×
21.07.2020
220.018.3513

Результат интеллектуальной деятельности: Способ мониторинга состояния дрейфующего ледяного поля или припая и прогноза его разлома при сжатии льдов и воздействии волн зыби

Вид РИД

Изобретение

№ охранного документа
0002727081
Дата охранного документа
17.07.2020
Аннотация: Изобретение относится к ледоведению и ледотехнике и служит для прогноза момента образования трещин или разлома ледяного поля. Система, реализующая способ мониторинга состояния дрейфующего ледяного поля или припая и прогноза его разлома при сжатии льдов и воздействии волн зыби, содержит четыре модульные полевые станции 1 (С, С, С, С), датчики 2 (Д - сейсмометры, Д - наклономеры, Д - деформометры, Д - датчики напряжения во льду, Д - приемники сигнала глобальной спутниковой системы позиционирования), радиоканалы 3, базовую станцию сбора и обработки данных 4, расположенную на судне 5, источник излучения ИИ (очаг трещинообразования и разрушения). Базовая станция 4 сбора и обработки данных содержит приемники 6-9, узкополосные фильтры 10-13, фазометры 14-19, компьютер 20, корреляторы 21.1-21.6, блоки 22.1-22.6 регулируемой задержки, перемножители 23.1-23.6, фильтры 24.1-24.6 нижних частот, экстремальные регуляторы 25.1-25.6, индикаторы 26-31 углов. Технический результат заключается в обеспечении возможности расширения функциональных возможностей способа и повышения точности определения местоположения очагов трещинообразования и разрушения. 2 ил.

Предлагаемый способ относится к ледоведению и ледотехнике и служит для прогноза момента образования трещин или разлома ледяного поля в условиях сжатия ледяных полей и при воздействии волн зыби.

Такие данные могут быть использованы для обеспечения безопасности нахождения на льду людей, материальных ценностей, дрейфующих станций, ледовых аэродромов, ледовых переправ, а также при эксплуатации нефтедобывающих платформ в ледовых условиях и разгрузки судов на ледяной покров.

Известны способы и устройства мониторинга состояния дрейфующего ледяного поля (авт. свид. СССР №№1.788.487, 1.818.608, 1.840.741; патенты на полезные модели №№70.983, 107.371, 120.766; патенты РФ №№2.319.205, 2.362.971, 2.416.070, 2.427.011, 2.435.136, 2.444.760, 2.449.326, 2.453.865, 2.510.608, 2.526.222, 2.559.159, 2.559.311, 2.593.411, 2.621.276, 2.623.830; патенты США №№4.697.254, 5.790.474. Йоханнессен О.М. и др. Научные исследования в Арктике. Том 3. Дистанционное зондирование морских льдов на Северном морском пути: изучение и применение. СПб. Наука, 2007, с. 79-88, 235-238 и др.).

Из известных способов и устройств наиболее близким к предлагаемому является «Способ мониторинга состояния дрейфующего ледяного поля или припая и прогноза его разлома при сжатии льдов и воздействии волн зыби» (патент РФ №2.621.276, G01V 1/00, 2016), который и выбран в качестве прототипа.

Известный способ заключается в расстановке на ледяном поле или припае сейсмометров и наклономеров, которые фиксируют волновые поля и очаги их формирования в окружающем ледяном покрове, датчиков напряжений и деформометров для определения изменений напряженно-деформированного состояния ледяного поля, глобальной спутниковой системы позиционирования для временной синхронизации и фиксации изменений ориентации расстановки датчиков при дрейфе и поворотах ледяного поля.

Согласно известному способу на ледяном поле расставляются по четырехугольной схеме четыре полевые модульные станции, каждая из которых включает трехкомпонентный сейсмометр, двухкомпонентный наклономер, два однокомпонентных деформометра, два датчика напряжения и приемник сигналов глобальной спутниковой системы позиционирования. При этом размеры сторон четырехугольника выбираются в зависимости от размеров ледяного поля и решаемых задач.

На дрейфующей льдине или припае по четырехугольной схеме в вершинах четырехугольника устанавливаются четыре модульные полевые станции 1 (С1, С2, С3, С4), которыми образованы шесть измерительных баз d1-d6, которые не участвуют в определении местоположения очагов трещинообразования и разрушения дрейфующего ледяного поля или припая.

