×
24.07.2020
220.018.3771

Результат интеллектуальной деятельности: КРИОГЕННАЯ УСТАНОВКА-ГАЗИФИКАТОР И СПОСОБ ЕЕ РАБОТЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к криогенной технике и может быть использовано для газификации жидкого азота при контроле качества приклеивания оптических солнечных отражателей на внешние поверхности космического аппарата. Способ работы криогенной установки-газификатора включает поддержание давления и температуры холодного газа в теплоизолированной криогенной емкости выше температуры конденсации путем подвода тепла к холодному газу при уменьшении его плотности. Криогенную емкость установки-газификатора заправляют через заливную горловину в форме воронки жидким азотом, но не более половины общего объема криогенной емкости. По показаниям датчиков температуры и давления, расположенных в верхней части криогенной емкости, определяют степень интенсивности газификации жидкого азота внутри криогенной емкости. При повышении температуры и падении давления холодного газа внутри криогенной емкости производят интенсивное испарение жидкого азота, находящегося в испарителе, путем включения программируемым микроконтроллером электронагревателя, расположенного на испарителе. С помощью нагрева в испарителе образуют и увеличивают в объеме холодный газ и направляют его по трубопроводу в криогенную емкость, создают в ней избыточное давление, тем самым обеспечивают требуемую интенсивность подачи холодного газа. При достижении требуемых параметров температуры и давления в криогенной емкости при помощи программируемого микроконтроллера уменьшают температуру электронагревателя испарителя и поддерживают заданную программой микроконтроллера интенсивность газификации. Отключение установки осуществляют автоматически программируемым микроконтроллером при снижении уровня жидкого азота в криогенной емкости, уменьшении давления и повышении температуры холодного газа в криогенной емкости по показаниям датчиков температуры и давления, при этом электронагреватель испарителя работает на максимальной температуре. На панели управления программируемого микроконтроллера имеются кнопки включения установки и индикаторы состояния «Включено» и «Нет азота». Техническим результатом является повышение мобильности, степени предварительной готовности и стабильности и упрощение эксплуатации. 2 н.п. ф-лы, 4 ил.

Изобретение относится к криогенной технике и может быть использовано для газификации жидкого азота при контроле качества приклеивания оптических солнечных отражателей на внешние поверхности космического аппарата (КА).

Терморегулирующее покрытие - оптический солнечный отражатель (ОСО), наносится с помощью клеевого слоя на внешние поверхности космического аппарата (КА). Элементы ОСО представляют собой квадратные кварцевые пластинки со стороной 20-40 мм и толщиной 100-200 мкм посеребренные с одной стороны. Клеевые соединения при работе в условиях глубокого вакуума обнаруживают способность к газовыделению, а наличие пузырьков воздуха в клеевом соединении может привести к разрушению элемента ОСО. Контроль качества приклеивания осуществляется методом неразрушающего контроля - охлаждением до появления росы при обдуве холодным газом - парами жидкого азота. Точка росы на поверхности терморегулирующего покрытия в условиях цеха достигается при охлаждении до отрицательных температур от минус 5 до минус 15°С. В местах непроклея образуются темные пятна, на которых запотевание происходит с запозданием по отношению ко всей поверхности. В этих местах производят ремонт - переклеивают элементы ОСО. Для реализации этого способа контроля очень важно равномерное охлаждение, т.е. стабильная подача мелко дисперсионного холодного газа при отсутствии в струе крупных капель жидкого азота.

Из уровня техники известны устройства для производства холодного газа из хладагента - жидкого азота - криораспылители или газификаторы различных конструкций и назначений.

Известен криораспылитель (RU №46428 U1), содержащий емкость для хладагента, связанный с ней канал подачи хладагента и открытый наконечник, отличающийся тем, что емкость для хладагента имеет герметизирующую крышку, во внутренней полости которой размещена теплообменная камера, выполненная в виде тонкостенной гильзы из теплопроводного материала, припаяна к стенкам герметизирующей крышки, открытый конец гильзы выполнен из нетеплопроводного материала и расширен с возможностью герметичного соединения с конусообразной пробкой и соосно вставленной в нее эластичной трубкой с источником подъема давления, эластичная трубка снабжена отводным патрубком с клапаном, в полости тонкостенной гильзы размещен шнек, жестко соединенный со стенками гильзы, в нижней части шнека выполнен осевой пропил, в средней части гильзы, позади шнека расположена воздухоподающая трубка, направленная внутрь емкости для хладагента, на противоположной части гильзы размещена Г-образная часть канала подачи хладагента, которая выполнена из теплопроводного металла и имеет продольную накатку, образующую внутренние ребра Г-образной части канала, Г-образная часть канала подачи в местах ее прохода через гильзу припаяна к стенкам гильзы, открытый наконечник крепится к Г-образной части канала подачи посредством шланга, снабженного электропроводной спиралью, намотанной на его наружную поверхность и соединенную с портативным источником питания, открытый наконечник представляет собой цилиндрическую трубку, переходящую в форсунку в дистальной его части, в форсунке жестко установлен шнек, форсунка снабжена съемной насадкой, выполненной из нетеплопроводного материала в виде цилиндра с окнами.

