×
18.07.2020
220.018.33aa

Способ останова жидкостного ракетного двигателя с турбонасосной системой подачи топлива

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к ракетно-космической технике. Способ останова жидкостного ракетного двигателя с турбонасосной системой подачи топлива в составе космической двигательной установки, основанный на последовательной подаче 2-х команд с заданным интервалом времени между ними, при этом по первой команде прекращают подачу рабочего тела турбины турбонасосного агрегата и компонентов топлива в полости форсуночной головки камеры и сообщают напорные магистрали и полости компонентов топлива двигателя с соответствующими баками двигательной установки, а по второй команде прекращают подачу компонентов топлива из баков двигательной установки в насосы турбонасосного агрегата, разобщают напорные магистрали и полости компонентов топлива двигателя с баками двигательной установки и открывают дренажи из этих полостей. Изобретение обеспечивает повышение ресурса жидкостного ракетного двигателя с турбонасосной системой подачи топлива в составе космической двигательной установки многократного использования. 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к ракетной технике и может быть использовано при разработке жидкостных ракетных двигателей (ЖРД) с турбонасосной системой подачи топлива, входящих в состав космических двигательных установок многократного использования.

К особенностям ЖРД космических двигательных установок многократного использования следует отнести прежде всего большой ресурс по числу включений. Например, требования к воздушно-космическому аппарату типа Х-37 (США) предусматривают десятки полетов с большим числом (до 10) включений ЖРД в каждом из них; при этом основным элементом конструкции ЖРД, ограничивающим его ресурс, является турбонасосный агрегат (ТНА) по причине интенсивного износа подшипников качения во время инерционного вращения - «выбега» ротора турбонасосного агрегата (ТНА) после выключения ЖРД в условиях отсутствия проточного охлаждения подшипников.

В этих условиях остатки компонентов топлива в подшипниках вследствие выделения тепла от трения качения, а также от трения в сепараторе подшипника в условиях вакуума быстро испаряются, после чего выбег ротора происходит уже в условиях сухого трения в подшипниках, что предопределяет их интенсивный износ.

Время вращения ротора в этих условиях ограничено лишь сопротивлением от сухого трения и может продолжаться (в зависимости от момента инерции ротора) до нескольких минут, а число оборотов ротора за это время - достигать величины порядка 105 об. При многократном повторении это явление приводит к разрушению подшипников ТНА и, следовательно, потере работоспособности ЖРД.

Известен способ останова, основанный на последовательной подаче 2-х команд: по первой команде ЖРД переводится на режим пониженной тяги, по второй команде двигатель выключается. Этот способ описан в книге Е.Б. Волкова, Л.Г. Головкова, Т.А. Сырицина «Жидкостные ракетные двигатели», Воениздат, МО СССР, 1970 г., стр. 487.

При этом способе останова ЖРД, принятом за прототип изобретения после первой команды на снижение тяги уменьшается также скорость вращения ротора ТНА (такой останов реализован на двигателе разгонного блока «Фрегат»).

При уменьшении скорости вращения ротора ТНА на конечной ступени тяги «выбег» ротора начинается с меньшей ее величины, время выбега в условиях сухого трения и общее число оборотов ротора за это время уменьшаются, соответственно, уменьшается износ подшипников ТНА.

Однако, тяга при таком останове, как правило, снижается не более чем на 50% (большее снижение связано с риском неустойчивости работы камеры). При этом скорость вращения может быть снижена не более, чем на 20…25%, соответственно, на эту величину может быть уменьшено число оборотов ротора ТНА за время «выбега» ротора, что, однако, не исключает сухое трение в подшипниках. Ресурс подшипников (как и ресурс ТНА) при останове способом прототипа несколько увеличивается, но недостаточно для условий эксплуатации ЖРД в составе двигательной установки космического аппарата многократного использования.

Изобретение направлено на увеличение ресурса ЖРД космической двигательной установки за счет уменьшения износа подшипников ТНА этого ЖРД путем существенного уменьшения времени «выбега» ротора ТНА после останова двигателя и исключения сухого трения в его подшипниках.