Технической задачей изобретения является расширение функциональных возможностей известного способа и повышение точности определения местоположения очагов трещинообразования и разрушения дрейфующего ледяного поля или припая путем использования шести измерительных баз d1-d6.

Поставленная задача решается тем, что способ мониторинга состояния дрейфующего ледяного поля или припая и прогноза его разлома при сжатии льдов и воздействии волн зыби, заключающийся в соответствии с ближайшим аналогом, в фиксации поля упругих волн сейсмическими станциями, состоящими каждая из сейсмометров, ориентированных по странам света, при этом на дрейфующем ледяном поле или припае фиксируют напряженно-деформированное состояние и одновременно поле упругих волн, а также положение ледяного поля в пространстве и во времени с помощью расстановки по четырехугольной схеме четырех полевых станций, каждая из которых состоит из трехкомпонентного сейсмометра, двухкомпонентного наклономера, двух деформометров, двух датчиков напряжений, ориентированных по странам света, и приемника глобальной спутниковой системы позиционирования, а данные поступают на базовую станцию сбора и обработки данных в режиме реального времени, располагаемую на судне или берегу, или на дрейфующем ледяном поле, отличается от ближайшего аналога тем, что сигналы, принимаемые полевыми модульными станциями от очага трещинообразования и разрушения передают по радиоканалам на базовую станцию сбора и обработки данных, где принимают указанные сигналы, выделяют гармонические напряжения и измеряют разности фаз между ними, формируя фазовые шкалы отсчета угловых координат очага трещинообразования и разрушения α, β, γ, μ, ϕ, ψ: точные, но неоднозначные, одновременно сигнал, принимаемый первой полевой модульной станцией C1, пропускают через первый, второй и третий блоки регулируемой задержки и перемножают с сигналами, принимаемыми второй С2, третьей С3 и четвертой С4 полевыми модульными станциями, выделяют низкочастотные напряжения, пропорциональные первой R1(τ), второй R2(τ) и третьей R3(τ) корреляционным функциям, где τ - текущая временная задержка, изменением временной задержки τ обеспечивают максимальные значения первой R1(τ), второй R2(τ) и третьей R3(τ) корреляционных функций, поддерживают их на максимальном уровне и фиксируют временные задержки τ=τз1, τ=τз2 и τ=τз3, соответствующие максимуму корреляционных функций, сигнал, принимаемый второй полевой модульной станцией С2, пропускают через четвертый и пятый блоки регулируемой задержки и перемножают с сигналами, принимаемыми третьей С3 и четвертой С4 полевыми модульными станциями, выделяют низкочастотные напряжения, пропорциональные четвертой R4(τ) и пятой R5(τ) корреляционным функциям, изменением временной задержки τ обеспечивают максимальное значение четвертой R4(τ) и пятой R5(τ) корреляционных функций, поддерживают их на максимальном уровне и фиксируют временные задержки τ=τз4 и τ=τз5, соответствующие максимуму корреляционных функций, сигнал, принимаемый третьей полевой модульной станцией С3, пропускают через шестой блок регулируемой задержки и перемножают с сигналом, принимаемым четвертой полевой модульной станцией С4, выделяют низкочастотное напряжение, пропорциональное шестой корреляционной функции R6(τ), изменением временной задержки τ обеспечивают максимальное значение шестой корреляционной функции R6(τ), поддерживают ее на максимальном уровне и фиксируют временную задержку τ=τз6, соответствующую максимуму шестой корреляционной функции R6(τ), по зарегистрированным временным задержкам формируют временные шкалы отсчета угловых координат α, β, γ, μ, ϕ и ψ очага трещинообразования и разрушения дрейфующего ледяного поля или припая: грубые, но однозначные, по измеренным угловым координатам точно и однозначно определяют местоположение очага трещинообразования и разрушения дрейфующего ледяного поля или припая.

Геометрическая расстановка четырех полевых модульных станций 1 (С1, С2, С3, С4) и базовой станции сбора и обработки данных 4 представлена на фиг. 1. Структурная схема базовой станции сбора и обработки данных 4 изображена на фиг. 2.

