×
18.07.2020
220.018.33ec

Способ распознавания функционального назначения летательных аппаратов пары по принципу "ведущий-ведомый"

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области обработки радиолокационных сигналов и может быть использовано в бортовой радиолокационной станции (БРЛС) самолета для одновременного формирования при сопровождении летательных аппаратов пары достоверных оценок их функционального назначения (ФН) по принципу «ведущий-ведомый» и радиальных функционально-связанных координат (ФСК) взаимного перемещения этих летательных аппаратов и самолета – носителя БРЛС. Технический результат – повышение достоверности оценивания варианта ФН летательных аппаратов пары и радиальных скоростей их сближения с самолетом – носителем БРЛС. Способ заключается в распознавании ФН летательных аппаратов пары с одновременным формированием достоверных безусловных оценок радиальных скоростей их сближения с самолетом – носителем БРЛС за счет комплексирования информации БРЛС и индикатора варианта ФН летательных аппаратов пары, учета априорных данных о смене этих вариантов и адаптации фильтра к ней на основе узкополосной доплеровской фильтрации сигнала, отражённого от летательных аппаратов пары, летящих в сомкнутом боевом порядке (БП), с использованием процедуры быстрого преобразования Фурье, формирования отсчетов доплеровских частот, обусловленных отражениями сигнала от планеров летательных аппаратов, обработки сформированных отсчетов доплеровских частот и выходных показаний индикатора в многоканальном фильтре совместных сопровождения летательных аппаратов пары и распознавания варианта их ФН, функционирующего в соответствии с процедурой квазиоптимальной совместной фильтрации фазовых координат и распознавания состояния марковской структуры линейной стохастической динамической системы, работающего на основе априорных данных в виде математической модели системы «пара летательных аппаратов – БРЛС – индикатор» со случайной скачкообразной структурой, и на выходе которого формируются оценки варианта ФН летательных аппаратов пары, безусловных математического ожидания ФСК и ковариационной матрицы ошибок их оценивания. 1 ил.
Реферат Свернуть Развернуть

Предлагаемое изобретение относится к области обработки радиолокационных сигналов и может быть использовано в бортовой радиолокационной станции (БРЛС) самолета для одновременного формирования при сопровождении летательных аппаратов пары достоверных оценок их функционального назначения (ФН) по принципу «ведущий-ведомый» и радиальных функционально-связанных координат (ФСК) взаимного перемещения этих летательных аппаратов (ЛА) и самолета – носителя БРЛС.

Известен способ распознавания ФН самолетов пары по принципу «ведущий-ведомый», летящих в сомкнутом боевом порядке (БП) [1], заключающийся в том, что сигнал, отражённый от самолетов пары, подвергается узкополосной доплеровской фильтрации на основе процедуры быстрого преобразования Фурье (БПФ) и преобразуется в амплитудно-частотный спектр, определяются отсчёты доплеровских частот соответствующие отражениям сигнала от планеров самолетов, c амплитудами спектральных составляющих спектра сигнала превышающими заданный порог, которые поступают на вход двух фильтров сопровождения пары самолетов, различающихся наборами параметров используемых математических моделей (ММ) динамики ФСК и функционирующих в соответствии с процедурой многомерной линейной дискретной калмановской фильтрации [1]

; (1)

; (2)

; (3)

; (4)

; (5)

, (6)

где

k = 0,1, …, К, …, – номер такта работы фильтра;

и P(k+1) – ковариационные матрицы (КМ) ошибок экстраполяции и фильтрации соответственно;

Ф(k) – переходная матрица состояния;

Q(k+1) и R(k+1) – КМ шумов возбуждения и наблюдения соответственно;

S(k+1) – матрица весовых коэффициентов;

I - единичная матрица;

(k) – вектор апостериорных оценок радиальных ФСК взаимного перемещения пары самолетов и носителя БРЛС;

Н(k+1) – матрица наблюдения;

Y(k) – вектор наблюдения;

Z(k+1) – матрица невязок измерения;

Ψ(k+1) – матрица априорных ошибок фильтрации;

"-1" – операция вычисления обратной матрицы;

"т" – операция транспонирования матрицы,

основанной на априорных данных в виде ММ линейной динамики радиальных ФСК взаимного перемещения самолетов пары и истребителя – носителя БРЛС

, (7)

и ММ их измерений в БРЛС

, (8)

где

– вектор радиальных ФСК взаимного перемещения пары самолетов и носителя БРЛС;

– нижняя треугольная матрица симметричного разложения КМ шумов возбуждения в дискретном времени;

– нижняя треугольная матрица симметричного разложения КМ шумов наблюдения в дискретном времени;