Результат обеспечивается тем, что при 2-х командном останове ЖРД по первой команде прекращают подачу рабочего тела турбины ТНА и компонентов топлива в полости форсуночной головки камеры, и сообщают напорные магистрали и полости компонентов топлива двигателя с соответствующими баками двигательной установки, а по второй команде прекращают подачу компонентов топлива из баков двигательной установки в насосы ТНА, разобщают напорные магистрали и полости компонентов топлива ЖРД с баками ДУ и открывают дренажи из этих полостей.

При таком останове запасенная в роторе ТНА на момент подачи первой команды останова кинетическая энергия его вращения направлена на привод насосов ТНА для создания циркуляции компонентов топлива, при которой они отбираются из баков ДУ, подаются под напором в магистрали и полости ЖРД с последующим сливом обратно в баки ДУ. За счет затрат кинетической энергии вращения ротора ТНА на привод насосов происходит его интенсивное торможение, после чего через заданный интервал времени подается 2-я команда останова двигателя. Длительность этого интервала зависит от допустимой величины конечной скорости вращения при активном торможении ротора ТНА после 1-й команды останова. Для полного исключения сухого трения в подшипниках эта величина определяется из условия - остаточная кинетическая энергия ротора не должна превышать энергию, необходимую для испарения компонента топлива, заполняющего полости подшипников при каждом из насосов ТНА. Например, для космических ЖРД с тягой от 0,4 тс до 2 тс величина конечной скорости вращения ротора, определенная из указанных выше условий, составляет не более ~35% от ее номинального значения на установившемся режиме работы двигателя.

К моменту подачи 2-ой команды, по которой осуществляются традиционные операции останова ЖРД - разобщение полостей баков и ЖРД, а также дренирование его полостей, существенно уменьшается число оборотов ротора ТНА в процессе «выбега», а после 2-ой команды исключается сухое трение в подшипниках ротора, что практически исключает их износ, значительно увеличивает ресурс ТНА и, следовательно, двигателя по числу включений.

На рисунке представлена схема ЖРД, реализующая предлагаемый способ останова.

В состав ЖРД входят: камера 1, турбонасосный агрегат 2, газогенератор 3, вырабатывающий рабочее тело турбины ТНА 2, органы регулирования 4, клапаны входа 5, 6 компонентов топлива в двигатель, отсечные 2-х седельные клапаны 7, 8, сообщенные входами с магистралями на выходах трактов охлаждения камеры 1, нормально-закрытыми выходами с полостями форсуночной головки камеры 1, а нормально-открытыми выходами с дренажно-отсечными клапанами 9, 10, дренажно-отсечные 2-х седельные клапаны 9, 10, сообщенные входами с нормально открытыми выходами клапанов 7, 8, нормально закрытыми выходами с магистралями слива 11, 12 компонентов топлива в баки ДУ, а нормально-открытыми выходами с дренажными магистралями, отсечные клапаны 13, 14 в магистралях питания газогенератора 3 компонентами топлива, расходные шайбы 15, 16 в магистралях слива 11, 12, нормирующие расходы слива компонентов топлива в период между командами останова двигателя, электропневмоклапан пуска 17, который при подаче на его контакты электрического напряжения открывает доступ газу управления в управляющие полости клапанов входа 5, 6 и дренажно-отсечных клапанов 9, 10, электроклапан 18, открывающий при подаче электрического напряжения доступ в управляющие полости отсечных клапанов 7, 8 и 13, 14 в магистралях питания, соответственно, камеры 1 и газогенератора 3, электроклапан 19, закрывающий при подаче и открывающий при снятии электрического напряжения дренаж из управляющих полостей клапанов входа 5, 6 и дренажно-отсечных клапанов 9, 10, электроклапан 20, закрывающий при подаче и открывающий при снятии электрического напряжения дренаж из управляющих полостей клапанов 7, 8 и 13, 14.