Четыре модульные станции 1 (С1, С2, С3, С4) расположены по четырехугольной схеме и образуют шесть измерительных баз d1, d2, d3, d4, d5 и d6 с подключенными датчиками 2 (Д1 - сейсмометры, Д2 - наклономеры, Д3 - деформометры, Д4 - датчики напряжения во льду, Д5 - приемники сигнала глобальной спутниковой системы позиционирования). По радиоканалам 3 полевые станции 1 связываются с базовой станцией сбора и обработки данных 4, расположенной на судне 5. Кроме того, в зависимости от условий проведения наблюдений, базовая станция сбора и обработки данных 4 может быть расположена на ледяном поле или берегу.

К каждой полевой модульной станции C12, С3, С4) по радиоканалу 3 последовательно подключены приемник 6 (7, 8, 9) и узкополосный фильтр 10 (11, 12, 13), который через фазометр 14 (15, 16, 17, 18, 19) подключен к компьютеру 20. К выходу первой модульной станции C1 через радиоканал 3 последовательно подключены блок 22.1 (22.2, 22.3) регулируемой задержки, перемножитель 23.1 (23.2, 23.3), второй вход которого соединен с выходом станции С23, С4), фильтр 24.1 (24.2, 24.3) нижних частот и экстремальный регулятор 25.1 (25.2, 25.3), выход которого соединен с вторым входом блока 22.1 (22.2, 22.3), второй выход которого через индикатор α 26 (индикатор β 27, индикатор γ 28 подключен к соответствующему входу компьютера 20. К выходу второй модульной станции С2 через радиоканал 3 последовательно подключены блок 22.4 (22.5) регулируемой задержки, перемножитель 23.4 (23.5), второй вход которого соединен с выходом станции С34), фильтр 24.4 (24.5) нижних частот и экстремальный регулятор 25.4 (25.5), выход которого соединен с вторым входом блока 22.4 (22.5) регулируемой задержки, второй выход которого через индикатор μ 29, индикатор ϕ 30 подключен к соответствующему входу компьютера 20. К выходу третьей модульной станции С3 через радиоканал 3 последовательно подключены блок 22.6 регулируемой задержки, перемножитель 23.6, второй вход которого соединен с выходом четвертой модульной станции С4, фильтр 24.6 нижних частот и экстремальный регулятор 25.6, выход которого соединен с вторым входом блока 22.6 регулируемой задержки, второй выход которого через индикатор 31 угла ψ подключен к соответствующему входу компьютера 20.

Блок 22.1 (22.2, 22.3, 22.4, 22.5, 22.6) регулируемой задержки, перемножитель 23.1 (23.2, 23.3, 23.4, 23.5, 23.6), фильтр 24.1 (24.2, 24.3, 24.4, 24.5, 24.6) нижних частот и экстремальный регулятор 25.1 (25.2, 25.3, 25.4, 25.5, 25.6) образуют первый 21.1 (второй 21.2, третий 21.3, четвертый 21.4, пятый 21.5, шестой 21.6) коррелятор.

Предлагаемый способ реализуют следующим образом.

