×
21.07.2020
220.018.3513

Результат интеллектуальной деятельности: Способ мониторинга состояния дрейфующего ледяного поля или припая и прогноза его разлома при сжатии льдов и воздействии волн зыби

Вид РИД

Изобретение

№ охранного документа
0002727081
Дата охранного документа
17.07.2020
Аннотация: Изобретение относится к ледоведению и ледотехнике и служит для прогноза момента образования трещин или разлома ледяного поля. Система, реализующая способ мониторинга состояния дрейфующего ледяного поля или припая и прогноза его разлома при сжатии льдов и воздействии волн зыби, содержит четыре модульные полевые станции 1 (С, С, С, С), датчики 2 (Д - сейсмометры, Д - наклономеры, Д - деформометры, Д - датчики напряжения во льду, Д - приемники сигнала глобальной спутниковой системы позиционирования), радиоканалы 3, базовую станцию сбора и обработки данных 4, расположенную на судне 5, источник излучения ИИ (очаг трещинообразования и разрушения). Базовая станция 4 сбора и обработки данных содержит приемники 6-9, узкополосные фильтры 10-13, фазометры 14-19, компьютер 20, корреляторы 21.1-21.6, блоки 22.1-22.6 регулируемой задержки, перемножители 23.1-23.6, фильтры 24.1-24.6 нижних частот, экстремальные регуляторы 25.1-25.6, индикаторы 26-31 углов. Технический результат заключается в обеспечении возможности расширения функциональных возможностей способа и повышения точности определения местоположения очагов трещинообразования и разрушения. 2 ил.

Предлагаемый способ относится к ледоведению и ледотехнике и служит для прогноза момента образования трещин или разлома ледяного поля в условиях сжатия ледяных полей и при воздействии волн зыби.

Такие данные могут быть использованы для обеспечения безопасности нахождения на льду людей, материальных ценностей, дрейфующих станций, ледовых аэродромов, ледовых переправ, а также при эксплуатации нефтедобывающих платформ в ледовых условиях и разгрузки судов на ледяной покров.

Известны способы и устройства мониторинга состояния дрейфующего ледяного поля (авт. свид. СССР №№1.788.487, 1.818.608, 1.840.741; патенты на полезные модели №№70.983, 107.371, 120.766; патенты РФ №№2.319.205, 2.362.971, 2.416.070, 2.427.011, 2.435.136, 2.444.760, 2.449.326, 2.453.865, 2.510.608, 2.526.222, 2.559.159, 2.559.311, 2.593.411, 2.621.276, 2.623.830; патенты США №№4.697.254, 5.790.474. Йоханнессен О.М. и др. Научные исследования в Арктике. Том 3. Дистанционное зондирование морских льдов на Северном морском пути: изучение и применение. СПб. Наука, 2007, с. 79-88, 235-238 и др.).

Из известных способов и устройств наиболее близким к предлагаемому является «Способ мониторинга состояния дрейфующего ледяного поля или припая и прогноза его разлома при сжатии льдов и воздействии волн зыби» (патент РФ №2.621.276, G01V 1/00, 2016), который и выбран в качестве прототипа.

Известный способ заключается в расстановке на ледяном поле или припае сейсмометров и наклономеров, которые фиксируют волновые поля и очаги их формирования в окружающем ледяном покрове, датчиков напряжений и деформометров для определения изменений напряженно-деформированного состояния ледяного поля, глобальной спутниковой системы позиционирования для временной синхронизации и фиксации изменений ориентации расстановки датчиков при дрейфе и поворотах ледяного поля.

Согласно известному способу на ледяном поле расставляются по четырехугольной схеме четыре полевые модульные станции, каждая из которых включает трехкомпонентный сейсмометр, двухкомпонентный наклономер, два однокомпонентных деформометра, два датчика напряжения и приемник сигналов глобальной спутниковой системы позиционирования. При этом размеры сторон четырехугольника выбираются в зависимости от размеров ледяного поля и решаемых задач.

На дрейфующей льдине или припае по четырехугольной схеме в вершинах четырехугольника устанавливаются четыре модульные полевые станции 1 (С1, С2, С3, С4), которыми образованы шесть измерительных баз d1-d6, которые не участвуют в определении местоположения очагов трещинообразования и разрушения дрейфующего ледяного поля или припая.