К недостаткам такой конструкции, предполагающей использование криораспылителя в качестве ручного переносного инструмента, является очень малый объем хладагента, вследствие чего работа аппарата возможна только порционно, очень короткое время.

Известен криораспылитель, содержащий емкость для хладагента, связанный с ней канал подачи и открытый наконечник (а.с. СССР №1602488, МПК А61В 17/36). Инструмент содержит жестко связанные между собой корпус, теплообменник и открытый наконечник с расположенными на его боковой поверхности окнами. Криораспылитель содержит также дозатор воздуха, выполненный в виде цилиндра, размещенного коаксиально корпусу и закрепленного на наконечнике с возможностью изменения сечения окна. Трубка подачи хладагента соединена с теплообменником, на выходе которого установлен эжектор. Внутри наконечника закреплены сепарационные тарелки, выполненные в виде усеченных асимметричных конусов.

Вышеописанный криораспылитель имеет ряд недостатков. Работа теплообменника и сепарационных тарелок эффективна только короткое время с момента начала работы. Во время работы корпус и теплообменник быстро охлаждаются хладагентом и предварительное кипение хладагента прекращается. Сепарационные тарелки также быстро охлаждаются и капли хладагента сливаются на них в более крупные. Работа аппарата возможна только порционно очень короткое время.

Другим классом устройств для производства холодного газа из жидкого азота являются средние и большие газификаторы различного назначения. В отличие от криораспылителей они, как правило, снабжены устройствами, интенсифицирующими процесс, и имеют более сложную конструкцию.

Типовые конструкции криогенных газификаторов азота, как правило, включают в себя:

- криогенный резервуар для хранения жидкого азота;

- арматурный шкаф;

- теплообменники для газификации сжиженного газа - испарители различных конструкций, нагрев которых происходит от окружающего воздуха (атмосферные испарители), или от электронагревателей;

- арматуру, предохранительные устройства;

- приборы контроля, указатели уровня.

Наиболее распространенным типом конструкции криогенных резервуаров в составе газификаторов являются те, в которых жидкие криогенные продукты хранятся под давлением. При этом они попадают в категорию сосудов, подлежащих регистрации в органах Ростехнадзора.

Использование в конструкциях газификаторов атмосферного испарителя, (теплообменного устройства, работающего за счет тепла окружающей среды), приводит к возникновению проблем в основном связанных с тем, что испарение криогенной жидкости сопровождается десублимацией из атмосферного воздуха кристаллов воды и углекислоты на поверхности испарителя, что приводит к существенному снижению эффективности работы испарителя из-за увеличения термического сопротивления теплообменных поверхностей. В результате производительность установок, резко падает по причине обмерзания атмосферного испарителя и последующих циклических длительных простоев установки, обусловленных необходимостью отогрева и удаления инея с теплообменных поверхностей. Слой инея не просто ухудшает их работу. Характер образования и структура расположения кристаллов слоя инея существенно влияют на процессы теплообмена и носят сложный характер. Они зависят от комплекса факторов окружающей среды (температуры, влажности). Тепловая нагрузка испарителей меняется в зависимости расхода и давления выдачи хладагента, что сильно влияет на стабильность газификации.

Известен криогенный газификатор (RU №94035236 А1), содержащий внутреннюю и внешнюю оболочки с вакуумно-изолированной полостью между ними и испарительную секцию, размещенную на внешней оболочке, отличающийся тем, что он дополнительно содержит термохимические нагреватели, один из которых выполнен в виде съемной гильзы, размещенной в полости внутренней оболочки под уровнем криогенной жидкости, а другой в виде съемной панели, встроенной между внешней оболочкой и испарительной секцией.