, – независимые вектора нормированных дискретных белых шумов,

в каждом фильтре определяется апостериорная оценка вектора радиальных ФСК взаимного перемещения пары самолетов и носителя БРЛС, определяется обобщенная дисперсия действительных ошибок фильтрации для всех компонент вектора ФСК в соответствии с выражением

, (9)

на основе ММ (7) динамики ФСК, включающих радиальные флюктуационные составляющие скоростей и ускорений летательных аппаратов пары, в непрерывном времени

(10)

(11)

(12)

, (13)

где ΔVi(t) и ΔV0i – флюктуационная составляющая скорости первого (i = 1) и второго (i = 2) самолетов и ее начальное значение соответственно;

аi(t) и а0i – флюктуационная составляющая ускорения первого (i = 1) и второго (i = 2) самолетов и ее начальное значение соответственно;

αj, βj, σ2j – параметры модели полета самолетов пары, определяющие их ФН в группе и вычисляемые по формулам

αj = 1/τj; βj = (2π fj)2; σ2j = σ2vj2j + βj);

τj, fj и σvj – соответственно время корреляции, частота и среднеквадратическое отклонение (СКО) скоростных флюктуаций первого (j = 1) и второго (j = 2) самолетов;

n(t) – формирующий белый гауссовский шум с нулевым математическим ожиданием (МО) и единичной интенсивностью,

из возможных вариантов ФН самолетов пары идентифицируется тот, которому соответствуют параметры ММ, используемой в фильтре, дающем наименьшую обобщенную дисперсию (9) ошибок оценивания, найденная оценка варианта ФН самолетов пары и оценки радиальных ФСК взаимного перемещения этих ВЦ и истребителя – носителя БРЛС, выдаваемые фильтром с наименьшей обобщенной дисперсией, подаются на выход канала сопровождения пары самолетов в БРЛС.

Недостатком данного способа распознавания функционального назначения самолетов пары является низкая достоверность оценок радиальных ФСК взаимного перемещения этих самолетов и носителя БРЛС, и варианта их ФН в следствие:

1. Не оптимальности, определяемых на его основе оценок ФСК, так как они находятся при условии справедливости гипотезы о фактическом варианте ФН самолетов пары, которая носит вероятностный характер, а значит, оценки являются условно-оптимальными.

2. Отсутствия возможности комплексирования информации БРЛС, измеряющей ФСК, и индикатора варианта ФН самолетов пары.

3. Отсутствия возможности учитывать априорные данные о смене вариантов ФН самолетов пары.

Технической задачей изобретения является повышение достоверности распознавания ФН летательных аппаратов пары и оценки радиальных скоростей сближения этих ВЦ с самолетом – носителем БРЛС путем приближения получаемых оценок к их оптимальным значениям за счет комплексирования информации БРЛС и индикатора варианта ФН летательных аппаратов пары, учета априорных данных о смене этих вариантов и адаптации фильтра к ней.

Для решения технической задачи в способе распознавания ФН летательных аппаратов пары по принципу «ведущий-ведомый» [1], летящих в сомкнутом БП, заключающемся в том, что сигнал, отражённый от летательных аппаратов пары, подвергается узкополосной доплеровской фильтрации на основе процедуры БПФ и преобразуется в амплитудно-частотный спектр, определяются отсчёты доплеровских частот соответствующие отражениям сигнала от планеров летательных аппаратов, c амплитудами спектральных составляющих спектра сигнала превышающими заданный порог, которые дополнительно поступают на вход многоканального фильтра совместного сопровождения летательных аппаратов пары и распознавания варианта их ФН, функционирующего в соответствии с процедурой квазиоптимальной совместной фильтрации фазовых координат и распознавания состояния марковской структуры линейной стохастической динамической системы

; (14)

; (15)

; (16)

; (17)

; (18)

; (19)

; (20)

; (21)

; (22)

; (23)

; (24)

; (25)

, (26)

основанной на априорных данных в виде ММ системы «пара летательных аппаратов – БРЛС – индикатор» со случайной скачкообразной структурой (ССС), включающей модель линейной динамики радиальных ФСК взаимного перемещения летательных аппаратов пары и самолета – носителя БРЛС

; (27)

модель измерений этих фазовых координат в БРЛС

; (28)

модель смены варианта ФН летательных аппаратов пары

; (29)

модель индикатора варианта ФН летательных аппаратов пары

; (30)

модель неуправляемых случайных возмущений и помех

; (31)

при начальных условиях

, (32)

где

– дискретный момент времени;

– вектор радиальных ФСК взаимного перемещения летательных аппаратов пары и истребителя – носителя БРЛС;

– вариант ФН самолетов пары ( – ведущим является первый самолет, ведомым – второй; – ведущим является второй самолет, ведомым – первый);