Технической задачей изобретения является расширение функциональных возможностей известного способа и повышение точности определения местоположения очагов трещинообразования и разрушения дрейфующего ледяного поля или припая путем использования шести измерительных баз d1-d6.

Поставленная задача решается тем, что способ мониторинга состояния дрейфующего ледяного поля или припая и прогноза его разлома при сжатии льдов и воздействии волн зыби, заключающийся в соответствии с ближайшим аналогом, в фиксации поля упругих волн сейсмическими станциями, состоящими каждая из сейсмометров, ориентированных по странам света, при этом на дрейфующем ледяном поле или припае фиксируют напряженно-деформированное состояние и одновременно поле упругих волн, а также положение ледяного поля в пространстве и во времени с помощью расстановки по четырехугольной схеме четырех полевых станций, каждая из которых состоит из трехкомпонентного сейсмометра, двухкомпонентного наклономера, двух деформометров, двух датчиков напряжений, ориентированных по странам света, и приемника глобальной спутниковой системы позиционирования, а данные поступают на базовую станцию сбора и обработки данных в режиме реального времени, располагаемую на судне или берегу, или на дрейфующем ледяном поле, отличается от ближайшего аналога тем, что сигналы, принимаемые полевыми модульными станциями от очага трещинообразования и разрушения передают по радиоканалам на базовую станцию сбора и обработки данных, где принимают указанные сигналы, выделяют гармонические напряжения и измеряют разности фаз между ними, формируя фазовые шкалы отсчета угловых координат очага трещинообразования и разрушения α, β, γ, μ, ϕ, ψ: точные, но неоднозначные, одновременно сигнал, принимаемый первой полевой модульной станцией C1, пропускают через первый, второй и третий блоки регулируемой задержки и перемножают с сигналами, принимаемыми второй С2, третьей С3 и четвертой С4 полевыми модульными станциями, выделяют низкочастотные напряжения, пропорциональные первой R1(τ), второй R2(τ) и третьей R3(τ) корреляционным функциям, где τ - текущая временная задержка, изменением временной задержки τ обеспечивают максимальные значения первой R1(τ), второй R2(τ) и третьей R3(τ) корреляционных функций, поддерживают их на максимальном уровне и фиксируют временные задержки τ=τз1, τ=τз2 и τ=τз3, соответствующие максимуму корреляционных функций, сигнал, принимаемый второй полевой модульной станцией С2, пропускают через четвертый и пятый блоки регулируемой задержки и перемножают с сигналами, принимаемыми третьей С3 и четвертой С4 полевыми модульными станциями, выделяют низкочастотные напряжения, пропорциональные четвертой R4(τ) и пятой R5(τ) корреляционным функциям, изменением временной задержки τ обеспечивают максимальное значение четвертой R4(τ) и пятой R5(τ) корреляционных функций, поддерживают их на максимальном уровне и фиксируют временные задержки τ=τз4 и τ=τз5, соответствующие максимуму корреляционных функций, сигнал, принимаемый третьей полевой модульной станцией С3, пропускают через шестой блок регулируемой задержки и перемножают с сигналом, принимаемым четвертой полевой модульной станцией С4, выделяют низкочастотное напряжение, пропорциональное шестой корреляционной функции R6(τ), изменением временной задержки τ обеспечивают максимальное значение шестой корреляционной функции R6(τ), поддерживают ее на максимальном уровне и фиксируют временную задержку τ=τз6, соответствующую максимуму шестой корреляционной функции R6(τ), по зарегистрированным временным задержкам формируют временные шкалы отсчета угловых координат α, β, γ, μ, ϕ и ψ очага трещинообразования и разрушения дрейфующего ледяного поля или припая: грубые, но однозначные, по измеренным угловым координатам точно и однозначно определяют местоположение очага трещинообразования и разрушения дрейфующего ледяного поля или припая.

Геометрическая расстановка четырех полевых модульных станций 1 (С1, С2, С3, С4) и базовой станции сбора и обработки данных 4 представлена на фиг. 1. Структурная схема базовой станции сбора и обработки данных 4 изображена на фиг. 2.

