×
15.07.2020
220.018.32a6

Результат интеллектуальной деятельности: СПОСОБ УТИЛИЗАЦИИ БЕСПОДСТИЛОЧНОГО НАВОЗА В БИООРГАНИЧЕСКОЕ УДОБРЕНИЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к сельскому хозяйству и может быть использовано при подготовке отходов влажностью более 86% в виде удобрений для орошения или прямого внесения в почву для сельскохозяйственных угодий. Способ утилизации бесподстилочного навоза в биоорганическое удобрение включает обработку отходов химическим реагентом, компостирование. В качестве химического реагента используют дезинфектанты и антисептики, например, активный хлор с концентрацией 14…32 мг/л. Утилизируемая среда с добавленным высокоокислительным химическим реагентом подвергается воздействию ферромагнитными телами, перемещающимися во вращающемся переменном электромагнитном поле, интенсивностью от 27 до 42 мТл промышленной циклической частоты колебаний электрического тока в сети при параллельном естественном компостировании за счёт мезофильного температурного диапазона от +18 до +26°С. Техническим результатом является снижение продолжительности процесса при утилизации бесподстилочного навоза. 1 табл.

Изобретение относится к утилизации бесподстилочного навоза хозяйств различной производственной мощности и может быть использовано в сельском хозяйстве при подготовке отходов влажностью более 86% в виде удобрений для орошения или прямого внесения в почву для сельскохозяйственных угодий.

Известен способ утилизации бесподстилочного навоза с получением биогаза и удобрений, состоящая из последовательно расположенных камеры нагрева исходного навоза, камеры гидролиза, камеры с термофильным режимом анаэробной обработки навоза, теплообменного аппарата, камеры с мезофильным режимом анаэробной обработки навоза, причем, по крайней мере, одна из камер анаэробной обработки навоза снабжена средствами иммобилизации анаэробной микрофлоры, отличающаяся тем, что камера нагрева исходного навоза снабжена подогревателем, между теплообменным аппаратом и камерой с термофильным режимом анаэробной обработки навоза предусмотрено устройство гравитационного разделения анаэробной биомассы на фракции, жидкостная часть которого связана последовательно с теплообменным аппаратом и камерой с мезофильным режимом анаэробной обработки навоза, а теплообменный аппарат посредством последовательно расположенных компрессора и дросселирующего клапана связан с подогревателем с образованием единого термодинамического контура, при этом средства иммобилизации анаэробной микрофлоры размещены в камере с мезофильным режимом анаэробной обработки навоза (см. патент RU 2407723, МПК C05F 3/06, опубл. 27.12.2010).