Во время работы двигателя на все электроклапаны подано электрическое напряжение, при этом электроклапаны 17, 18 открыты, электроклапаны 19, 20 закрыты и в управляющие полости всех пневмоклапанов двигателя подан газ управления. При этом клапаны входа 5, 6 открыты, выходы клапанов 7, 8 в форсуночную головку камеры открыты, а их выходы к клапанам 9, 10 закрыты, выходы клапанов 9, 10 в магистрали слива 11, 12 открыты, а их выходы в магистрали дренажа закрыты; компоненты топлива под контролем органов регулирования 4 поступают в газогенератор 3, где в результате их взаимодействия образуются высокотемпературные продукты их сгорания - рабочее тело турбины ТНА 2, приводящее во вращение его ротор с насосами окислителя и горючего, а также - в камеру 1, из которой продукты их сгорания истекают, создавая тягу двигателя.

По первой команде останова двигателя снимается электрическое напряжение с электроклапанов 18, 20, после чего электроклапан 18 закрывается, прекращая доступ газу управления в управляющие полости клапанов 7, 8, 13, 14. Электроклапан 20 срабатывает, открывая дренаж из управляющих полостей этих клапанов.

Клапаны 13, 14 закрываются, прекращая доступ компонентам топлива в газогенератор 3, выработка рабочего тела турбины и поступление его на турбину ТНА 2 прекращается. Клапаны 7, 8 срабатывают закрывая доступ компонентам топлива в форсуночную головку камеры 1 и открывая им доступ через клапаны 9, 10 в магистрали слива 11, 12. После срабатывания клапанов 7, 8, 13, 14 насосы ТНА 2 за счет инерции ротора осуществляют циркуляцию компонентов топлива из баков ДУ - через напорные магистрали и полости двигателя - клапаны 7, 8, 9, 10 - магистрали слива 11, 12 - в баки ДУ; при этом запас кинетической энергии ротора, определяемый моментом количества движения, потребляется насосами, вследствие чего скорость вращения ротора резко падает, происходит интенсивное торможение ротора.

Через заданный интервал времени по второй команде останова снимается электрическое напряжение с электроклапанов 17, 19. Электроклапаны 17, 19 срабатывают, открывая дренаж из управляющих полостей клапанов входа 5, 6 и дренажно-отсечных клапанов 9, 10. Давления в управляющих полостях клапанов 5, 6, 9, 10 падают. Клапаны входа 5, 6 срабатывают, закрывая доступ компонентам топлива из баков ДУ на входы в насосы ТНА 2. Клапаны 9, 10 срабатывают, закрывая доступ компонентам топлива из клапанов 7, 8 в магистрали слива 11, 12 и сообщая полости компонентов топлива двигателя с дренажными магистралями, после чего начинается процесс выкипания и выпаривания компонентов топлива из полостей двигателя за счет теплопритоков от материала конструкции элементов двигателя и внутреннего теплосодержания компонентов топлива, в том числе выкипание компонентов топлива в полостях подшипников ТНА за счет тепловыделения от трения в подшипниках на «выбеге» ротора ТНА, начиная от конечной (после торможения ротора) скорости вращения, когда запасенная в роторе кинетическая энергия тратится на парообразование компонентов топлива; при этом вплоть до останова ротора в полостях подшипников присутствуют жидкие фазы компонентов топлива, что исключает сухое трение и перегрев подшипников.

Расчетная оценка времени спада угловой скорости вращения ротора ТНА от момента подачи первой команды останова до момента достижения конечной, исключающей сухое трение в подшипнике, угловой скорости его вращения проведена применительно к двигателю тягой 0,4 тс, с ТНА, имеющим следующие характеристики:

- номинальная угловая скорость вращения ротора - 7326 рад/с:

- момент инерции ротора - 0,00077 кгм2;

- свободный объем полости подшипника, залитого рабочим телом

каждого насоса - 4 см3;

- плотность рабочего тела насоса горючего - 796 кг/м3;

- теплота испарения рабочего тела насоса горючего - 130,7 ккал/кг;

- плотность рабочего тела насоса окислителя - 1460 кг/м3;

- теплота испарения рабочего тела насоса окислителя - 99 ккал/кг.

