, коэффициента корреляции k и модуля деформации Е для штампа площадью 5000 см2 согласно известному способу оценки модуля деформации грунта по скорости поверхностной волны [Патент №2704074 «Способ оценки модуля деформации грунта»];

3. Задание отношения r модуля деформации Е для штампа площадью 5000 см2 к упругому модулю деформации Еупр для штампа площадью 5000 см2 и расчет упругого модуля деформации Еупр по формуле (1);

4. Определение скорости продольной волны Vp при полевых испытаниях или ее расчет при динамическом коэффициенте Пуассона νдин, задаваемом по таблице Г.1 [Прил. Г, СП 23.13330.2018 «Основания гидротехнических сооружений»], по формуле (2);

5. Оценка удельного сцепления с и угла внутреннего трения ϕ грунта по формулам (3) и (4);

6. Оценка бытового давления σбыт на требуемой глубине по формуле (5);

7. Выбор предпочитаемой формы предполагаемой кривой деформирования (фиг. 1): гиперболической или экспоненциальной;

8. Расчет предельного девиаторного напряжение σдев,пр по формуле (6);

9. Графическое построение предполагаемой кривой деформирования (рис. 2) по формуле (7) или (8) в зависимости от выбранной формы кривой деформирования;

10. После построения кривой деформирования рекомендуется проведение линейной аппроксимации полученной кривой деформирования модулем деформации Ешт = Е для штампа площадью 5000 см2 с координатами (εшт; σшт) (рис. 2), рассчитываемыми по формулам (9) и (10).

Построение предполагаемой кривой деформирования может выполняться на основе одной из двух моделей аппроксимации вида σдев = ƒ(ε1) результатов испытаний на трехосное сжатие: или гиперболической, или экспоненциальной. Выбор модели определяется личными предпочтениями, т.к. разница между ними минимальна и выражается разных формах графиков (фиг. 1). Гиперболическая модель предложена в работе [Kondner, R. L. Hyperbolic Stress-Strain Response: Cohesive Soils // Journal of the Soil Mechanics and Foundation Division. 1963. Vol. 89, is. 1. P. 115-144] и является основой для известных моделей упрочняющегося грунта и упрочняющегося грунта с малыми деформациями. Экспоненциальная модель, предложенная впервые авторами изобретения, получена в результате применения метода скоростных уравнений первого порядка [Handy, R. L. First-Order Rate Equations in Geotechnical Engineering // Journal of Geotechnical and Geoenvironmental Engineering. 2002. Vol. 128, Iss. 5. P. 416-425.] для обработки результатов испытаний на трехосное сжатие. Для выполнения построения и по гиперболической, и по экспоненциальной моделям, в качестве входных параметров требуются упругий модуль деформации по ветви первичного нагружения и предельное девиаторное напряжений. Гиперболическая и экспоненциальная модели незначительно отличаются только формой кривой.

Упругий модуль деформации (максимальный касательный модуль деформации) предлагается оценивать с помощью коэффициента отношения r модуля деформации к упругому модулю деформации по ветви первичного нагружения. На основе результатов [Антипов В.В., Офрихтер В.Г. Развитие неразрушающих методов предварительной геотехнической оценки грунтовых оснований // Вестник МГСУ, 2018. Т. 13, №12 (123). С. 1448-1473] полевых испытаний штампами (таблица), определено, что данный коэффициент r находится в интервале 0,59-0,86 и в большинстве случаев наиболее близок к величине 0,65.

Предельное девиаторное напряжение предлагается определять по известной формуле (6) для модели упрочняющегося грунта [Schanz Т., Vermeer P.A., Bonnier P.G., The Hardening-Soil Model: Formulation and Verification // Brinkgreve R. B. J. (eds.), Beyond 2000 in Computational Geotechnics. Balkema: Rotterdam, 1999. Pp. 281-290].