К недостаткам устройства относится то, что конструкцией нагревателя предусмотрен нагрев всего объема хладагента, что требует значительного тепловыделения от нагревателей, а равномерная, регулируемая подача холодного газа не входит в задачу, решаемую данной установкой.

Известен газификатор в форме системы подачи криогенного топлива в энергетическую установку (RU №2347934 С1), содержащий топливный бак, подкачивающий насос, теплообменник-газификатор, отсечной клапан и компрессор, отличающийся тем, что она снабжен адиабатным парогенерирующим устройством и сепаратором, при этом вход теплообменника-газификатора через вентиль соединен с топливным баком, вход адиабатного парогенерирующего устройства соединен с выходом теплообменника-газификатора и через вентиль с топливным баком, выход адиабатного парогенерирующего устройства соединен со входом сепаратора, первый выход сепаратора через подкачивающий насос и вентиль соединен с топливным баком, а второй выход сепаратора через компрессор и отсечной клапан соединен с энергетической установкой.

В этой системе теплообменник-газификатор частично газифицирует топливо при постоянном давлении. Адиабатное парогенерирующее устройство - дроссель либо сопло Лаваля - снижает давление и температуру полученной двухфазной смеси. Сепаратор отделяет охлажденную жидкую фазу, а подкачивающий насос возвращает ее в топливный бак. Компрессор подает газовую фазу в энергетическую установку. Система обеспечивает компенсацию теплопритока к криогенному топливу из окружающей среды за счет охлаждения топлива в адиабатном парогенерирующем устройстве и расширяет функциональные возможности системы, так как адиабатное парогенерирующее устройство не обладает тепловой инерцией, процесс газификации происходит с высокой интенсивностью во всей массе жидкости непосредственно в процессе течения.

Недостатком подобной системы является сложность конструкции, большое количество криогенной арматуры, необходимость наличия в схеме криогенного подкачивающего насоса, и подающего криогенного компрессора.

За прототип предлагаемого устройства выбран криогенный насос-газификатор (RU №170011 U1), содержащий баллон с криогенной заправкой. За баллоном с криогенной заправкой установлены дополнительно контур газификации и контур получения дополнительной энергии, причем контур газификации содержит магистраль, подключенную к баллону с криогенной заправкой и соединенную с вентилем, за которым последовательно установлены плунжерный насос и теплообменник-конденсатор, подсоединенный к топливному баллону, а контур получения дополнительной энергии включает в себя магистраль, подключенную к теплообменнику-конденсатору и соединенную с насосом, за которым последовательно установлены теплообменник-испаритель, турбина, соединенная с теплообменником-конденсатором, за которой установлены электрогенератор и аккумуляторная батарея, являющаяся приводом плунжерного насоса.

Недостатком прототипа является сложность схемы, обусловленная необходимостью наличия в ней криогенного насоса и дополнительного контура с теплоносителем для подогрева теплообменника. Кроме этого основной задачей прототипа было получение дополнительной электрической энергии при эксплуатации криогенного баллона, а регулируемая подача холодного газа не входит в цели, решаемые данной конструкцией.

Кроме этого к недостаткам этой и перечисленных выше известных конструкций (в том числе и используемых в настоящее время стандартных газификаторов жидкого азота) можно отнести низкую экономичность, вызванную значительной потребностью в жидком азоте и большой длительностью цикла подготовки к работе. Чрезмерная потребность в жидком азоте обусловлена тем, что хладагент расходуется не только собственно на технологический процесс, но и дополнительно на предварительное охлаждение как минимум до температуры конденсации рабочей среды массивного криогенного баллона, имеющего, как правило, вакуумную многослойную изоляцию, и предназначенного так же для длительного хранения жидкого азота.

Сходство с прототипом в предлагаемой данным изобретением конструкции ограничивается наличием теплоизолированной криогенной емкости с установленным дополнительно контуром газификации и контуром получения дополнительной энергии.

Из уровня техники известны различные способы газификации криогенных жидкостей, например, известен способ подогрева криогенной жидкости (RU №2014105627 А), содержащейся в криогенном резервуаре с газовым потоком, отличающийся тем, что криогенную жидкость нагревают путем ввода газа с более высокой температурой под (или над) свободной поверхностью криогенной жидкости.