– вектор измерений БРЛС;

– выходные показания индикатора варианта ФН летательных аппаратов пары;

– условные вероятности смены варианта ФН летательных аппаратов пары;

– условные вероятности смены показаний индикатора варианта ФН летательных аппаратов пары;

, , и , , – прогнозируемые на один шаг дискретности вперед и апостериорные соответственно вероятности полета пары летательных аппаратов с вариантом ФН, условные математические ожидания ФСК при фиксированном варианте ФН летательных аппаратов пары, условные КМ ошибок оценивания ФСК при фиксированном варианте ФН летательных аппаратов пары;

– квазиоптимальная по критерию максимума апостериорной вероятности оценка варианта ФН летательных аппаратов пары;

– апостериорное безусловное математическое ожидание ФСК;

– апостериорная безусловная КМ ошибок оценивания ФСК;

, – КМ соответственно векторов шумов возбуждения и помех ;

, – стандартные дискретные векторные белые шумы;

– условная КМ измерения при фиксированном варианте воздействия уводящих помех;

, – известные матрицы детерминированных функций от варианта ФН летательных аппаратов пары;

, – известные матрицы коэффициентов;

– обратная матрица по отношению к матрице ;

– операция транспонирования матрицы;

– определитель матрицы ;

– экспоненциальная функция,

определяется оценка варианта ФН летательных аппаратов пары, определяется оценка безусловного математического ожидания ФСК, определяется оценка безусловной КМ ошибок оценивания ФСК, на основе усовершенствованной ММ (27) динамики радиальных ФСК, включающих флюктуационные составляющие радиальных скоростей и ускорений взаимного перемещения летательных аппаратов пары и самолета – носителя БРЛС, которая в непрерывном времени отличается от известной (10)–(13) тем, что в случайные моменты времени, интервалы между которыми распределены по экспоненциальному закону, параметры модели α1, β1, σ21 и α2, β2, σ22 могут меняться местами друг с другом, что интерпретируется как смена ФН летательных аппаратов пары по принципу «ведущий-ведомый» в результате их перестроения

(33)

(34)

(35)

, (36)

модель представлена в процедуре (14)–(26) матрицами и , размерностями , ненулевыми элементами которых являются соответственно ; ; ; ; ; ; ; , где – период дискретизации, и на основе ММ (28) измерений в БРЛС функционально-связанных координат, представляемой в процедуре (14)–(26) матрицами и , размерностями и , ненулевыми элементами которых являются соответственно , и , .

Новыми признаками, обладающими существенными отличиями, являются:

1. Применение многоканального фильтра совместных сопровождения летательных аппаратов пары и распознавания варианта их ФН, функционирующего в соответствии с процедурой (14)–(26) квазиоптимальной совместной фильтрации фазовых координат и распознавания состояния марковской структуры линейной стохастической динамической системы вместо двух фильтров сопровождения пары летательных аппаратов, функционирующих в соответствии с процедурой (1)–(6) многомерной линейной дискретной калмановской фильтрации.

2. Комплексирование в (17) информации БРЛС, измеряющей ФСК, и индикатора варианта ФН летательных аппаратов пары с моделью (30).

3. Учет априорных данных о смене варианта ФН летательных аппаратов пары в виде условных вероятностей переходов (29).

4. Коррекция оценок (15), (16), (25), (26) ФСК, полученных на основе модели (27) и измерений (28), по оцененным вероятностям (17) полета пары летательных аппаратов с соответствующим вариантом ФН и априорным данным (29) о смене варианта ФН летательных аппаратов пары (адаптация фильтра к различным вариантам ФН летательных аппаратов пары).

5. Прогнозирование (14) вероятностей полета пары летательных аппаратов с каждым вариантом ФН на один шаг дискретности вперед на основе априорных данных о смене варианта ФН летательных аппаратов пары, представленных соответственно начальными (32) и переходными (29) вероятностями цепи Маркова.

6. Прогнозирование (15) на один шаг дискретности вперед условных математических ожиданий ФСК при фиксированном варианте ФН летательных аппаратов пары с учетом найденных вероятностей, на основе априорных данных (29) о смене варианта ФН летательных аппаратов пары и альтернативных моделей (27) динамики ФСК взаимного перемещения летательных аппаратов пары и самолета – носителя БРЛС.

7. Прогнозирование (16) на один шаг дискретности вперед условных КМ ошибок оценивания ФСК при фиксированном варианте ФН летательных аппаратов пары, с учетом найденных вероятностей (14) и МО (15), на основе априорных данных о смене варианта ФН и альтернативных моделей динамики ФСК взаимного перемещения летательных аппаратов пары и самолета – носителя БРЛС.