Четыре модульные станции 1 (С1, С2, С3, С4) расположены по четырехугольной схеме и образуют шесть измерительных баз d1, d2, d3, d4, d5 и d6 с подключенными датчиками 2 (Д1 - сейсмометры, Д2 - наклономеры, Д3 - деформометры, Д4 - датчики напряжения во льду, Д5 - приемники сигнала глобальной спутниковой системы позиционирования). По радиоканалам 3 полевые станции 1 связываются с базовой станцией сбора и обработки данных 4, расположенной на судне 5. Кроме того, в зависимости от условий проведения наблюдений, базовая станция сбора и обработки данных 4 может быть расположена на ледяном поле или берегу.

К каждой полевой модульной станции C12, С3, С4) по радиоканалу 3 последовательно подключены приемник 6 (7, 8, 9) и узкополосный фильтр 10 (11, 12, 13), который через фазометр 14 (15, 16, 17, 18, 19) подключен к компьютеру 20. К выходу первой модульной станции C1 через радиоканал 3 последовательно подключены блок 22.1 (22.2, 22.3) регулируемой задержки, перемножитель 23.1 (23.2, 23.3), второй вход которого соединен с выходом станции С23, С4), фильтр 24.1 (24.2, 24.3) нижних частот и экстремальный регулятор 25.1 (25.2, 25.3), выход которого соединен с вторым входом блока 22.1 (22.2, 22.3), второй выход которого через индикатор α 26 (индикатор β 27, индикатор γ 28 подключен к соответствующему входу компьютера 20. К выходу второй модульной станции С2 через радиоканал 3 последовательно подключены блок 22.4 (22.5) регулируемой задержки, перемножитель 23.4 (23.5), второй вход которого соединен с выходом станции С34), фильтр 24.4 (24.5) нижних частот и экстремальный регулятор 25.4 (25.5), выход которого соединен с вторым входом блока 22.4 (22.5) регулируемой задержки, второй выход которого через индикатор μ 29, индикатор ϕ 30 подключен к соответствующему входу компьютера 20. К выходу третьей модульной станции С3 через радиоканал 3 последовательно подключены блок 22.6 регулируемой задержки, перемножитель 23.6, второй вход которого соединен с выходом четвертой модульной станции С4, фильтр 24.6 нижних частот и экстремальный регулятор 25.6, выход которого соединен с вторым входом блока 22.6 регулируемой задержки, второй выход которого через индикатор 31 угла ψ подключен к соответствующему входу компьютера 20.

Блок 22.1 (22.2, 22.3, 22.4, 22.5, 22.6) регулируемой задержки, перемножитель 23.1 (23.2, 23.3, 23.4, 23.5, 23.6), фильтр 24.1 (24.2, 24.3, 24.4, 24.5, 24.6) нижних частот и экстремальный регулятор 25.1 (25.2, 25.3, 25.4, 25.5, 25.6) образуют первый 21.1 (второй 21.2, третий 21.3, четвертый 21.4, пятый 21.5, шестой 21.6) коррелятор.

Предлагаемый способ реализуют следующим образом.

На дрейфующей льдине или припае по четырехугольной схеме в вершинах четырехугольника устанавливаются четыре модульные полевые станции 1 (C1, С2, С3, С4). Для этого расчищаются четыре площадки, на которых ко льду примораживаются постаменты из досок и на них устанавливаются трехкомпонентные сейсмометры 2 (Д1) и двухкомпонентные наклономеры 2 (Д2). В поверхностный слой льда вмораживаются деформометры 2 (Д3) и датчики напряжения 2 (Д4), которые замораживаются в предварительно выбуренные скважины. Датчики ориентированы по сторонам света - север-юг и запад-восток, что обеспечивает возможность определения направлений и координат очагов трещинообразования и разрушения, а также скорость продвижения этих процессов к исследуемому ледяному полю. Кроме того, подключаются приемники сигналов глобальной спутниковой системы позиционирования 2 (Д5). Датчики при помощи проводов соединяются с модулями сбора и оцифровки данных и блоком аккумуляторных батарей. Рабочая настройка и проверка полевых станций осуществляется с помощью защищенного переносного персонального компьютера (ноутбука), который на фиг. 1 не указан. На судне 5 разворачивается базовая станция сбора и обработки данных 4, на которую по радиоканалам 3 поступаю данные в цифровом формате и записываются в базу данных на устройство постоянной памяти (сервер). Кроме того, осуществляется обработка поступающей информации на компьютере по определенному алгоритму в режиме реального времени с выводом на дисплей, что позволяет оперативно выделить предикторы разломов ледяного поля и дать заблаговременный прогноз опасного явления в определенном временном диапазоне. Базовая станция сбора и обработки данных 4, кроме судна 5, в зависимости от решаемых задач, может располагаться на ледяном поле или берегу. За временной синхронизацией между полевыми станциями и изменениями первоначальной ориентации расстановки датчиков при дрейфе и поворотах ледяного поля осуществляется постоянный контроль посредством приема сигнала ГЛОНАСС на приемники 2 (Д5).