Недостатком данного способа является некоторая неопределенность технической реализации, не раскрыт метод достижения требуемых значений температуры и давления получаемого газового потока, кроме этого способ предполагает энергозатратный нагрев всего объема криогенной жидкости, содержащейся в криогенном резервуаре.

За прототип предлагаемого способа выбран «Способ хранения и подачи криогенного продукта» (RU №2014105627 А), основанный на поддержании давления и температуры криогенного продукта в теплоизолированном внутреннем сосуде выше температуры конденсации путем подвода тепла к криогенному продукту при уменьшении его плотности в процессе хранения криогенного продукта и в процессе подачи криогенного продукта давление в теплоизолированном внутреннем сосуде понижают до значений, близких к давлению заправки, путем отключения нагревателя и дополнительных нагревательных элементов, а при достижении давления в теплоизолированном внутреннем сосуде значения давления заправки производят включение нагревателя и/или дополнительных нагревательных элементов для поддержания давления на уровне ниже критического.

Недостатком прототипа является малоэффективный и энергозатратный процесс нагрева всего объема криогенного продукта в теплоизолированном внутреннем сосуде.

Сходство с прототипом в предлагаемом данным изобретением способе ограничивается поддержанием давления и температуры холодного газа в теплоизолированной криогенной емкости выше температуры конденсации путем подвода тепла к холодному газу при уменьшении его плотности.

Техническими проблемами, на решение которых направлено предлагаемое изобретения являются:

- повышение стабильности работы;

- упрощение конструкции криогенной установки;

- безопасность работы установки;

- возможность заправки установки хладагентом непосредственно из сосудов Дьюара (или через типовые переливные устройства для этих сосудов) или из мерных емкостей малого объема;

- обеспечение равномерного и качественного, то есть мелкодисперсного образования аэрозоли хладагента;

- ремонтопригодность, легкий доступ ко всем элементам конструкции, простота в обслуживании;

- расширение технологической применяемости криогенных технологий.

Указанные технические проблемы решаются:

1) Устройством криогенной установки-газификатора, состоящей из теплоизолированной криогенной емкости с установленным дополнительно контуром газификации и контуром получения дополнительной энергии, отличающейся от прототипа тем, что криогенная емкость, установлена внутри теплоизолированного шкафа, оснащена в верхней части заливной горловиной в виде воронки с откидной крышкой и криогенным шлангом с вакуумной изоляцией для выдачи холодного газа, имеющим на другом конце теплоизолированную ручку оператора, также в верхней части криогенной емкости расположены датчики давления и температуры, криогенная емкость имеет испаритель, входная трубка которого присоединена к нижней части криогенной емкости, а выходная - к верхней, причем трубки крепятся через упругие вставки, а в конструкции испарителя в средней его части имеется электронагреватель, а на корпусе теплоизолированного шкафа имеется пульт с электрооборудованием на основе программируемого микроконтроллера, на панели управления которого имеются кнопки включения установки и индикаторы состояния «Включено» и «Нет азота»;

2. Способом работы криогенной установки-газификатора, заключающимся в поддержании давления и температуры холодного газа в теплоизолированной криогенной емкости выше температуры конденсации путем подвода тепла к холодному газу при уменьшении его плотности, отличающимся от прототипа тем, что заправляют криогенную емкость установки-газификатора через заливную горловину жидким азотом, но не более половины общего объема криогенной емкости, затем по показаниям датчиков температуры и давления, расположенных в верхней части криогенной емкости, определяют степень интенсивности газификации жидкого азота внутри криогенной емкости, и при повышении температуры и падении давления холодного газа внутри криогенной емкости, производят интенсивное испарение жидкого азота, находящегося в испарителе путем включения программируемым микроконтроллером электронагревателя, расположенного на испарителе; образуют и увеличивают в объеме с помощью нагрева в испарителе холодный газ и направляют его по трубопроводу в криогенную емкость, создают в ней избыточное давление, тем самым обеспечивают требуемую интенсивность подачи холодного газа; при достижении требуемых параметров температуры и давления в криогенной емкости при помощи программируемого микроконтроллера уменьшают температуру электронагревателя испарителя и поддерживают заданную программой микроконтроллера интенсивность газификации, отключение установки осуществляют автоматически программируемым микроконтроллером при снижении уровня жидкого азота в криогенной емкости и уменьшении давления и повышении температуры холодного газа в криогенной емкости по показаниям датчиков температуры и давления, когда электронагреватель испарителя работает на максимальной температуре.

Изобретение поясняется чертежами.