Оценку удельного сцепления и угла внутреннего трения предлагается производить с использованием скорости поверхностной волны, по формулам (3) и (4), предложенным авторами настоящего изобретения на основе корреляционных зависимостей из рекомендаций [Аникин О.П., Горшенин Ю.В. Методические рекомендации по определению состава, состояния и свойств грунтов сейсмоакустическими методами. Москва: Изд. ЦНИИС, 1985. 65 с.].

Использование предложенного способа построения кривой деформирования грунта позволяет оперативно и недорого оценить физико-механические характеристики каждого слоя грунта, построить предполагаемую кривую деформирования грунта и произвести оценку геотехнической ситуации площадки объекта нового строительства / реконструкции неразрушающим методом.


СПОСОБ ПОСТРОЕНИЯ КРИВОЙ ДЕФОРМИРОВАНИЯ ГРУНТА
СПОСОБ ПОСТРОЕНИЯ КРИВОЙ ДЕФОРМИРОВАНИЯ ГРУНТА
СПОСОБ ПОСТРОЕНИЯ КРИВОЙ ДЕФОРМИРОВАНИЯ ГРУНТА
СПОСОБ ПОСТРОЕНИЯ КРИВОЙ ДЕФОРМИРОВАНИЯ ГРУНТА
СПОСОБ ПОСТРОЕНИЯ КРИВОЙ ДЕФОРМИРОВАНИЯ ГРУНТА
СПОСОБ ПОСТРОЕНИЯ КРИВОЙ ДЕФОРМИРОВАНИЯ ГРУНТА
СПОСОБ ПОСТРОЕНИЯ КРИВОЙ ДЕФОРМИРОВАНИЯ ГРУНТА
СПОСОБ ПОСТРОЕНИЯ КРИВОЙ ДЕФОРМИРОВАНИЯ ГРУНТА
СПОСОБ ПОСТРОЕНИЯ КРИВОЙ ДЕФОРМИРОВАНИЯ ГРУНТА
СПОСОБ ПОСТРОЕНИЯ КРИВОЙ ДЕФОРМИРОВАНИЯ ГРУНТА
Источник поступления информации: Роспатент

Showing 21-30 of 59 items.
16.08.2019
№219.017.c05d

Вспомогательный спортивный тренажер для облегчения выполнения упражнения по сгибанию и разгибанию рук из положения лежа на полу

Изобретение относится к области физической культуры, спортивной медицины и может быть использовано при подготовке к сдаче норм комплекса ГТО, в полиатлоне, в спортивных, учебных, оздоровительных учреждениях и проектах. Вспомогательный спортивный тренажер для облегчения выполнения упражнения по...
Тип: Изобретение
Номер охранного документа: 0002697489
Дата охранного документа: 14.08.2019
16.08.2019
№219.017.c0cc

Асфальтобетон

Изобретение относится к дорожно-строительным материалам и может быть использовано в дорожном и аэродромном строительстве в I-III климатических зонах, характеризующихся холодным и влажным климатом. Асфальтобетон содержит компоненты при следующем соотношении, мас. %: щебень фракции от 5 до 20 мм...
Тип: Изобретение
Номер охранного документа: 0002697468
Дата охранного документа: 14.08.2019
01.09.2019
№219.017.c520

Способ гибридной ультраструйно-эмиссионной диагностики качества конструкционных материалов

Использование: для гибридной ультраструйно-эмиссионной диагностики качества конструкционных материалов. Сущность изобретения заключается в том, что осуществляют воздействие на испытуемый образец струей жидкости под давлением 350…380 МПа при скорости 800…850 м/с, при этом на испытуемый образец...
Тип: Изобретение
Номер охранного документа: 0002698485
Дата охранного документа: 28.08.2019
03.09.2019
№219.017.c6a1

Сенсорная система

Изобретение относится к области измерительной техники, в частности к сенсорным тактильным системам для измерения геометрических, трибологических и физико-механических характеристик поверхности тела по результатам измерения результирующих сил и моментов и может быть использовано в...
Тип: Изобретение
Номер охранного документа: 0002698958
Дата охранного документа: 02.09.2019
07.09.2019
№219.017.c866