8. Оценка (17) апостериорных вероятностей полета пары летательных аппаратов с каждым вариантом ФН, по степени согласованности (20)–(23) спрогнозированных вероятностей (14), математических ожиданий ФСК (15) и КМ (16) ошибок их оценивания с результатами измерений в (23) и показаниями индикатора в (20).

9. Оценка (18) условных апостериорных математических ожиданий ФСК взаимного перемещения летательных аппаратов пары и самолета – носителя БРЛС, при фиксированном варианте ФН летательных аппаратов пары, на основе спрогнозированных МО (15) и КМ (16) ошибок прогноза с учетом результатов измерения в (23).

10. Оценка (19) условных апостериорных КМ ошибок оценивания ФСК, при фиксированном варианте ФН летательных аппаратов пары, на основе спрогнозированных МО (15) и КМ (16) ошибок прогноза с учетом результатов измерения в (23).

11. Идентификация (24) такого варианта ФН летательных аппаратов пары, для которого найденная апостериорная вероятность (17) окажется больше.

12. Нахождение (25) безусловной оценки ФСК на основе апостериорных вероятностей (17) полета пары летательных аппаратов с каждым вариантом ФН и условных апостериорных оценок (18) ФСК, как безусловного МО.

13. Нахождение (26) безусловной КМ ошибок оценивания ФСК с учетом найденных апостериорных вероятностей (17) полета пары летательных аппаратов с каждым вариантом ФН, условных математических ожиданий (18) ФСК, условных КМ (19) ошибок их оценивания и безусловных оценок (25) ФСК.

Данные признаки являются существенными и в известных технических решениях не обнаружены.

Применение всех новых существенных признаков позволит достоверно распознать вариант ФН летательных аппаратов пары с одновременным формированием достоверных безусловных оценок радиальных ФСК взаимного перемещения этих ЛА и самолета– носителя БРЛС путем приближения получаемых оценок к их оптимальным значениям за счет комплексирования информации БРЛС и индикатора варианта ФН летательных аппаратов пары, учета априорных данных о смене этих вариантов и адаптации фильтра к ней.

На фиг. приведена блок-схема, поясняющая реализацию предлагаемого способа распознавания ФН летательных аппаратов пары по принципу «ведущий-ведомый».

Способ распознавания ФН летательных аппаратов пары по принципу «ведущий-ведомый» осуществляется следующим образом.

На вход известного блока 1 БПФ, используемого в [3], на промежуточной частоте с выхода приёмника БРЛС поступает сигнал S(t), отражённый от летательных аппаратов пары, который подвергается узкополосной доплеровской фильтрации на основе процедуры БПФ и преобразуется в амплитудно-частотный спектр, в котором присутствуют составляющие обусловленные отражениями сигнала от планеров сопровождаемых ЛА.

В известном формирователе 2 измерения, используемом в [3], во-первых, определяются отсчёты доплеровских частот и , соответствующие двум максимальным амплитудам спектральных составляющих спектра сигнала, которые соответствуют его отражениям от планеров летательных аппаратов пары, во-вторых, данные отсчёты доплеровских частот преобразуются в значения скоростей, как , (где – рабочая длина волны БРЛС).

В результате на выходе блока 2 формируется измерение , которое поступает на вход нового многоканального фильтра 9 совместных сопровождения летательных аппаратов пары и распознавания варианта их ФН, функционирующего в соответствии с известной процедурой квазиоптимальной совместной фильтрации фазовых координат и распознавания состояния марковской структуры линейной стохастической динамической системы (14)–(26), структурная схема которой и описание приводятся в [2], работающего на основе априорных данных в виде ММ системы «пара летательных аппаратов – БРЛС – индикатор» со ССС, включающей (блок 10 памяти бортовой ЦВМ) модель (33)–(36) линейной динамики радиальных ФСК 3 взаимного перемещения летательных аппаратов пары и самолета – носителя БРЛС, представленную матрицами , модель измерений ФСК в БРЛС 4, представленную матрицами , модель смены варианта ФН летательных аппаратов пары 5, представленную переходными вероятностями , модель индикатора варианта ФН летательных аппаратов пары 6, представленную переходными вероятностями , модель неуправляемых случайных возмущений и помех 7 при начальных условиях 8, также поступающих на вход многоканального фильтра 9.

При этом в фильтре 9 осуществляется комплексирование информации БРЛС и индикатора варианта ФН летательных аппаратов пары, заключающееся в совместном использовании двух независимых источников информации (БРЛС и индикатора варианта ФН). На основе выходных сигналов и разнотипных датчиков информации – БРЛС и индикатора варианта ФН летательных аппаратов пары фильтр формирует оценки варианта ФН летательных аппаратов пары и ФСК , включающих радиальные флюктуационные составляющие скоростей и ускорений летательных аппаратов пары, с точностью, превышающей достижимую при раздельном использовании датчиков.