На фиг. 1 изображен общий вид криогенной установки-газификатора (вид сбоку);

На фиг. 2 изображен общий вид криогенной установки-газификатора (вид сверху);

На фиг. 3 изображен внешний вид криогенной емкости (вид сбоку);

На фиг. 4 изображен внешний вид криогенной емкости (вид сверху).

Криогенная установка-газификатор, состоит из теплоизолированного шкафа 1, расположенного на четырехколесной тележке, внутри которого установлена криогенная емкость 2 выполненная из нержавеющей стали с теплоизоляцией 3, например, на основе рулонных фольгированных самоклеящихся полимерных материалов. Криогенная емкость оснащена в верхней части заливной горловиной 4 в виде воронки с откидной крышкой 5, и гибким криогенным шлангом 6 с теплоизолированной ручкой оператора 7 для выдачи холодного газа. Также в верхней части криогенной емкости расположены датчик температуры 8 и датчик давления 9. Кроме этого криогенная емкость оснащена контуром газификации и получения дополнительной энергии - имеет оборудованный электронагревателем и датчиком температуры испаритель 10, входная трубка 11 которого (отбор жидкого азота) присоединена к нижней ее части, а выходная 12 (выход холодного газа) - к верхней, причем трубки крепятся через упругие вставки, например, сильфонные компенсаторы температурных деформаций 13. Объем испарителя выбирается из соотношения мощности нагревателя и объема жидкого азота, поступающего в контур газификации. На корпусе шкафа имеется пульт 14 с электрооборудованием на основе программируемого микроконтроллера 15, на панели управления имеются кнопки включения установки 16 и индикаторы состояния «Включено» и «Нет азота» 17. На дискретные входа микроконтроллера подаются сигналы от кнопок включения установки, а на аналоговые входа поступают сигналы с датчиков температуры и давления (манометра), а с дискретных выходов - управляются индикаторы состояния («Включено» и «Нет азота»). Аналоговый выход микроконтроллера управляет расположенным в пульте тиристорным регулятором мощности 18, который по программе микроконтроллера управляет температурой нагревателя испарителя.

Способ работы криогенной установки-газификатора основан на поддержании давления и температуры криогенного продукта (жидкого азота) в теплоизолированном внутреннем сосуде - криогенной емкости 2 выше температуры конденсации, путем подвода тепла к криогенному продукту при уменьшении его плотности. Согласно заявленному изобретению способ работы установки заключается в том, что криогенную емкость 2 установки заправляют через заливную горловину 4 некоторым количеством жидкого азота, рассчитанным на текущую технологическую операцию, но не более половины общего объема криогенной емкости 2. Первоначально из-за разности температур жидкий азот кипит и испаряется, затем по мере захолаживания емкости до температуры конденсации рабочей среды испарение уменьшается. По показаниям датчиков температуры 8 и давления 9, расположенных в верхней части криогенной емкости 2 определяется степень интенсивности газификации, и при повышении температуры и падении давления (уменьшения плотности) холодного газа (паров азота) программируемый микроконтроллер 15 включает электронагреватель испарителя 10. Тиристорный регулятор мощности 18 плавно увеличивает температуру электронагревателя испарителя 10 до обеспечения заданных программой параметров. В результате нагрева испарителя 10, находящийся в нем жидкий азот начинает кипеть интенсивнее, пары жидкого азота увеличиваются в объеме и поступают через выходную трубку 12 в верхнюю часть криогенной емкости 2, что приводит к созданию в ней избыточного давления. Для обеспечения требуемой интенсивности подачи холодного газа, по достижении требуемых параметров (температуры и давления в криогенной емкости 2) микроконтроллер 15 уменьшает температуру электронагревателя испарителя 10, поддерживая заданную программой микроконтроллера интенсивность газификации. Автоматическое отключение установки осуществляется тогда, когда показания датчиков температуры 8 и давления 9 указывают на то, что давление холодного газа уменьшается, а температура в криогенной емкости 2 возрастает, но при этом электронагреватель испарителя 10 работает на максимальной температуре, что свидетельствует о недостаточном уровне жидкого азота в криогенной емкости. В этом случае микроконтроллер 15 отключает нагрев испарителя и включает оповещающий индикатор «Нет азота».