Расчетная оценка показывает:

- допустимая конечная угловая скорость вращения ротора ТНА - ~2407 рад/с;

- время спада угловой скорости до этого значения, соответствующее временному интервалу между командами останова - 2,3 с, тогда как время спада скорости вращения ротора ТНА до указанного значения при останове по способу прототипа равно ~75 с;

общее число оборотов ротора за время спада:

- при останове предлагаемым способом - <10000 об.;

- при останове способом прототипа - 66000 об.;

из них в условиях сухого трения в подшипниках:

- при останове предлагаемым способом - 0 об.;

- при останове способом прототипа - от 23000 об. до 62000 об.

(в зависимости от температур компонентов топлива и температуры конструкции ТНА).

Из оценки следует, что при останове ЖРД с турбонасосной системой подачи топлива предлагаемым способом исключаются основные причины износа подшипников ТНА на «выбеге» ротора, что практически снимает ограничения по числу включений двигателя, связанные с ТНА.

Способ останова жидкостного ракетного двигателя с турбонасосной системой подачи топлива в составе космической двигательной установки, основанный на последовательной подаче 2-х команд с заданным интервалом времени между ними, отличающийся тем, что по первой команде прекращают подачу рабочего тела турбины турбонасосного агрегата и компонентов топлива в полости форсуночной головки камеры и сообщают напорные магистрали и полости компонентов топлива двигателя с соответствующими баками двигательной установки, а по второй команде прекращают подачу компонентов топлива из баков двигательной установки в насосы турбонасосного агрегата, разобщают напорные магистрали и полости компонентов топлива двигателя с баками двигательной установки и открывают дренажи из этих полостей.
Способ останова жидкостного ракетного двигателя с турбонасосной системой подачи топлива
Способ останова жидкостного ракетного двигателя с турбонасосной системой подачи топлива
Источник поступления информации: Роспатент

Showing 1-4 of 4 items.
01.09.2019
№219.017.c592

Способ имитации высотных условий при испытании ракетных двигателей

Изобретение относится к ракетной технике и может быть использовано при испытаниях сопел ракетных двигателей больших степеней расширения с целью их отработки и подтверждения работоспособности. При имитации высотных условий при испытании ракетных двигателей тепловые, механические и...
Тип: Изобретение
Номер охранного документа: 0002698555
Дата охранного документа: 28.08.2019
01.11.2019
№219.017.dcd8

Камера жидкостного ракетного двигателя малой тяги

Изобретение относится к ракетной технике. Камера жидкостного ракетного двигателя малой тяги, состоящая из смесительной головки с форсунками, корпуса камеры с докритической и сверхзвуковой частями сопла, при этом корпус камеры образован концентрическими оболочками с зазорами между ними, которые...
Тип: Изобретение
Номер охранного документа: 0002704518
Дата охранного документа: 29.10.2019
18.03.2020
№220.018.0cd6

Энергетическая установка с машинным преобразованием энергии

Изобретение относится к объектам энергетического машиностроения. Изобретение направлено на повышение КПД турбокомпрессорных энергетических установок путем уменьшения затрат энергии турбины на привод компрессора. Эта задача решается снижением потребной степени сжатия компрессора только до...
Тип: Изобретение
Номер охранного документа: 0002716766
Дата охранного документа: 16.03.2020
25.03.2020
№220.018.0f77

Щелевое уплотнение-демпфер центробежного насоса

Изобретение относится к области насосостроения и может быть использовано, в частности в турбонасосных агрегатах жидкостных ракетных двигателей. Щелевое уплотнение-демпфер для гашения энергии колебаний вращающегося в бесконтактных подшипниках ротора центробежного насоса содержит корпус с...
Тип: Изобретение
Номер охранного документа: 0002717482
Дата охранного документа: 23.03.2020
Showing 1-10 of 63 items.
27.01.2013
№216.012.20ab

Способ формирования команды управления одноканальной вращающейся по углу крена ракетой и устройство для его осуществления (варианты)

Предлагаемая группа изобретений относится к области ракетного вооружения. Способ формирования команды управления одноканальной вращающейся по углу крена ракетой включает формирование программно-временного сигнала, формирование сигнала крена ракеты, модуляцию им программно-временного сигнала и...
Тип: Изобретение
Номер охранного документа: 0002473864
Дата охранного документа: 27.01.2013
10.03.2013
№216.012.2e53