Особенность реализуемого комплексирования состоит в следующем: объект наблюдения (пара летательных аппаратов) характеризуется составным вектором , где определяет ФН летательных аппаратов пары по принципу «ведущий-ведомый», а – радиальные скорости сближения этих летательных аппаратов с носителем БРЛС, причем в соответствии с (27) динамика компоненты зависит от , что отражает особенность пилотирования пары летательных аппаратов, а именно, у ведомых летательных аппаратов группы имеются дополнительные скоростные флюктуации, обусловленные их стремлением сохранить заданные дистанции соответствующего боевого порядка, вследствие чего характер изменения скоростей, соответствующих ведомым летательным аппаратам, существенно отличается от динамики скорости, соответствующей ведущему летательному аппарату. Таким образом, информация о скоростях сближения позволяет косвенным образом судить о варианте ФН летательных аппаратов пары. Из (27) также следует, что дополнительная информация о варианте ФН летательных аппаратов пары позволяет повысить точность прогнозирования скоростей сближения .

На основании (17), (20) видно, что коррекция спрогнозированных вероятностей полета пары летательных аппаратов с соответствующим ФН осуществляется как по показаниям индикатора ФН летательных аппаратов пары, так и по результатам измерений БРЛС, причем совместное использование двух независимых источников информации позволяет улучшить точность оценивания этих вероятностей, в сравнении с использованием только БРЛС или только индикатора.

Как следует из (18), (25) оценка ФСК формируется как с учетом измерений БРЛС через и , так и с учетом показаний индикатора через , что также позволяет улучшить точность оценивания этих ФСК, в сравнении с использованием только БРЛС.

Сформированные на выходе многоканального фильтра 9 оценки варианта ФН летательных аппаратов пары, безусловного математического ожидания ФСК взаимного перемещения летательных аппаратов пары и самолета – носителя БРЛС, безусловной КМ ошибок оценивания ФСК поступают на выход канала сопровождения пары летательных аппаратов в БРЛС.

Результаты сравнительного моделирования предлагаемого способа распознавания ФН летательных аппаратов пары по принципу «ведущий-ведомый» на основе нового многоканального фильтра совместных сопровождения летательных аппаратов пары и распознавания варианта их ФН, функционирующего в соответствии с процедурой квазиоптимальной совместной фильтрации фазовых координат и распознавания состояния марковской структуры линейной стохастической динамической системы, и известного способа распознавания ФН летательных аппаратов пары по принципу «ведущий-ведомый», летящих в сомкнутом БП [1] на основе процедуры многомерной линейной дискретной калмановской фильтрации свидетельствуют с доверительной вероятностью 0,95 о снижении СКО ошибки фильтрации на 13% и о повышении вероятности правильного распознавания варианта ФН летательных аппаратов пары на 10%.

Таким образом, применение предлагаемого способа позволит повысить достоверность распознавания варианта ФН летательных аппаратов пары и оценки радиальных ФСК взаимного перемещения этих ЛА и самолета – носителя БРЛС путем приближения получаемых оценок к их оптимальным значениям за счет комплексирования информации БРЛС и индикатора варианта ФН летательных аппаратов пары, учета априорных данных о смене этих вариантов и адаптации фильтра к ней.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Алгоритм совместного траекторного сопровождения-распознавания функционального назначения самолетов, летящих в сомкнутом боевом порядке / А. В. Богданов, В. А. Голубенко, А. И. Княжев, А. А. Филонов // Системы радиоуправления. – 2018. – № 5. – С. 169–174. (прототип)

2. Бухалев, В. А. Оптимальное сглаживание в системах со случайной скачкообразной структурой / В. А. Бухалев. М.: ФИЗМАТЛИТ, 2013, страницы 115, 116, 117.

3. Богданов А.В., Васильев О.В., Докучаев Я.С. Способ сопровождения воздушной цели из класса «самолёт с турбореактивным двигателем» при воздействии уводящих по дальности и скорости помех. Патент на изобретение № 2665031, 2018.