Способ эксплуатации нефтяных наклонно-направленных скважин и скважин с боковыми стволами

Изобретение относится к нефтедобывающей отрасли и может быть использовано при добыче нефти из нефтяных наклонно-направленных скважин и скважин с боковыми стволами штанговыми насосными установками (ШСНУ), оборудованными канатными штангами. Для осуществления способа используют поверхностный...
Тип: Изобретение
Номер охранного документа: 0002699504
Дата охранного документа: 05.09.2019
02.10.2019
№219.017.cbd7

Лопасть воздушного винта с управляемой геометрией профиля

Изобретение относится к области авиации. Лопасть воздушного винта с управляемой геометрией профиля содержит аэродинамический профиль, имеющий переднюю часть и подвижный закрылок, соединенные между собой крепежным устройством. Подвижный закрылок состоит из несущего элемента, верхней и нижней...
Тип: Изобретение
Номер охранного документа: 0002701416
Дата охранного документа: 26.09.2019
17.10.2019
№219.017.d721

Способ повышения нефтеотдачи пластов и интенсификации добычи нефти и система для его осуществления

Изобретения относятся к нефтедобывающей промышленности, а именно к способам повышения нефтеотдачи пластов, интенсификации добычи нефти и стимуляции скважин посредством создания каналов в нефтяных пластах и устройствам для их осуществления. Техническим результатом является повышение...
Тип: Изобретение
Номер охранного документа: 0002703064
Дата охранного документа: 15.10.2019
24.10.2019
№219.017.da9c

Способ оценки модуля деформации грунта

Изобретение относится к области строительства и предназначено для оценки физико-механических характеристик грунтов оснований, обеспечивающих методы расчета оснований, фундаментов и подземных сооружений исходной информацией. Предлагается способ оценки модуля деформации грунта, при котором...
Тип: Изобретение
Номер охранного документа: 0002704074
Дата охранного документа: 23.10.2019
30.10.2019
№219.017.dbcf

Способ формирования сжимающих остаточных напряжений при дробеструйной обработке деталей

Изобретение относится к формированию сжимающих остаточных напряжений при дробеструйной обработке. Осуществляют дробеструйную обработку поверхности контрольной пластины, изготовленной из материала обрабатываемой детали, и измеряют стрелу прогиба деформированной контрольной пластины. Давление...
Тип: Изобретение
Номер охранного документа: 0002704341
Дата охранного документа: 28.10.2019
01.11.2019
№219.017.dbf7

Способ электронно-лучевой наплавки с контролем положения присадочной проволоки относительно электронного луча (варианты)

Изобретение относится к способу электронно-лучевой наплавки с оперативным контролем положения присадочной проволоки относительно электронного луча. Способ содержит этапы, на которых электронно-лучевую наплавку проводят с непрерывной осцилляцией электронного луча по траектории, имеющей...
Тип: Изобретение
Номер охранного документа: 0002704682
Дата охранного документа: 30.10.2019
Showing 1-2 of 2 items.
24.10.2019
№219.017.da9c

Способ оценки модуля деформации грунта

Изобретение относится к области строительства и предназначено для оценки физико-механических характеристик грунтов оснований, обеспечивающих методы расчета оснований, фундаментов и подземных сооружений исходной информацией. Предлагается способ оценки модуля деформации грунта, при котором...
Тип: Изобретение
Номер охранного документа: 0002704074
Дата охранного документа: 23.10.2019
15.05.2020
№220.018.1d0c

Механически связный дисперсный грунт

Изобретение относится к области техногенных антропогенных дисперсных грунтов и может быть использовано в качестве оснований зданий и сооружений. Механически связный дисперсный грунт представляет собой смесь твердых коммунальных отходов после окончания процессов биологического разложения с...
Тип: Изобретение
Номер охранного документа: 0002720832
Дата охранного документа: 13.05.2020
+ добавить свой РИД