Агрегат с радиальным потоком

Изобретение относится к машиностроению и может быть использовано в конструкции центробежных высокооборотных компрессоров. Агрегат с радиальным потоком содержит корпус, рабочее колесо, расположенное на валу, щелевое уплотнение и магистраль возврата утечек на всасывание. В указанном агрегате...
Тип: Изобретение
Номер охранного документа: 0002477390
Дата охранного документа: 10.03.2013
10.04.2013
№216.012.32c1

Ракетный летательный аппарат

Изобретение относится к ракетной технике и может быть использовано в конструкциях ракетных летательных аппаратов и ракетных двигателей. Ракетный летательный аппарат содержит корпус, ракетный двигатель с осесимметричным сверхзвуковым соплом, а также установленный на корпусе вокруг двигателя,...
Тип: Изобретение
Номер охранного документа: 0002478536
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.3436

Электронный блок двухканальной лазерной полуактивной головки самонаведения

Изобретение относится к технике управления вращающимися по углу крена беспилотными летательными аппаратами и может быть использовано в комплексах вооружения, в которых на конечном участке траектории осуществляется самонаведение методом пропорциональной навигации. Электронный блок (ЭБ) включает...
Тип: Изобретение
Номер охранного документа: 0002478909
Дата охранного документа: 10.04.2013
20.04.2013
№216.012.37b9

Способ одновременного наведения телеориентируемых в луче управления ракет (варианты) и система наведения для его осуществления

Способы и система относятся к ракетной технике и могут быть использованы в комплексах управляемого вооружения. Варианты способов одновременного наведения телеориентируемых в луче ракет включают формирование луча управления, совмещение его оптической оси с линией визирования цели, сужение луча...
Тип: Изобретение
Номер охранного документа: 0002479818
Дата охранного документа: 20.04.2013
20.05.2013
№216.012.41d8

Способ формирования сигналов управления вращающимся по углу крена самонаводящимся снарядом

Изобретения относятся к области разработки систем управления беспилотными летательными аппаратами и может быть использовано в комплексах управляемого артиллерийского вооружения и других комплексах вооружения, в которых на конечном участке траектории осуществляется самонаведение по методу...
Тип: Изобретение
Номер охранного документа: 0002482426
Дата охранного документа: 20.05.2013
27.06.2013
№216.012.5121

Способ и устройство для регулирования основных параметров ракетных двигателей двигательной установки, использующей газообразные компоненты топлива

Изобретение относится к ракетно-космической технике. Способ регулирования основан на поддержании массовых расходов компонентов топлива через двигатели путем обеспечения заданных давлений на входах в блоки двигателей, при этом в процессе работы двигателей измеряют температуры газообразных...
Тип: Изобретение
Номер охранного документа: 0002486362
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.5163

Способ наведения вращающейся ракеты и система наведения для его осуществления

Изобретение относится к области разработки систем наведения ракет. Способ наведения вращающейся ракеты включает формирование модулированного излучения на пусковом устройстве, прием излучения на ракете и выработку сигналов управления в вертикальной и горизонтальной плоскостях, формирование...
Тип: Изобретение
Номер охранного документа: 0002486428
Дата охранного документа: 27.06.2013
27.09.2013
№216.012.6ff5

Агрегатированная горелка

Изобретение относится к объектам энергетического машиностроения. Изобретение направлено на создание экономичных котельных, использующих горелки без электропотребления от внешних источников. Эта задача решается использованием части тепловой энергии продуктов сгорания топлива для выработки...
Тип: Изобретение
Номер охранного документа: 0002494312
Дата охранного документа: 27.09.2013
10.11.2013
№216.012.7f07

Способ наведения по оптическому лучу ракеты, стартующей с подвижного носителя

Изобретение относится к области наведения управляемых ракет. Способ наведения по оптическому лучу ракеты, стартующей с подвижного носителя, включает формирование на носителе лазерного луча с информационным полем управления, наведение на цель оптического прицела, ось которого съюстирована с осью...
Тип: Изобретение
Номер охранного документа: 0002498192
Дата охранного документа: 10.11.2013
+ добавить свой РИД