Способ распознавания функционального назначения летательных аппаратов пары по принципу «ведущий-ведомый», заключающийся в том, что сигнал, отражённый от летательных аппаратов пары, подвергается узкополосной доплеровской фильтрации на основе процедуры быстрого преобразования Фурье и преобразуется в амплитудно-частотный спектр, определяются отсчёты доплеровских частот, соответствующие отражениям сигнала от планеров летательных аппаратов, c амплитудами спектральных составляющих спектра сигнала, превышающими заданный порог, отличающийся тем, что сформированные отсчеты доплеровских частот поступают на вход многоканального фильтра совместного сопровождения летательных аппаратов пары и распознавания варианта их функционального назначения, функционирующего в соответствии с процедурой квазиоптимальной совместной фильтрации фазовых координат и распознавания состояния марковской структуры линейной стохастической динамической системы, основанной на априорных данных в виде математической модели системы «пара летательных аппаратов – радиолокационная станция – индикатор» со случайной скачкообразной структурой, включающей модель линейной динамики радиальных функционально-связанных координат взаимного перемещения летательных аппаратов пары и самолета – носителя радиолокационной станции, модель измерений этих фазовых координат в радиолокационной станции, модель смены варианта функционального назначения летательных аппаратов пары, модель индикатора варианта функционального назначения летательных аппаратов пары, модель неуправляемых случайных возмущений и помех, при начальных условиях, осуществляется совместное оценивание функционально-связанных координат и варианта функционального назначения летательных аппаратов пары на основе метода двухмоментной параметрической аппроксимации неизвестных условных плотностей вероятности фазовых координат при фиксированной структуре системы с помощью нескольких каналов фильтрации, различающихся положенной в их основу гипотезой о варианте функционального назначения летательных аппаратов пары, при этом в каждом канале фильтрации на основе априорных данных о смене вариантов функционального назначения летательных аппаратов пары, представленных соответственно начальными и переходными вероятностями цепи Маркова, прогнозируются вероятности полета пары летательных аппаратов с каждым вариантом функционального назначения на один шаг дискретности вперед, с учетом найденных вероятностей, на основе априорных данных о смене вариантов функционального назначения летательных аппаратов пары и альтернативных моделей динамики функционально-связанных координат взаимного перемещения летательных аппаратов пары и носителя радиолокационной станции прогнозируются на один шаг дискретности вперед условные математические ожидания функционально-связанных координат при фиксированном варианте функционального назначения летательных аппаратов пары, с учетом найденных вероятностей и математических ожиданий, на основе априорных данных о смене вариантов функционального назначения летательных аппаратов пары и альтернативных моделей динамики функционально-связанных координат взаимного перемещения летательных аппаратов пары и носителя радиолокационной станции прогнозируются на один шаг дискретности вперед условные ковариационные матрицы ошибок оценивания функционально-связанных координат при фиксированном варианте функционального назначения летательных аппаратов пары, по степени согласованности спрогнозированных вероятностей, математических ожиданий функционально-связанных координат и ковариационных матриц ошибок их оценивания с результатами измерений радиолокационной станции и показаниями индикатора варианта функционального назначения летательных аппаратов пары осуществляется оценка апостериорных вероятностей полета пары летательных аппаратов с каждым вариантом функционального назначения, на основе спрогнозированных математических ожиданий и ковариационных матриц ошибок прогноза с учетом результатов измерения радиолокационной станции находятся условные апостериорные математические ожидания функционально-связанных координат при фиксированном варианте функционального назначения летательных аппаратов пары, на основе спрогнозированных математических ожиданий и ковариационных матриц ошибок прогноза с учетом результатов измерения радиолокационной станции находятся условные апостериорные ковариационные матрицы ошибок оценивания функционально-связанных координат при фиксированном варианте функционального назначения летательных аппаратов пары, на выходе каналов фильтрации из возможных вариантов функционального назначения летательных аппаратов пары выбирается тот, для которого найденная апостериорная вероятность окажется больше, безусловная по отношению к вариантам функционального назначения летательных аппаратов пары оценка функционально-связанных координат вычисляется на основе апостериорных вероятностей полета пары летательных аппаратов с каждым вариантом функционального назначения и условных апостериорных оценок функционально-связанных координат, как безусловное математическое ожидание, с учетом найденных апостериорных вероятностей полета пары летательных аппаратов с каждым вариантом функционального назначения, условных математических ожиданий функционально-связанных координат, условных ковариационных матриц ошибок их оценивания и безусловных оценок функционально-связанных координат находится безусловная по отношению к вариантам функционального назначения летательных аппаратов пары ковариационная матрица ошибок оценивания функционально-связанных координат.
Способ распознавания функционального назначения летательных аппаратов пары по принципу
Способ распознавания функционального назначения летательных аппаратов пары по принципу
Источник поступления информации: Роспатент

Showing 1-10 of 33 items.
29.12.2017
№217.015.f8c2

Регистратор температуры и скорости нестационарного газового потока

Изобретение относится к измерительной технике и может быть использовано для определения температуры нестационарного газового потока, теплового импульса потока, скорости движения фронта теплового возмущения, зависимости скорости движения фронта теплового возмущения от расстояния до источника его...
Тип: Изобретение
Номер охранного документа: 0002639737
Дата охранного документа: 22.12.2017
04.04.2018
№218.016.34ee