На дрейфующей льдине или припае по четырехугольной схеме в вершинах четырехугольника устанавливаются четыре модульные полевые станции 1 (C1, С2, С3, С4). Для этого расчищаются четыре площадки, на которых ко льду примораживаются постаменты из досок и на них устанавливаются трехкомпонентные сейсмометры 2 (Д1) и двухкомпонентные наклономеры 2 (Д2). В поверхностный слой льда вмораживаются деформометры 2 (Д3) и датчики напряжения 2 (Д4), которые замораживаются в предварительно выбуренные скважины. Датчики ориентированы по сторонам света - север-юг и запад-восток, что обеспечивает возможность определения направлений и координат очагов трещинообразования и разрушения, а также скорость продвижения этих процессов к исследуемому ледяному полю. Кроме того, подключаются приемники сигналов глобальной спутниковой системы позиционирования 2 (Д5). Датчики при помощи проводов соединяются с модулями сбора и оцифровки данных и блоком аккумуляторных батарей. Рабочая настройка и проверка полевых станций осуществляется с помощью защищенного переносного персонального компьютера (ноутбука), который на фиг. 1 не указан. На судне 5 разворачивается базовая станция сбора и обработки данных 4, на которую по радиоканалам 3 поступаю данные в цифровом формате и записываются в базу данных на устройство постоянной памяти (сервер). Кроме того, осуществляется обработка поступающей информации на компьютере по определенному алгоритму в режиме реального времени с выводом на дисплей, что позволяет оперативно выделить предикторы разломов ледяного поля и дать заблаговременный прогноз опасного явления в определенном временном диапазоне. Базовая станция сбора и обработки данных 4, кроме судна 5, в зависимости от решаемых задач, может располагаться на ледяном поле или берегу. За временной синхронизацией между полевыми станциями и изменениями первоначальной ориентации расстановки датчиков при дрейфе и поворотах ледяного поля осуществляется постоянный контроль посредством приема сигнала ГЛОНАСС на приемники 2 (Д5).

Гармонические напряжения:

u1(t)=U1⋅Cos(ωct+ϕ1),

u2(t)=U2⋅Cos(ωct+ϕ2),

u3(t)=U3⋅Cos(ωct+ϕ3),

u4(t)=U4⋅Cos(ωct+ϕ4), 0≤t≤Tc,

выделяемые узкополосными фильтрами 10-13 на выходе приемников 6-9 поступают на два входа фазометров 14-19. Последние измеряют следующие разности фаз:

где λ - длина волны,

d1-d6 - измерительные базы;

α, β, γ, μ, ϕ, ψ - углы, определяющие местоположение источника излучения ИИ (очаг трещинообразования и разрушения), которые фиксируются компьютером 20. Так формируются фазовые шкалы отсчета угловых координат источника излучения (очага трещинообразования и разрушения) α, β, γ, μ, ϕ, ψ: точные, но неоднозначные.

Принимаемые радиосигналы одновременно поступают на два входа корреляторов 21.1, 21.2, 21.3, 21.4, 21.5 и 21.6. Получаемые на выходе фильтров 24.1, 24.2, 24.3, 24.4, 24.5 и 24.6 нижних частот корреляционные функции R1(τ), R2(τ), R3(τ), R4(τ), R5(τ) и R6(τ) имеют максимум при значении введенной регулируемой задержки:

τ1=t2-t1, τ2=t3-t1, τ3=t4-t1

τ4=t3-t2, τ5=t4-t2, τ6=t4-t3,

где t1, t2, t3, t4 - время прохождения сигналом расстояния от источника излучений ИИ до полевых станций С1, С2, С3 и С4 соответственно.

Максимальные значения корреляционных функций R1(τ), R2(τ), R3(τ), R4(τ), R5(τ) и R6(τ) поддерживаются с помощью экстремальных регуляторов 25.1, 25.2, 25.3, 25.4, 25.5 и 25.6, воздействующих на управляющие входы блоков 22.1, 22.2, 22.3, 22.4, 22.5 и 22.6 регулируемой задержки.

Шкалы блоков 22.1÷22.6 регулируемой задержки (указатели углов) проградуированы непосредственно в значениях угловых координат источника излучения:

где с - скорость распространения волн.

Значения угловых координат α, β, γ, μ, ϕ и ψ фиксируются соответствующими индикаторами 26, 27, 28, 29, 30 и 31 и поступают в компьютер 20.

Так формируются временные шкалы отсчета угловых координат источника излучения (очага трещинообразования и разрушения) α, β, γ, μ, ϕ и ψ: грубые, но однозначные.

Таким образом, предлагаемый способ по сравнению с прототипом и другими техническими решениями аналогичного назначения обеспечивает повышение точности определения местоположения источника излучения (очага трещинообразования и разрушения) дрейфующего ледяного поля или припая. Это достигается за счет использования шести измерительных баз d1-d6.

Тем самым функциональные возможности известного способа расширены.