Известен способ переработки бесподстилочного навоза в удобрения, электрическую и тепловую энергию, согласно которому исходный навоз последовательно подвергают предварительной подготовке в аппарате, снабженном средствами перемешивания, анаэробной переработке в биогаз и биошлам в метантенке, оборудованном средствами стабилизации температурного режима, биошлам подвергают механическому обезвоживанию с получением жидкой и твердой фракции, твердую фракцию подвергают сушке в конвективной сушилке с использованием энергии сжигания биогаза и получением сухой фракции и влажного газа, сухую фракцию используют для приготовления удобрений, влажный газ используют для стабилизации температурного режима метантенка, жидкую фракцию подвергают гравитационному разделению в отстойнике с получением сгущенной фракции и надосадочной жидкости, сгущенную фракцию направляют в аппарат предварительной подготовки, надосадочную жидкость направляют на последующую очистку, а биогаз накапливают в газохранилище и сжигают в когенерационной установке с получением электрической и тепловой энергии, отличающийся тем, что предварительную подготовку осуществляют в аэробном режиме с достижением по крайней мере мезофильных температур навоза и получением кислородсодержащего газа, сухую фракцию по крайней мере частично подвергают низкотемпературной термохимической газификации в слоевом газогенераторе, оснащенном средствами дутья с получением золы и генераторного газа, золу используют для приготовления удобрений, генераторный газ подвергают промывке в скруббере и накапливают в газохранилище совместно с биогазом, промывку осуществляют надосадочной жидкостью, образовавшиеся промывные воды подвергают деаммонификации в аммиачной колонне с получением аммиачной воды и деаммонифицированных сточных вод, аммиачную воду используют для приготовления удобрений, деаммонифицированные сточные воды направляют на доочистку, кислородсодержащий газ направляют в средства дутья газогенератора, сушку осуществляют с использованием продуктов сгорания из когенерационной установки, влажный газ из конвективной сушилки перед подачей в средства стабилизации температурного режима метантенка используют для подогрева промывных вод перед деаммонификацией, причем образовавшийся конденсат отводят непосредственно в рабочее пространство метантенка и аммиачной колонны. Биоэнергетический комплекс для реализации способа переработки бесподстилочного навоза в удобрения, электрическую и тепловую энергию, состоящий из соединенных в единую технологическую линию аппарата предварительной обработки навоза, метантенка для анаэробной переработки предварительно обработанного навоза в биогаз и биошлам, оборудованного теплообменным регистром, устройства механического обезвоживания, выход которого по твердой фракции связан с конвективной сушилкой, а выход по жидкой фракции связан с отстойником, выход которого по сгущенной фракции связан с входом аппарата предварительной обработки навоза, выход конвективной сушилки по сухой фракции связан с узлом приготовления удобрений, выход по влажному газу связан с теплообменным регистром метантенка, выход метантенка по биогазу через газохранилище связан с когенерационной установкой для производства электрической и тепловой энергии, а также с конвективной сушилкой, отличающийся тем, что аппарат предварительной обработки навоза выполнен в виде аэробного биореактора, выход конвективной сушилки по сухой фракции дополнительно связан с низкотемпературным газогенератором, выход которого по золе связан с узлом приготовления удобрений, средства дутья связаны с выходом аппарата предварительной обработки навоза по кислородсодержащему газу, выход по генераторному газу связан через скруббер с газохранилищем, жидкостной вход скруббера связан с выходом отстойника по надосадочной жидкости, а выход скруббера по промывным водам связан с узлом приготовления удобрений через аммиачную колонну, вход конвективной сушилки связан с выходом продуктов сгорания из когенерационной установки, выход конвективной сушилки по влажному газу связан с теплообменным регистром метантенка через теплообменный регистр аммиачной колонны, причем теплообменные регистры связаны с рабочими пространствами метантенка и аммиачной колонны посредством конденсатоотводчика (см. патент RU 2533431, МПК C05F 3/00, опубл. 20.11.2014).

Недостатками данных способов являются:

– высокая удельная энергоёмкость операций температурной стабилизации, конвективной сушки твёрдой фракции и деаммонификации образованных отрицательных побочных продуктов;

– сложность контроля биологических аэробных и анаэробных процессов;

– сложность обеспечения экологической безопасности термофильного режима;

– низкая технологическая эффективность гравитационного разделения, связанная с длительностью процесса, высоким требованиям к микроклимату при реализации, низкой экологической безопасностью;

– необходимость дополнительной механической очистки, образованной в результате гравитационного разделения надосадочной жидкости;

– образование большого количества побочных продуктов требующих дополнительных затрат для экологически безопасной утилизации: надосадочные жидкости.

Наиболее близким по технической сущности и достигаемому эффекту является способ переработки органических отходов с получением комплексного биоорганического удобрения и активатора компостирования одновременно (см. патент RU 2673738, МПК C05F 3/00, C05F 11/08, C05F 17/00, опубл. 29.11.2018). Способ переработки биогенных органических отходов, включающий следующие стадии: a) компостирование отходов до завершения термофильной стадии и снижения температуры до оптимальной для развития мезофильных микроорганизмов; b) обработка компостируемой массы, полученной на стадии а), микробиологическим удобрением и/или смесью микробиологических удобрений, содержащих мезофильную микрофлору; c) перемешивание массы, полученной на стадии b). При этом в качестве исходного технологического материала могут выступать органические материалы, представляющие собой отходы животноводства и птицеводства. Компостирование на стадии а) дополнительно включает внесение микробиологического удобрения и/или микробиологического активатора компостирования и перемешивание. Микробиологический активатор компостирования представляет собой биогенные отходы, переработанные предлагаемым способом, в котором микробиологические удобрения, используемые на стадии компостирования, представляет собой Восток ЭМ1 и/или Байкал ЭМ1. Микробиологические удобрение, используемое на стадии обработки компостируемой массы представляют собой Восток ЭМ1 и/или Байкал ЭМ1. Стадия компостирования при этом дополнительно включает внесение макро- и микроэлементов, культур микроорганизмов – стимуляторов роста растений, а сама переработка осуществляется в буртах и/или ферментерах. Применение биогенных органических отходов, переработанных интенсифицированным способом, в котором в качестве микробиологического активатора используют стадию компостирования.