Регистратор давления и скорости ударной волны

Изобретение относится к измерительной технике и может быть использовано для определения давления и скорости ударной волны. Регистратор давления и скорости ударной волны содержит информационный датчик, n программируемых усилителей заряда и блок измерения, который состоит из аналого-цифрового...
Тип: Изобретение
Номер охранного документа: 0002645904
Дата охранного документа: 28.02.2018
10.05.2018
№218.016.3a92

Способ имитации коллимационного эффекта в проекционных системах визуализации внекабинной обстановки для авиационных тренажеров военного назначения и проекционная система визуализации

Изобретение относится к военным авиационным тренажерам. Технический результат заключается в компенсации эффекта зависимости пространственного положения линии визирования удаленных объектов визуализируемой с помощью проекционной системы визуализации внекабинной обстановки от положения органов...
Тип: Изобретение
Номер охранного документа: 0002647665
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.3dde

Способ поиска и обнаружения объекта

Изобретение относится к способам поиска и обнаружения объекта на местности по монохромному цифровому (с градациями яркости в каждом пикселе) изображению этой местности, например по радиолокационному изображению, формируемому в радиолокаторах с синтезированной антенной за счет многократного...
Тип: Изобретение
Номер охранного документа: 0002648234
Дата охранного документа: 23.03.2018
20.06.2018
№218.016.64e6

Система кондиционирования воздуха летательного аппарата на основе электроприводных нагнетателей и реверсивных парокомпрессионных холодильных установок

Изобретение относится к системе жизнеобеспечения самолета - авиационной системе кондиционирования воздуха (СКВ). Система кондиционирования воздуха содержит по меньшей мере один воздухозаборник со связанной с ним жидкостной системой непосредственного охлаждения бортовых тепловыделяющих...
Тип: Изобретение
Номер охранного документа: 0002658224
Дата охранного документа: 19.06.2018
08.07.2018
№218.016.6dd3

Устройство регистрации параметров быстропротекающих процессов

Изобретение относится к измерительной технике и может быть использовано для определения параметров ударно-волнового и теплового полей, возникающих в окружающей среде в результате взрыва заряда взрывчатого вещества. В устройство регистрации параметров быстропротекающих процессов, содержащее...
Тип: Изобретение
Номер охранного документа: 0002660321
Дата охранного документа: 05.07.2018
26.09.2018
№218.016.8c1a

Способ ускорения запуска двигатель-генераторного электромашинного преобразователя постоянного напряжения в переменное и устройство для его реализации

Группа изобретений относится к электромашинным преобразователям. Способ ускорения запуска двигатель-генераторного электромашинного преобразователя постоянного напряжения в переменное заключается в следующем. От источника постоянного тока заряжают емкостный накопитель, затем накопитель...
Тип: Изобретение
Номер охранного документа: 0002668014
Дата охранного документа: 25.09.2018
19.10.2018
№218.016.9377

Способы и устройство сжатия изображений. способ и устройство восстановления изображений

Изобретение относится области сжатия и восстановления видеоизображений с целью их хранения и передачи. Технический результат - четырехкратное сжатие видеопоследовательности за счет двукратного уменьшения пиксельного размера и разрешающей способности видеокадров по горизонтальной и вертикальной...
Тип: Изобретение
Номер охранного документа: 0002669874
Дата охранного документа: 16.10.2018
27.10.2018
№218.016.976a

Вертикальный ротор ветроводяного двигателя

Изобретение относится к области. Вертикальный ротор ветроводяного двигателя, состоит из: ступицы, включающей в себя узлы крепления спиц из состава упомянутых ниже спицевых наборов, соединительный фрагмент или фрагменты, соединяющие узлы крепления между собой, не менее двух вертикально вытянутых...
Тип: Изобретение
Номер охранного документа: 0002670854
Дата охранного документа: 25.10.2018
30.11.2018
№218.016.a218

Способ автоматического определения параметров оптико-электронных систем и составной тест-объект для его осуществления с произвольной конфигурацией составных элементов с единой пространственной частотой

Изобретение относится к области оптического приборостроения и касается способа определения разрешающей способности и линейного разрешения оптико-электронных систем. Способ включает в себя съемку тест-объектов с помощью оптико-электронной системы, анализ и обработку изображений. В качестве...
Тип: Изобретение
Номер охранного документа: 0002673501
Дата охранного документа: 27.11.2018
Showing 1-10 of 95 items.
20.05.2013
№216.012.41e4

