×
31.07.2020
220.018.3a22

Результат интеллектуальной деятельности: СПОСОБ НАСТРОЙКИ ПРЕОБРАЗОВАТЕЛЯ ЧАСТОТЫ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ В ТРЕТЬЮ ГАРМОНИКУ

Вид РИД

Изобретение

Аннотация: Изобретение относится к нелинейным преобразователям частоты лазерного излучения. Способ настройки преобразователей частоты (ПЧ) лазерного излучения (ЛИ) в третью гармонику обеспечивает настройку ПЧ в два этапа. На первом этапе кристалл-преобразователь частоты настраивают по азимутальному углу, добиваясь необходимого значения угла между главной плоскостью кристалла и направлением поляризации рабочего ЛИ. На втором этапе предварительно определяют точный абсолютный угол синхронизма и закрепляют полученный угол за данным кристаллом-преобразователем, после чего производят настройку ПЧ на этот угол синхронизма относительно направления падающего на ПЧ рабочего ЛИ. Измерение угла синхронизма производят геодезическим способом. Технический результат заключается в обеспечении возможности использования для преобразования ЛИ в третью гармонику неоптимизированных для этого ПЧ, сохраняя при этом высокую точность выставления как малых, так и больших углов настройки синхронизма. 2 ил.

Изобретение относится к нелинейным преобразователям частоты (ПЧ) лазерного излучения (ЛИ) и касается вопросов настройки ПЧ для преобразования ЛИ в третью гармонику.

Известен способ настройки ПЧ на лазерной установке Nova без получения значения абсолютных углов настройки [М.А. Summers, L.G. Seppala, F. Rienecker, D. Eilmerl, B.C. Johnson, "Nova Frequency Conversion System", Lawrence Livermore National Laboratory, Livermore, UCRL-86009, October 28. Prepared for submittal to 9th Symposium on Engineering Problems of Fusion Research, Chicago, Illinois]. К недостаткам этого способа настройки кристаллов для преобразования ЛИ в третью гармонику относится отсутствие на многих других лазерных установках задающего генератора, способного работать в импульсно-периодическом режиме, позволяющем произвести такую настройку.

Наиболее близким к заявляемому является способ настройки конвертора (ПЧ) лазерного излучения в третью гармонику, который применяется для американской многоканальной лазерной установки NIF [Wegner P., Auerbach J., Biesiada Т., Dixit S., Lawson J., et all - NIF final optics system: frequency conversion and beam conditioning. - SPIE Photonics West, San Jose, California, January 24 - 29, 2004]. Кристаллы преобразователя частоты и финальная линза на установке NIF закрепляются в единую монолитную алюминиевую конструкцию (final optics cell). Все элементы ячейки и элементы их крепления сделаны с большой точностью (угловая ошибка каждого элемента не превышает 10 мкрад). Настраивают ПЧ на угол синхронизма относительно направления падающего на ПЧ лазерного излучения. При настройке каждая ячейка с помощью трех активаторов поворачивается так, чтобы отраженный от кристалла удвоителя луч составлял угол 1.16 мрад относительно падающего. Настройка производится по изображению CCD-камеры, установленной в фокусе выходной линзы транспортного пространственного фильтра (ТПФ) на небольшом расстоянии от центра диафрагмы ТПФ. Описанный способ настройки предполагает практически идеальное изготовление кристаллов преобразователя частоты с точки зрения ориентации оптической оси относительно их поверхности. Для решения этой задачи на установке NIF разработана специальная система CATS - Crystal Alignment Test System [Hunt J.T. - National Ignition Facility Performance Review 1999. - LLNL Report UCRL-ID-138120-99, 2000, 313 p]. Она позволяет провести прецизионное измерение угла синхронизма каждого нового выращенного кристалла по отношению с образцовым кристаллом с точно известным расположением осей. Далее разница между кристаллами устраняется при алмазном фрезеровании нового кристалла. Оптимизированные таким способом кристаллы имеют высокую стоимость, а метод настройки не универсален и подходит с удовлетворительной точностью для ПЧ с небольшими углами настройки, при этом невозможно осуществление настройки для больших углов.

Техническая проблема, решаемая изобретением, состоит в обеспечении возможности настройки неоптимизированных преобразователей частоты.