Гармонические напряжения:

u1(t)=U1⋅Cos(ωct+ϕ1),

u2(t)=U2⋅Cos(ωct+ϕ2),

u3(t)=U3⋅Cos(ωct+ϕ3),

u4(t)=U4⋅Cos(ωct+ϕ4), 0≤t≤Tc,

выделяемые узкополосными фильтрами 10-13 на выходе приемников 6-9 поступают на два входа фазометров 14-19. Последние измеряют следующие разности фаз:

где λ - длина волны,

d1-d6 - измерительные базы;

α, β, γ, μ, ϕ, ψ - углы, определяющие местоположение источника излучения ИИ (очаг трещинообразования и разрушения), которые фиксируются компьютером 20. Так формируются фазовые шкалы отсчета угловых координат источника излучения (очага трещинообразования и разрушения) α, β, γ, μ, ϕ, ψ: точные, но неоднозначные.

Принимаемые радиосигналы одновременно поступают на два входа корреляторов 21.1, 21.2, 21.3, 21.4, 21.5 и 21.6. Получаемые на выходе фильтров 24.1, 24.2, 24.3, 24.4, 24.5 и 24.6 нижних частот корреляционные функции R1(τ), R2(τ), R3(τ), R4(τ), R5(τ) и R6(τ) имеют максимум при значении введенной регулируемой задержки:

τ1=t2-t1, τ2=t3-t1, τ3=t4-t1

τ4=t3-t2, τ5=t4-t2, τ6=t4-t3,

где t1, t2, t3, t4 - время прохождения сигналом расстояния от источника излучений ИИ до полевых станций С1, С2, С3 и С4 соответственно.

Максимальные значения корреляционных функций R1(τ), R2(τ), R3(τ), R4(τ), R5(τ) и R6(τ) поддерживаются с помощью экстремальных регуляторов 25.1, 25.2, 25.3, 25.4, 25.5 и 25.6, воздействующих на управляющие входы блоков 22.1, 22.2, 22.3, 22.4, 22.5 и 22.6 регулируемой задержки.

Шкалы блоков 22.1÷22.6 регулируемой задержки (указатели углов) проградуированы непосредственно в значениях угловых координат источника излучения:

где с - скорость распространения волн.

Значения угловых координат α, β, γ, μ, ϕ и ψ фиксируются соответствующими индикаторами 26, 27, 28, 29, 30 и 31 и поступают в компьютер 20.

Так формируются временные шкалы отсчета угловых координат источника излучения (очага трещинообразования и разрушения) α, β, γ, μ, ϕ и ψ: грубые, но однозначные.

Таким образом, предлагаемый способ по сравнению с прототипом и другими техническими решениями аналогичного назначения обеспечивает повышение точности определения местоположения источника излучения (очага трещинообразования и разрушения) дрейфующего ледяного поля или припая. Это достигается за счет использования шести измерительных баз d1-d6.

Тем самым функциональные возможности известного способа расширены.