Техническим результатом, обеспечиваемым приведенной выше совокупностью технических средств является:

- расширение технологической применяемости криогенных технологий за счет мобильности конструкции и высокой степени готовности устройства к работе;

- повышение стабильности работы, вследствие отсутствия предварительных операций при заправке (захолаживания криогенной емкости до температуры конденсации рабочей среды, сброса избыточного давления, оттаивания испарителя и т.п.);

- значительное повышение экономичности процесса за счет отказа от предварительного полного охлаждения криогенной емкости устройства, нагрева только части заправленного азота в испарителе криогенной емкости и возможности заправки небольшим количеством жидкого азота, необходимым для выполнения конкретной технологической операции;

- безопасность работы установки за счет отсутствия сосудов высокого давления, внешних испарителей и необходимости отогрева и удаления инея с теплообменных поверхностей, как следствие исключение возможности получения обслуживающим персоналом холодовых ожогов;

- небольшая масса установки в не заправленном состоянии, возможность непосредственной заправки на рабочем месте из стандартных сосудов Дьюара (10-20 литров) или мерных емкостей.

Предлагаемая криогенная установка-газификатор позволит использовать технологии захолаживания не только в цехах, специально оборудованных стационарными криогенными установками (баллонами, цистернами, атмосферными испарителями и пр. криогенной арматурой) но и, при необходимости, в любом цехе общей сборки КА, например, при выполнении ремонта - переклейки ОСО после испытаний КА, сократив число транспортных операций.

Источник поступления информации: Роспатент

Showing 51-60 of 193 items.
10.06.2016
№216.015.48ff

Такелажно-швартовочный узел

Изобретение относится к сборно-разборным устройствам, предназначенным для проведения операций по закреплению на транспортных средствах с обеспечением требуемого угла наклона растяжек и (или) по переносу объектов различного назначения (транспортных контейнеров, ящиков и других изделий)....
Тип: Изобретение
Номер охранного документа: 0002586470
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.49f5

Способ выведения космического аппарата на геостационарную орбиту с использованием двигателей малой тяги

Изобретение относится к межорбитальному маневрированию космического аппарата (КА). Способ включает выведение КА на переходную орбиту с нулевым наклонением двигателями большой тяги. Перигей этой орбиты лежит ниже геостационарной орбиты (ГСО), а апогей - выше ГСО. Довыведение КА на ГСО...
Тип: Изобретение
Номер охранного документа: 0002586945
Дата охранного документа: 10.06.2016
12.01.2017
№217.015.5c78

Бак высокого давления

Изобретение относится к области машиностроения, в частности к баку высокого давления для хранения рабочих тел, предназначенному для использования на космическом аппарате. Бак содержит металлический лейнер, имеющий верхнее и нижнее днища овальной формы, выполненные в виде полусфер, герметично...
Тип: Изобретение
Номер охранного документа: 0002589956
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.7719

Способ организации помехоустойчивой связи

Изобретение относится к радиотехнике и может быть использовано для создания помехоустойчивых систем связи. Техническим результатом изобретения является снижение порога устойчивой работы широкополосной системы связи на 3…6 дБ за счет расширения полосы формируемого сигнала. Способ организации...
Тип: Изобретение
Номер охранного документа: 0002599578
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.8a7b

Способ управления автономной системой электроснабжения космического аппарата

Использование: в области электротехники. Технический результат - повышение надежности системы электроснабжения. Согласно способу управления автономной системой электроснабжения космического аппарата, содержащей солнечную батарею и n аккумуляторных батарей, стабилизатор напряжения, включенный...
Тип: Изобретение
Номер охранного документа: 0002604206
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8aaf

Способ эксплуатации литий-ионной аккумуляторной батареи в автономной системе электропитания искусственного спутника земли

Изобретение относится к электротехнической промышленности. Способ эксплуатации литий-ионной аккумуляторной батареи в автономной системе электропитания искусственного спутника Земли (ИСЗ) заключается в проведении зарядов, хранении в заряженном состоянии подзарядов, при необходимости, разрядов,...
Тип: Изобретение
Номер охранного документа: 0002604207
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8ac9

Способ питания нагрузки постоянным током в автономной системе электропитания искусственного спутника земли

Использование: в области электротехники в системах электропитания искусственных спутников Земли (ИСЗ). Технический результат - повышение удельных энергетических характеристик и качества выходного напряжения автономной системы электропитания ИСЗ. Способ заключается в том, что в автономной...
Тип: Изобретение
Номер охранного документа: 0002604096
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.9212