Технический результат состоит в технологическом упрощении процесса настройки ПЧ с обеспечением удовлетворительной точности настройки, как для небольших, так и для больших углов.

Данный технический результат достигается за счет того, что в отличие от известного способа настройки преобразователя частоты (ПЧ) лазерного излучения в третью гармонику, заключающегося в том, что настраивают ПЧ на угол синхронизма относительно направления падающего на ПЧ лазерного излучения, в предложенном способе используют ПЧ неоптимизированной геометрии, обеспечивают настройку ПЧ в два этапа, для чего сначала на первом этапе выставляют ПЧ под углом к направлению поляризации падающего на ПЧ излучения, после чего на втором этапе настраивают ПЧ на угол синхронизма относительно направления падающего на ПЧ лазерного излучения, причем на первом этапе для выставления ПЧ под углом к направлению поляризации осуществляют азимутальную настройку, для чего предварительно задают положение реперных полос на экране, и далее выставление ПЧ под углом к направлению поляризации лазерного излучения обеспечивают оптически при пропускании лазерного излучения через ПЧ путем получения на экране интерференционных полос и путем вращения ПЧ задания их положения относительно реперных полос на экране, об азимутальной настройке судят по параллельности интерференционных и реперных полос на экране, после обеспечения параллельности интерференционных и реперных полос на экране на первом этапе, на втором этапе предварительно определяют точный абсолютный угол синхронизма, после чего настройку ПЧ на угол синхронизма относительно направления падающего на ПЧ лазерного излучения производят геодезически, о точности настройки ПЧ лазерного излучения в третью гармонику судят по совпадению углового положения максимума генерации гармоники с направлением настроенного на угол синхронизма падающего на ПЧ лазерного излучения.

То есть, физическая основа способа состоит в том, что найден подход, позволяющий обеспечить условия для настройки неоптимизированных преобразователей частоты. Первый этап настройки (по азимутальному углу) позволяет определить и выставить положение главной плоскости кристалла относительно поляризации ЛИ без использования рабочего излучения лазерной установки, что технологически упрощает процесс настройки, исключая на этом этапе работу самой установки. Этот этап настройки необходим при работе с неоптимизированными кристаллами, т.к. в этом случае положение главной плоскости кристалла не сориентировано и требует настройки.

Новизна второго этапа в использовании геодезического метода настройки. Суть подхода в использовании автоколлимационного теодолита позволяющего измерить и настроить абсолютные углы синхронизма большой величины (кристаллы могут иметь углы настройки на синхронизм 10°-15°), обеспечивая ту же точность, что и для малых углов настройки (углы ~ единиц минут). То есть процесс настройки подстраивается под геометрию имеющегося кристалла, позволяет использовать данный кристалл для разных задач, например для преобразования как во вторую так и в третью гармоники без его доработки. В прототипе для каждой задачи с высокой точностью изготавливается отдельный кристалл, требующий дорогостоящей оптимизации. Таким образом, предложенный подход обеспечил возможность использования неоптимизированных кристаллов преобразователя и технологическое упрощение процесса настройки ПЧ с обеспечением удовлетворительной точности настройки для малых и больших углов.

На фиг. 1 схематично изображен стенд для настройки кристаллов по азимутальному углу ϕ, где 1 - собирающая линза, 2 - кристалл преобразователя частоты, 3 - призма Глана, 4 - собирающая линза, 5 - экран с повернутыми на угол ϕ относительно вертикали полосами.

На фиг. 2 приведена оптическая схема выставления угла для максимума синхронизма на канале установки, где 6 - усилитель лазерной установки, 2 - кристалл преобразователя частоты, 7 - автоколлимационный теодолит.

Для решения поставленной задачи предложен способ, реализованный следующим образом. Экспериментальный неоптимизированный образец кристалла (ПЧ) выставляется относительно поляризации ЛИ и определяются его углы настройки на синхронизм. Абсолютные углы настройки на синхронизм контролируются геодезическим методом, фиксируются за образцом кристалла и используются для его дальнейшей настройки в экспериментах по преобразованию ЛИ в третью гармонику.

Таким образом, полная настройка кристаллов происходит в два этапа.