Способ мониторинга состояния дрейфующего ледяного поля или припая и прогноза его разлома при сжатии льдов и воздействии волн зыби, заключающийся в фиксации поля упругих волн сейсмическими станциями, состоящими каждая из сейсмометров, ориентированными по странам света, при этом на дрейфующем ледяном поле или припае фиксируют напряженно-деформированное состояние и одновременно поле упругих волн, а также положение ледяного поля в пространстве и во времени с помощью расстановки по четырехугольной схеме четырех полевых станций, каждая из которых состоит из трехкомпонентного сейсмометра, двухкомпонентного наклономера, двух деформометров, двух датчиков напряжений, ориентированных по странам света, и приемника глобальной спутниковой системы позиционирования, а данные поступают на базовую станцию сбора и обработки данных в режиме реального времени, располагаемую на судне или берегу, или на дрейфующем ледяном поле, отличающийся тем, что сигналы, принимаемые полевыми станциями от очага трещинообразования и разрушения, передают по радиоканалам на базовую станцию сбора и обработки данных, где принимают указанные сигналы, выделяют гармонические напряжения и измеряют разности фаз между ними, формируя фазовые шкалы отсчета угловых координат очага трещинообразования и разрушения α, β, γ, μ, ϕ, ψ: точные, но неоднозначные, одновременно сигнал, принимаемый первой полевой станцией C, пропускают через первый, второй и третий блоки регулируемой задержки и перемножают с сигналами, принимаемыми второй С, третьей С и четвертой С полевыми станциями соответственно, выделяют низкочастотные напряжения, пропорциональные первой R(τ), второй R(τ) и третьей R(τ) корреляционным функциям, где τ - текущая временная задержка, изменением временной задержки τ обеспечивают максимальные значения первой R(τ), второй R(τ) и третьей R(τ) корреляционных функций, поддерживают их на максимальном уровне и фиксируют временные задержки τ=τ, τ=τ и τ=τ, соответствующие максимуму корреляционных функций, сигнал, принимаемый второй полевой станцией С, пропускают через четвертый и пятый блоки регулируемой задержки и перемножают с сигналами, принимаемыми третьей С и четвертой С полевыми станциями соответственно, выделяют низкочастотные напряжения, пропорциональные четвертой R(τ) и пятой R(τ) корреляционным функциям, изменением временной задержки τ обеспечивают максимальные значения четвертой R(τ) и пятой R(τ) корреляционных функций, поддерживают их на максимальном уровне и фиксируют временные задержки τ=τ и τ=τ, соответствующие максимуму корреляционных функций, сигнал, принимаемый третьей С полевой станцией, пропускают через шестой блок регулируемой задержки и перемножают с сигналом, принимаемым четвертой С полевой станцией, выделяют низкочастотное напряжение, пропорциональное шестой R(τ) корреляционной функции, изменением временной задержки τ обеспечивают максимальное значение шестой R(τ) корреляционной функции, поддерживают ее на максимальном уровне и фиксируют временную задержку τ=τ, соответствующую максимуму корреляционной функции, по зарегистрированным временным задержкам формируют временные шкалы отсчета угловых координат очага трещинообразования и разрушения α, β, γ, μ, ϕ и ψ: грубые, но однозначные, по измеренным угловым координатам точно и однозначно определяют местоположение очага трещинообразования и разрушения.
Способ мониторинга состояния дрейфующего ледяного поля или припая и прогноза его разлома при сжатии льдов и воздействии волн зыби
Способ мониторинга состояния дрейфующего ледяного поля или припая и прогноза его разлома при сжатии льдов и воздействии волн зыби
Способ мониторинга состояния дрейфующего ледяного поля или припая и прогноза его разлома при сжатии льдов и воздействии волн зыби
Источник поступления информации: Роспатент

Showing 31-40 of 106 items.
10.10.2014
№216.012.fbea

Преобразователь угол-код

Изобретение относится к области приборостроения, в частности к аналого-цифровому преобразованию, а именно к преобразователям угла поворота вала в код. Технический результат - повышение информационной надежности преобразователя угол-код. Преобразователь угол-код содержит: псевдослучайную...
Тип: Изобретение
Номер охранного документа: 0002530336
Дата охранного документа: 10.10.2014
20.11.2014
№216.013.0695