Способ испытаний осколочных боеприпасов и стенд для его реализации

Изобретения относятся к полигонным испытаниям боеприпасов. При проведении испытаний применяют два неконтактных датчика, определяют координаты движения осколков снаряда на основе информации о пространственном положении сработавших чувствительных элементов линеек фотоприемников, определяют...
Тип: Изобретение
Номер охранного документа: 0002482438
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.41e5

Способ испытаний осколочных боеприпасов и стенд для его реализации

Изобретения относятся к полигонным испытаниям боеприпасов. Боеприпас устанавливают в центре щитовой мишенной обстановки, которая выполнена в виде полуцилиндрической вертикальной стенки, размещают боеприпас в горизонтальном положении на стойке с высотой, равной половине высоты стенки, совмещают...
Тип: Изобретение
Номер охранного документа: 0002482439
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.41e6

Способ определения характеристик осколочного поля снаряда и устройство для его осуществления

Изобретения относятся к способу и устройству для полигонных испытаний боеприпасов. Осуществляют подрыв снаряда на траектории движения и формируют осколочное поле снаряда, определяют количество осколков снаряда на основе анализа количества последовательно сработавших чувствительных элементов...
Тип: Изобретение
Номер охранного документа: 0002482440
Дата охранного документа: 20.05.2013
10.06.2013
№216.012.4999

Способ испытания боеприпасов на аэроудар и устройство для его осуществления

Изобретения относятся к области испытаний боеприпасов. Способ заключается в том, что осуществляют подрыв боеприпаса во взрывной камере с щелью, ширина и длина которой позволяют выделять часть осколочного поля боеприпаса, летящую в направлении, определяемом двугранным углом Δθ, осуществляют...
Тип: Изобретение
Номер охранного документа: 0002484421
Дата охранного документа: 10.06.2013
20.08.2013
№216.012.617c

Способ определения эффективности фугасного воздействия равных по массе сосредоточенного и дробного рассредоточенного зарядов взрывчатого вещества

Изобретение относится к области испытания боеприпасов. Способ заключается в раздельном определении энергии взрыва сосредоточенного и дробного рассредоточенного зарядов взрывчатого вещества равной массы для различных форм и размеров закрытого сосуда, оставляя постоянным его внутренний объем,...
Тип: Изобретение
Номер охранного документа: 0002490588
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.617d

Способ определения инициирующей способности дистанционного боеприпаса и устройство для его осуществления

Изобретения относятся к области испытания боеприпасов. Способ определения инициирующей способности дистанционного боеприпаса заключается в том, что инициирующую ударную волну в пассивном заряде взрывчатого вещества вызывают полем поражения боевой части дистанционного боеприпаса, изменение...
Тип: Изобретение
Номер охранного документа: 0002490589
Дата охранного документа: 20.08.2013
27.08.2013
№216.012.6508

Способ оценки пробивного действия дистанционного боеприпаса и устройство для его осуществления

Изобретения относятся к области испытаний дистанционных боеприпасов. Способ заключается в том, что подрыв боевой части боеприпаса осуществляют с помощью устройства инициирования во взрывной камере, в пределах двугранного угла Δθ, на заданном расстоянии устанавливают закрепленную преграду...
Тип: Изобретение
Номер охранного документа: 0002491501
Дата охранного документа: 27.08.2013
10.09.2013
№216.012.68e6

Способ распознавания класса цели и устройство для его осуществления

Изобретение может быть использовано в радиолокации для распознавания класса цели. Достигаемый технический результат - расширение информативности. Указанный результат достигается за счет обеспечения возможности распознавания класса цели путем анализа величины сигнала β=Δτ/τ, при этом если β...
Тип: Изобретение
Номер охранного документа: 0002492501
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.68e8

Способ распознавания класса цели и устройство для его осуществления

Изобретение может быть использовано в радиолокации для распознавания класса цели. Способ распознавания класса цели заключается в излучении в сторону цели электромагнитной энергии, приеме отраженных от цели сигналов и распознавании цели, проведении узкополосной фильтрации составляющей частоты...
Тип: Изобретение
Номер охранного документа: 0002492503
Дата охранного документа: 10.09.2013
27.09.2013
№216.012.6f09

Способ упрочнения пористой кальцийфосфатной керамики

Изобретение относится к композиционным материалам на основе кальцийфосфатной керамики с улучшенными прочностными характеристиками и может быть использовано для заполнения костных дефектов в травматологии и ортопедии, челюстно-лицевой хирургии и хирургической стоматологии. Для получения...
Тип: Изобретение
Номер охранного документа: 0002494076
Дата охранного документа: 27.09.2013
+ добавить свой РИД