Способ мониторинга состояния дрейфующего ледяного поля или припая и прогноза его разлома при сжатии льдов и воздействии волн зыби, заключающийся в фиксации поля упругих волн сейсмическими станциями, состоящими каждая из сейсмометров, ориентированными по странам света, при этом на дрейфующем ледяном поле или припае фиксируют напряженно-деформированное состояние и одновременно поле упругих волн, а также положение ледяного поля в пространстве и во времени с помощью расстановки по четырехугольной схеме четырех полевых станций, каждая из которых состоит из трехкомпонентного сейсмометра, двухкомпонентного наклономера, двух деформометров, двух датчиков напряжений, ориентированных по странам света, и приемника глобальной спутниковой системы позиционирования, а данные поступают на базовую станцию сбора и обработки данных в режиме реального времени, располагаемую на судне или берегу, или на дрейфующем ледяном поле, отличающийся тем, что сигналы, принимаемые полевыми станциями от очага трещинообразования и разрушения, передают по радиоканалам на базовую станцию сбора и обработки данных, где принимают указанные сигналы, выделяют гармонические напряжения и измеряют разности фаз между ними, формируя фазовые шкалы отсчета угловых координат очага трещинообразования и разрушения α, β, γ, μ, ϕ, ψ: точные, но неоднозначные, одновременно сигнал, принимаемый первой полевой станцией C, пропускают через первый, второй и третий блоки регулируемой задержки и перемножают с сигналами, принимаемыми второй С, третьей С и четвертой С полевыми станциями соответственно, выделяют низкочастотные напряжения, пропорциональные первой R(τ), второй R(τ) и третьей R(τ) корреляционным функциям, где τ - текущая временная задержка, изменением временной задержки τ обеспечивают максимальные значения первой R(τ), второй R(τ) и третьей R(τ) корреляционных функций, поддерживают их на максимальном уровне и фиксируют временные задержки τ=τ, τ=τ и τ=τ, соответствующие максимуму корреляционных функций, сигнал, принимаемый второй полевой станцией С, пропускают через четвертый и пятый блоки регулируемой задержки и перемножают с сигналами, принимаемыми третьей С и четвертой С полевыми станциями соответственно, выделяют низкочастотные напряжения, пропорциональные четвертой R(τ) и пятой R(τ) корреляционным функциям, изменением временной задержки τ обеспечивают максимальные значения четвертой R(τ) и пятой R(τ) корреляционных функций, поддерживают их на максимальном уровне и фиксируют временные задержки τ=τ и τ=τ, соответствующие максимуму корреляционных функций, сигнал, принимаемый третьей С полевой станцией, пропускают через шестой блок регулируемой задержки и перемножают с сигналом, принимаемым четвертой С полевой станцией, выделяют низкочастотное напряжение, пропорциональное шестой R(τ) корреляционной функции, изменением временной задержки τ обеспечивают максимальное значение шестой R(τ) корреляционной функции, поддерживают ее на максимальном уровне и фиксируют временную задержку τ=τ, соответствующую максимуму корреляционной функции, по зарегистрированным временным задержкам формируют временные шкалы отсчета угловых координат очага трещинообразования и разрушения α, β, γ, μ, ϕ и ψ: грубые, но однозначные, по измеренным угловым координатам точно и однозначно определяют местоположение очага трещинообразования и разрушения.
Способ мониторинга состояния дрейфующего ледяного поля или припая и прогноза его разлома при сжатии льдов и воздействии волн зыби
Способ мониторинга состояния дрейфующего ледяного поля или припая и прогноза его разлома при сжатии льдов и воздействии волн зыби
Способ мониторинга состояния дрейфующего ледяного поля или припая и прогноза его разлома при сжатии льдов и воздействии волн зыби
Источник поступления информации: Роспатент

Showing 71-80 of 106 items.
20.03.2019
№219.016.e5b5

Пьезоэлектрический гироскоп

Изобретение относится к акустоэлектронным приборам, предназначенным для преобразования угловой скорости вращения объектов в электрический сигнал, и может быть использовано в системах навигации, ориентации и управления подвижными объектами. Гироскоп содержит пластину 1 пьезоэлектрика, на одной...
Тип: Изобретение
Номер охранного документа: 0002387951
Дата охранного документа: 27.04.2010
29.03.2019
№219.016.f52c