Способ раннего обнаружения пожара и устройство для его реализации

Предлагаемые способ и устройство относятся к области пожарной безопасности и могут быть использованы для обнаружения пожара на ранних стадиях тления и возгорания горючих материалов. Техническим результатом изобретения является расширение диапазона рабочих частот без расширения диапазона...
Тип: Изобретение
Номер охранного документа: 0002533086
Дата охранного документа: 20.11.2014
10.01.2015
№216.013.18e8

Способ раннего обнаружения пожара и устройство для его реализации

Предлагаемые способ и устройство относятся к области пожарной безопасности и могут быть использованы для обнаружения пожара на ранних стадиях тления и возгорания горючих материалов. Технический результат заключается в повышении избирательности и помехоустойчивости приема и достоверности...
Тип: Изобретение
Номер охранного документа: 0002537804
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.2292

Устройство для электрохимической очистки питьевой воды

Изобретение относится к средствам обеспечения питьевого водоснабжения, в частности к устройствам для электрохимической очистки питьевой воды, и может быть использовано в бытовых условиях для доочистки водопроводной воды и доведения ее санитарно-эпидемиологических, физико-химических и...
Тип: Изобретение
Номер охранного документа: 0002540303
Дата охранного документа: 10.02.2015
10.06.2015
№216.013.5436

Инверсно-сопряженная кодовая шкала

Изобретение относится к области аналого-цифрового преобразования с использованием кодовых шкал преобразователей угла поворота вала в код. Техническим результатом является повышение технологичности кодовой шкалы на основе нелинейных двоичных последовательностей. Кодовая шкала содержит...
Тип: Изобретение
Номер охранного документа: 0002553079
Дата охранного документа: 10.06.2015
10.07.2015
№216.013.60a7

Чувствительный элемент акселерометра на поверхностных акустических волнах

Изобретение относится к области измерительной техники и может быть использован в приборостроении и машиностроении для измерения ускорения подвижных объектов. Чувствительный элемент акселерометра на поверхностных акустических волнах содержит встречно-штыревой преобразователь, связанный с...
Тип: Изобретение
Номер охранного документа: 0002556284
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.6520

Полупроводниковый газовый сенсор

Изобретение может быть использовано в газоанализаторах, газосигнализаторах и газовых пожарных извещателях. Полупроводниковый газовый сенсор содержит корпус 1 реакционной камеры 2, выполненный из коррозионно-стойкой стали. Корпус 1, с торца закрытый сеткой 3 из проволоки диаметром 0,03…0,05 мм...
Тип: Изобретение
Номер охранного документа: 0002557435
Дата охранного документа: 20.07.2015
20.08.2015
№216.013.6e8b

Способ и система радиочастотной идентификации и позиционирования железнодорожного транспорта

Изобретение относится к области железнодорожного транспорта и предназначено для идентификации радиочастотных меток. Техническое решение содержит радиочастотные метки, платформу, линию остановки, железнодорожное транспортное средство, радиочастотный считыватель, устройство управления,...
Тип: Изобретение
Номер охранного документа: 0002559869
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.721c

Кодовая шкала

Изобретение относится к измерительной технике, в частности к аналого-цифровому преобразованию, а именно к кодовым шкалам преобразователей угла поворота вала в код. Техническим результатом является устранение неоднозначности считывания со шкалы кодовых комбинаций. Кодовая шкала содержит m...
Тип: Изобретение
Номер охранного документа: 0002560782
Дата охранного документа: 20.08.2015
10.10.2015
№216.013.81f1

Способ контроля дискретных уровней жидкости и система (устройство), обеспечивающая его реализацию

Изобретение относится к приборостроению, а именно к дискретным измерителям уровня, и может быть использовано для контроля уровня компонентов топлива при заправке, расходовании и хранении в ракетно-космической и других областях промышленности. Устройство контроля уровней жидкости, содержит блок...
Тип: Изобретение
Номер охранного документа: 0002564862
Дата охранного документа: 10.10.2015
Showing 31-40 of 189 items.
10.03.2014
№216.012.aa8a

Способ предотвращения несанкционированного использования летательного аппарата

Изобретение относится к области техники, занимающейся разработкой бортовой аппаратуры и бортовых систем летательных аппаратов (ЛА), обеспечивающих как безопасность полетов, так и безопасность наземных объектов. Для предотвращения несанкционированного использования летательных аппаратов...
Тип: Изобретение
Номер охранного документа: 0002509373
Дата охранного документа: 10.03.2014
20.03.2014
№216.012.ad0c