Для настройки кристаллов по азимутальному углу ϕ (первый этап полной настройки) использовалась схема, приведенная на фиг. 1.

Параллельный пучок настроечного лазера (с длинной волны в видимом диапазоне) падает на линзу 1, далее сходящийся пучок проходит через кристалл преобразователя частоты 2 и анализатор 3, затем после линзы 4 параллельный пучок падает на экран с реперными полосами 5, который установлен таким образом, чтобы нанесенные на него линии составляли необходимый угол ϕ с вертикалью (т.к.в данном примере рабочее излучение лазера имеет вертикальную поляризацию).

Излучение, проходя через кристалл, меняет свое состояние поляризации, после анализатора на экране образуется система интерференционных полос, перпендикулярных главной плоскости кристалла. Вращая кристалл в азимутальном направлении по углу ϕ, добиваются совпадения полос. О настройке судят по степени параллельности интерференционных и реперных полос на экране.

Направление синхронизма в ПЧ при реализации определяли по общепринятой методике, облучая его конусом сходящихся лучей основной частоты с регистрацией на CCD-камеру полосы синхронизма генерируемой оптической гармоники и опорной метки [С.Е. Barker, D. Milan, R. Boyd "High Fluence Third Harmonic Generation", LLNL UCRL-LR-105821-93-2, Volume 3, Number 2, 1993, 55-62]. Угловое положение нелинейного элемента контролировалось относительно луча юстировочного лазера геодезическим способом. При выставлении кристаллов в угол синхронизма в эксперименте на генерацию третьей гармоники также используется метод, применяемый при измерении и контроле углов падения излучения на поверхность преобразователя частоты в опытах при определении направления синхронизма.

Оптическая схема геодезического метода выставления угла для направления фазового синхронизма с помощью автоколлимационного теодолита (второй этап полной настройки) показана на фиг. 2.

Автоколлимационный теодолит 7 устанавливается за кристаллом-преобразователем частоты 2 и выставляется на юстировочный луч лазерной установки. Направление луча измеряется непосредственно по теодолиту путем наблюдения котировочного луча в окуляр. Для снижения яркости луча, наблюдаемого в теодолите, до безопасного уровня используется специально изготовленная насадка для окуляра, состоящая из светофильтров, ослабляющих излучение юстировочного лазера. Теодолит устанавливается по уровням в горизонтальное рабочее положение. Далее находим изображение юстировочного луча, точно совмещаем с ним сетку нитей теодолита и берем отсчеты (при вертикальном и горизонтальном круге) углового положения юстировочного луча. Данные отсчеты являются для нас нулевыми. Относительно этого положения откладывается предварительно экспериментально измеренный угол положения кристалла для направления фазового синхронизма преобразователя с учетом температурной поправки. Производим корректировку положения кристалла с помощью микрометрических подвижек до совпадения штрихов собственной сетки нитей и коллимационного отражения. Теперь кристалл считается выставленным. Суммарная погрешность выставления кристалла с помощью описанного метода не превышает ±17 угловых секунд (82 мкрад). И эта погрешность сохраняется как для углов настройки менее 1°, так и для больших углов ~ 10°-15°. Как результат, предложенный подход обеспечил возможность использования неоптимизированных кристаллов преобразователя и технологическое упрощение процесса настройки ПЧ с обеспечением удовлетворительной точности настройки для малых и больших углов.


СПОСОБ НАСТРОЙКИ ПРЕОБРАЗОВАТЕЛЯ ЧАСТОТЫ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ В ТРЕТЬЮ ГАРМОНИКУ
СПОСОБ НАСТРОЙКИ ПРЕОБРАЗОВАТЕЛЯ ЧАСТОТЫ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ В ТРЕТЬЮ ГАРМОНИКУ
Источник поступления информации: Роспатент

Showing 741-750 of 796 items.
12.05.2023
№223.018.546d

Источник стабильного тока или напряжения с импульсным регулированием

Источник стабильного тока или напряжения с импульсным регулированием относится к импульсной технике и электротехнике и может быть использован в устройствах стабилизации тока или напряжения, пропорционального току, в том числе в соленоидах ламп бегущей волны, обмотках электродвигателей, в...
Тип: Изобретение
Номер охранного документа: 0002795478
Дата охранного документа: 04.05.2023
12.05.2023
№223.018.5476