Способ персональной сигнализации о помощи при возникновении опасной ситуации и система для его реализации

Группа изобретений относится к персональному оповещению различных служб охраны порядка, спасения при чрезвычайных ситуациях, пожарных команд, скорой медицинской помощи, служб дорожной безопасности, специальных служб министерства обороны и т.п. при угрозе возникновения опасности или в случаях,...
Тип: Изобретение
Номер охранного документа: 0002422906
Дата охранного документа: 27.06.2011
29.03.2019
№219.016.f881

Устройство для измерения концентрации окислительно-восстановительных компонентов в газовой смеси

Использование: изобретение относится к устройствам, предназначенным для измерения концентрации газовых компонентов, и может быть использовано в системах управления котельными теплоэлектростанций для контроля состояния окружающей среды. Технический результат изобретения заключается в обеспечении...
Тип: Изобретение
Номер охранного документа: 02189034
Дата охранного документа: 10.09.2002
09.06.2019
№219.017.7fdc

Способ изготовления чувствительного каталитического элемента термохимического датчика

Изобретение относится к аналитическому приборостроению, а именно к технологии изготовления чувствительных элементов термохимических (термокаталитических) датчиков горючих газов, и может быть использовано в газоанализаторах для контроля довзрывных концентраций взрыво- и пожароопасных газов и...
Тип: Изобретение
Номер охранного документа: 0002460064
Дата охранного документа: 27.08.2012
13.06.2019
№219.017.80c7

Антенна мобильной установки

Изобретение относится к области радиолокационной техники, в частности к антеннам мобильных установок с приемно-передающими модулями (ППМ) со сравнительно высокими тепловыделениями, например для антенн с активными фазированными антенными решетками (АФАР). Антенна мобильной установки содержит...
Тип: Изобретение
Номер охранного документа: 0002691277
Дата охранного документа: 11.06.2019
19.06.2019
№219.017.83c9

Способ измерения электрической энергии в двухпроводных сетях с защитой от хищения и устройство для его осуществления

Предлагаемые способ и устройство относятся к электроизмерительной технике и могут быть использованы для измерения электрической энергии в условиях переменного тока для целей коммерческого учета и обнаружения факта и вида хищения электроэнергии, например, на объектах агропромышленного комплекса....
Тип: Изобретение
Номер охранного документа: 0002691665
Дата охранного документа: 17.06.2019
19.06.2019
№219.017.8bb0

Шкаф радиоэлектронной аппаратуры

Изобретение может быть использовано для размещения радиоэлектронной аппаратуры специального назначения для применения в жестких условиях эксплуатации. Шкаф (1) радиоэлектронной аппаратуры с установленными в нем субмодулями (8) с собственными автономными системами воздушного охлаждения выполнен...
Тип: Изобретение
Номер охранного документа: 0002465751
Дата охранного документа: 27.10.2012
22.06.2019
№219.017.8e7c

Вертолетный радиоэлектронный комплекс для мониторинга сельскохозяйственных угодий

Предлагаемый комплекс относится к области сельского хозяйства и предназначен для подповерхностного зондирования сельскохозяйственных угодий, обнаружения очагов заражения сельскохозяйственных культур болезнями, лечения депрессивных участков возделываемых угодий, а также для определения...
Тип: Изобретение
Номер охранного документа: 0002692117
Дата охранного документа: 21.06.2019
29.06.2019
№219.017.9cab

Датчик контроля уровня жидкости

Изобретение относится к приборостроению, а именно к датчикам контроля уровня жидкости, и может быть использовано в системах и приборах для контроля уровня топлива, при хранении, заправке, а также в процессе работы двигателей на криогенном топливе при жестких механических воздействиях. Сущность:...
Тип: Изобретение
Номер охранного документа: 0002310173
Дата охранного документа: 10.11.2007
10.07.2019
№219.017.ab0c

Датчик контроля уровня жидкости

Изобретение относится к приборостроению, а именно к дискретным датчикам контроля уровня жидкости, и может быть использовано в системах и приборах для контроля уровня топлива, при хранении, заправке, а также в процессе работы двигателей на криогенном топливе при жестких механических...
Тип: Изобретение
Номер охранного документа: 0002295115
Дата охранного документа: 10.03.2007
Showing 71-80 of 189 items.
27.08.2016
№216.015.4ea8