Способ дистанционного обнаружения вещества

Использование: предлагаемая система относится к радиотехническим средствам, использующим магнитный резонанс для поиска и обнаружения преимущественно наркотиков и взрывчатых веществ в составе предъявленных для исследования предметов, а также поляризационную селекцию и фазовый анализ для поиска и...
Тип: Изобретение
Номер охранного документа: 0002510015
Дата охранного документа: 20.03.2014
27.04.2014
№216.012.bd07

Способ идентификации объектов

Изобретение относится к области телеметрических систем, используется для идентификации объектов, в том числе движущихся, в частности контейнеров железнодорожного и автомобильного транспорта. Технический результат изобретения заключается в повышении достоверности и надежности идентификации...
Тип: Изобретение
Номер охранного документа: 0002514130
Дата охранного документа: 27.04.2014
27.04.2014
№216.012.bd08

Способ обнаружения терпящих бедствие

Изобретение относится к радиолокационной технике. Технический результат изобретения заключается в повышении избирательности и помехоустойчивости приемника сканирующего устройства путем подавления ложных сигналов (помех), принимаемых по зеркальному и комбинационным каналам. Для реализации...
Тип: Изобретение
Номер охранного документа: 0002514131
Дата охранного документа: 27.04.2014
27.04.2014
№216.012.bd09

Система для радиотелефонных сообщений на автомагистралях

Изобретение относится к средствам обеспечения безопасности, защиты и спасения человека в условиях движения на крупных автомагистралях и на железнодорожных переездах. Технический результат заключается в повышении безопасности дорожного движения на железнодорожных переездах путем автоматического...
Тип: Изобретение
Номер охранного документа: 0002514132
Дата охранного документа: 27.04.2014
27.04.2014
№216.012.bd25

Устройство для определения частоты, вида модуляции и манипуляции принимаемых сигналов

Предлагаемое устройство относится к области радиоэлектроники и может быть использовано для определения несущей частоты, вида модуляции и манипуляции сигналов, принимаемых в заданном диапазоне частот. Устройство для определения частоты, вида модуляции и манипуляции принимаемых сигналов содержит...
Тип: Изобретение
Номер охранного документа: 0002514160
Дата охранного документа: 27.04.2014
10.05.2014
№216.012.c122

Способ обнаружения местонахождения засыпанных биообъектов или их останков и устройство для его осуществления

Изобретение относится к области геофизики и может быть использовано для поиска засыпанных биообъектов или их останков. Заявлен способ обнаружения местонахождения засыпанных биообъектов или их останков и устройство для его осуществления. Устройство содержит сканирующий блок и приемопередатчик....
Тип: Изобретение
Номер охранного документа: 0002515191
Дата охранного документа: 10.05.2014
27.05.2014
№216.012.c9c3

Панорамный приемник

Настоящее изобретение относится к области радиоэлектроники и может быть использовано для определения несущей частоты и вида модуляции сигналов, принимаемых в заданном диапазоне частот. Техническим результатом изобретения является повышение достоверности визуального распознавания сложных...
Тип: Изобретение
Номер охранного документа: 0002517417
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.ccb3

Запросный способ измерения радиальной скорости и местоположения спутника глобальной навигационной системы глонасс и система для его осуществления

Изобретение относится к области радиотехники, а именно к области навигационных измерений, и может быть использовано в наземном комплексе управления орбитальной группировкой навигационных космических аппаратов (НКА). Технический результат заключается в расширении функциональных возможностей и...
Тип: Изобретение
Номер охранного документа: 0002518174
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cdb1

Фазовый способ пеленгации и фазовый пеленгатор для его осуществления

Предлагаемые способ и устройство относятся к области радиоэлектроники и могут быть использованы для определения координат источников излучения сложных сигналов с комбинированной фазой и частотной манипуляциями (ФМн-ЧМн), размещенных на борту летательного аппарата (самолет, вертолет, дирижабль,...
Тип: Изобретение
Номер охранного документа: 0002518428
Дата охранного документа: 10.06.2014
+ добавить свой РИД