Система сушки бетона реакторной установки

Изобретение относится к ядерной энергетике, а именно: к конструкции системы сушки железобетонного корпуса ядерного ректора на быстрых нейтронах с жидкометаллическим теплоносителем. Система сушки дополнительно снабжена второй группой кольцевых коллекторов, к которым подведены негерметичные...
Тип: Изобретение
Номер охранного документа: 0002795507
Дата охранного документа: 04.05.2023
14.05.2023
№223.018.56c9

Электролитная масса и способ изготовления электролита для тепловых химических источников тока

Изобретение относится к технологии изготовления электролитов для тепловых (твердотельных) химических источников тока (ТХИТ) и может быть использовано для получения электролитов на основе соединений лития. Согласно изобретению электролитная масса для ТХИТ содержит смесь галогенидов лития и...
Тип: Изобретение
Номер охранного документа: 0002732080
Дата охранного документа: 11.09.2020
14.05.2023
№223.018.5709

Карданное соединение валов

Изобретение относится к области машиностроения и может быть использовано для соединения валов, передающих крутящий момент. Карданное соединение валов содержит ведущий, ведомый и промежуточный валы, две полумуфты с пазами, штифты и пружину. Полумуфты жестко закреплены на концах промежуточного...
Тип: Изобретение
Номер охранного документа: 0002733180
Дата охранного документа: 29.09.2020
15.05.2023
№223.018.5768

Устройство для магнитного ускорения плоских ударников

Изобретение относится к области экспериментальной физики, исследующей поведение веществ под воздействием сильных ударных волн. Устройство для магнитного ускорения плоских ударников содержит импульсный источник энергии, передающую линию, состоящую из цилиндрических внутреннего и внешнего...
Тип: Изобретение
Номер охранного документа: 0002770171
Дата охранного документа: 14.04.2022
15.05.2023
№223.018.57c9

Предохранительно-исполнительный механизм взрывателя

Изобретение относится к области военной техники, а именно к устройствам системы автоматики, использующим энергию энергетических конденсированных систем - взрывчатых веществ и взрывчатых составов, порохов, твердых топлив и пиротехнических составов, а именно к предохранительно-исполнительным...
Тип: Изобретение
Номер охранного документа: 0002767809
Дата охранного документа: 22.03.2022
15.05.2023
№223.018.5825

Пороговый датчик инерционного типа

Изобретение относится к области приборостроения, а именно к пороговым датчикам инерционного типа. Технический результат заключается в повышении точности срабатывания датчика при действии вдоль его оси ускорения, величина которого превышает порог по ускорению срабатывания, в повышении надежности...
Тип: Изобретение
Номер охранного документа: 0002768012
Дата охранного документа: 23.03.2022
15.05.2023
№223.018.583a

Рентгенозащитная композиция

Изобретение относится к радиационно-защитным материалам и может быть использовано для изготовления средств защиты для людей и оборудования от рентгеновского излучения. Рентгенозащитная композиция на основе диметилсилоксанового каучука, включающая: диметилсилоксановый каучук - 20 масс. ч.;...
Тип: Изобретение
Номер охранного документа: 0002768360
Дата охранного документа: 24.03.2022
15.05.2023
№223.018.5848

Устройство взрывное

Изобретение относится к детонирующим устройствам, срабатывающим при воздействии заданного механического усилия, не содержащим инициирующих взрывчатых веществ, и может быть использовано при разработке конструкции механического взрывателя и в детонационных цепях взрывной автоматики. Устройство...
Тип: Изобретение
Номер охранного документа: 0002768874
Дата охранного документа: 25.03.2022
15.05.2023
№223.018.5a66

Устройство для вакуумирования изделий

Изобретение относится к средствам для вакуумирования изделий в течение необходимого времени с поддержанием вакуума в необходимом диапазоне. Устройство для вакуумирования изделий содержит герметичную рабочую камеру с крышкой, имеющей средство открытия и закрытия крышки и датчик закрытия крышки....
Тип: Изобретение
Номер охранного документа: 0002769778
Дата охранного документа: 06.04.2022
+ добавить свой РИД