Регулировочно-соединительное устройство

Изобретение относится к области машиностроения и может быть использовано как устройство закрепления оборудования к конструкции корпуса космического аппарата. Регулировочно-соединительное устройство содержит комплект крепежных элементов для шарнирного соединения, шпангоут, на посадочные...
Тип: Изобретение
Номер охранного документа: 0002605666
Дата охранного документа: 27.12.2016
25.08.2017
№217.015.b74a

Способ заряда литий-ионной аккумуляторной батареи из "n" последовательно соединенных аккумуляторов

Изобретение относится к электротехнической промышленности. Способ заряда литий-ионной аккумуляторной батареи из «n» последовательно соединенных аккумуляторов заключается в контроле напряжения аккумуляторов, отключении заряда по достижении напряжения любого из аккумуляторов заданного...
Тип: Изобретение
Номер охранного документа: 0002614514
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.c791

Двухступенчатый электронасосный агрегат

Изобретение относится к машиностроительной гидравлике и может быть использовано как электронасосный агрегат (ЭНА) в составе систем терморегулирования самолетов и космических аппаратов. Двуступенчатый ЭНА содержит входной и выходной патрубки и два ЭНА. Каждый ЭНА содержит электродвигатель с...
Тип: Изобретение
Номер охранного документа: 0002618777
Дата охранного документа: 11.05.2017
Showing 11-16 of 16 items.
29.04.2019
№219.017.4235

Средство, стимулирующее апоптоз клеток лейкемии человека (варианты)

Изобретение относится к лекарственным средствам и касается применения производных О- и S-гликозидов 5-гидрокси-1,4-нафтохинона (юглона) формулы 1, где R и R имеют указанные в описании значения, в качестве средства, стимулирующего апоптоз клеток лейкемии человека. Предложенные соединения...
Тип: Изобретение
Номер охранного документа: 0002372919
Дата охранного документа: 20.11.2009
29.05.2019
№219.017.67d8

Средство, предотвращающее трансформацию нормальных клеток млекопитающих в опухолевые

Группа изобретений относится к медицине, конкретно к онкологии, и касается веществ, предотвращающих злокачественное перерождение нормальных клеток млекопитающих (в том числе человека) в опухолевые. Из губки Aaptos sp. получен аналог ааптамина, а именно 3-N-морфолинил-9-деметилоксиааптамин,...
Тип: Изобретение
Номер охранного документа: 0002429840
Дата охранного документа: 27.09.2011
29.05.2019
№219.017.67db

Средство, предотвращающее трансформацию нормальных клеток млекопитающих в опухолевые

Предложено применение 3-бромофаскаплизина в качестве средства, предотвращающего трансформацию нормальных клеток млекопитающих в опухолевые, а также для приготовления фармацевтических композиций с данным (канцерпревентивным) действием. Показано, что 3-бромофаскаплизин оказывает...
Тип: Изобретение
Номер охранного документа: 0002429839
Дата охранного документа: 27.09.2011
29.05.2019
№219.017.685f

Средство, воздействующее на активность некоторых ядерных факторов транскрипции

Изобретение относится к области клеточной молекулярной биологии и представляет собой применение 3-бромофаскаплизина в качестве средства, ингибирующего активность р53 ядерного фактора транскрипции и индуцирующего активность АР-1 ядерного фактора транскрипции. Изобретение обеспечивает расширение...
Тип: Изобретение
Номер охранного документа: 0002457840
Дата охранного документа: 10.08.2012
25.12.2019
№219.017.f225

Способ изготовления гибко-плоского электронагревателя

Изобретение относится к областям электротермии и космического машиностроения и может быть использовано при изготовления гибких, плоских, гибко-плоских электронагревателей, поддерживающих в работоспособном состоянии радиоэлектронную аппаратуру космического аппарата при воздействии условий...
Тип: Изобретение
Номер охранного документа: 0002710029
Дата охранного документа: 24.12.2019
20.05.2023
№223.018.6753

Способ прогнозирования объемов добычи углеводородов из месторождений нефти и газа с использованием компьютерного моделирования

Настоящее изобретение относится к области планирования и оценки эффективности системы разработки месторождения нефти и газа и позволяет прогнозировать объемы добычи углеводородов из подземных флюидонасыщенных коллекторов. Техническим результатом является обеспечение прогнозирования объемов...
Тип: Изобретение
Номер охранного документа: 0002794707
Дата охранного документа: 24.04.2023
+ добавить свой РИД