Способ автокорреляционного приема шумоподобных сигналов

Изобретение относится к радиотехнике. Технический результат - расширение функциональных возможностей способа автокорреляционного приема шумоподобных сигналов путем точного и однозначного определения местоположения источника излучения сигнала, размещенного на борту летательного аппарата. Для...
Тип: Изобретение
Номер охранного документа: 0002595565
Дата охранного документа: 27.08.2016
10.08.2016
№216.015.563e

Система дистанционного контроля и управления солнечным концентраторным модулем

Изобретение относится к гелиотехнике и может использоваться в системах управления солнечным концентраторным модулем для получения электрической и тепловой энергии. Технический результат состоит в повышении надежности централизованного контроля и управления солнечными концентраторными модулями с...
Тип: Изобретение
Номер охранного документа: 0002593598
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5878

Способ материально-технического обеспечения с управлением местоположением транспортного средства и система для его реализации

Группа изобретений относится к области автоматики и связи на железнодорожном транспорте. Система, реализующая способ материально-технического обеспечения с управлением местоположением транспортного средства, содержит глобальную систему местоопределения, спутники, железнодорожный вагон,...
Тип: Изобретение
Номер охранного документа: 0002588339
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.5ae0

Устройство зондирования строительных конструкций

Устройство относится к области подповерхностной радиолокации, а именно к устройствам определения расположения и формы неоднородностей и включений в строительных конструкциях и сооружениях, и может найти применение в различных областях жизнедеятельности. Достигаемый технический результат...
Тип: Изобретение
Номер охранного документа: 0002589886
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5b23

Устройство зондирования строительных конструкций

Предлагаемое устройство относится к области подповерхностной радиолокации с использованием сверхширокополосных сигналов, а именно к устройствам определения расположения и формы неоднородностей и включений в строительных конструкциях и сооружениях и может найти применение в следующих областях:...
Тип: Изобретение
Номер охранного документа: 0002589746
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.69e0

Способ измерений и долговременного контроля конструкции стартового сооружения ракет-носителей и система для его осуществления

Заявленные изобретения относятся к контрольно-измерительной технике, а именно к автоматическим средствам непрерывного мониторинга состояния конструкции стартового сооружения в процессе его эксплуатации. Система, реализующая предлагаемый способ, содержащий набор измерительных преобразователей,...
Тип: Изобретение
Номер охранного документа: 0002591734
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.7a34

Двухволновый адаптивный радиолокатор

Изобретение относится к устройствам ближней радиолокации и предназначено главным образом для обнаружения низколетящей сосредоточенной цели или плавательных средств на фоне сигналов, отраженных от распределенной морской поверхности и образованных облучением этой поверхности радиосигналом...
Тип: Изобретение
Номер охранного документа: 0002599054
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7b27

Вертолётный радиоэлектронный комплекс

Изобретение относится к области радиоэлектроники и позволяет осуществлять дистанционный контроль источников радиоизлучений (ИРИ). Достигаемый технический результат - повышение помехоустойчивости и достоверности приема сигналов источников радиоизлучений и обмена аналоговой и дискретной...
Тип: Изобретение
Номер охранного документа: 0002600333
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.8aee

Способ определения моносахаридов в вагинальной жидкости

Изобретение касается способа определения моносахаридов в вагинальной жидкости и заключается в том, что используют метод газовой хроматографии с масс-спектрометрическим детектированием. Образцы подготаливают путем высушивания 10 см вагинального смыва при 30°C в течение 24 ч. Навеску сухого...
Тип: Изобретение
Номер охранного документа: 0002604140
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.aa3a

Способ определения места землетрясения с борта космического аппарата

Изобретение относится к области космических исследований и может быть использовано для определения места готовящегося землетрясения. Сущность: регистрируют низкочастотное электромагнитное излучение. По превышению интенсивности излучения фонового уровня судят о местоположении эпицентра...
Тип: Изобретение
Номер охранного документа: 0002611595
Дата охранного документа: 28.02.2017
+ добавить свой РИД