Данный способ имеет ряд недостатков:

– высокая удельная энергоёмкость и низкая экологическая безопасность операций;

– длительность и зависимость эффекта от внешних температурных, условий при реализации операции компостирования;

– сложность контроля биологических аэробных и анаэробных процессов;

– низкая технологическая эффективность микробиологических активаторов, ввиду их сильной функциональной зависимости от внешних условий;

– возможность образования отрицательных побочных продуктов при использовании микробиологических активаторов;

– необходимость дополнительных гомогенизаторов;

– возможность существенного снижения биогенных свойств обрабатываемых органических отходов за счёт превышения времени контакта с микробиологическим активаторов.

Задачей изобретения является снижение энергозатрат при утилизации бесподстилочного навоза с последующим его использованием в качестве биоорганического удобрения для орошения сельскохозяйственных угодий.

Сущность изобретения заключается в том, что способ утилизации бесподстилочного навоза в биоорганическое удобрение биогенную биоорганическую среду, включающий обработку отходов химическим реагентом, компостирование, при этом утилизируемая среда с добавленным высоко окислительным химическим реагентом подвергается воздействию ферромагнитными телами перемещающимися во вращающемся переменном электромагнитном поле интенсивностью от 27…42 мТл промышленной циклической частоты колебаний электрического тока в сети при параллельном естественном компостировании за счёт мезофильного температурного диапазона, а в качестве химического реагента используют дезинфектанты и антисептики, например, активный хлор с концентрацией 14…32 мг/л, при температуре от +18 до +26°С.

Технический результат от применения изобретения заключается в использовании энергии вращающегося переменного электромагнитного поля, высоко окислительных химических реагентов и энергии механического воздействия ферромагнитных стержней, что позволяет снизить продолжительность воздействия и сократить удельные затраты энергии.

Указанный технический результат достигается за счёт того, что предлагаемый способ позволяет интенсифицировать тепло-массообменные и окислительные процессы, протекающие при компостировании за счёт применения механического воздействия ферромагнитными стержнями, перемещающимися во вращающемся переменном электромагнитном поле, интенсифицирующем тем самым процесс диффузии высоко окислительных химических реагентов в обрабатываемой среде.

Описанное воздействие вызывает ряд вторичных эффектов, вызывающих лизис мембран и протоплазм клеток патогенных организмов, что позволяет снизить влияние внешних факторов и получить стабильный бактерицидный эффект обеспечивающий экологическую безопасность.

Основными принципиальными отличиями предлагаемого способа относительно ранее известных являются:

1. Низкая удельная энергоёмкость операций, что позволяет сократить затраты электроэнергии на создание и поддержание микроклимата необходимого для эффективного протекания аэробных и анаэробных биологических процессов.

2. Высокая надёжность результата, обеспечиваемая отсутствием сложно-контролируемых операций с аэробными и анаэробными микроорганизмами, что позволяет обеспечить высокую воспроизводимость.

3. Высокая экологическая безопасность, обусловленная применением высокоокислительных химических реагентов, например, активного хлора, что позволяет обеспечить устойчивый пролонгированный бактерицидный эффект.

4. Экологизация бактерицидного эффекта достигаемая за счёт системного воздействия ферромагнитными телами в виде стержней и шаров в состоянии их технического насыщения в ходе вихревого движения и магнитострикционных взаимодействий во вращающемся переменном электромагнитном поле промышленной частоты, проецируемая на утилизируемые материалы влажность 86…98%.

Способ реализуется следующим образом: в системе транспортировки среды подлежащей утилизации после её предварительного отстаивания в накопителе, в результате химико-биологических процессов и поддержания микроклимата создаётся температура в диапазоне от +18 до +26°С, обеспечивающая бактериостатическое действие на психрофильные (ниже + 18… + 20 °С) и термофильные формы патогенных организмов, что упрощает их лизис, а также повышает сохранность остаточных биогенных свойств мезофильных патогенных форм, после чего подаётся бесподстилочный навоз влажностью от 86 до 98 %. Следующим этапом является прецизионная дозировка высоко окислительного химического реагента с концентрацией 14…32 мг/л (типа хлор, озон содержащего или олигодинамического), приведённый диапазон концентраций обеспечивает эффективный бактерицидный эффект при минимальных энергозатратах, а также минимизацию отрицательных побочных продуктов реакций в 10…16 раз способных дестабилизировать естественные фазовые состояния среды необходимые для её компостирования. Далее бесподстилочный навоз влажностью 86 до 98 % с добавленным высокоокислительным химическим реагентом подвергается механическому воздействию ферромагнитными стержнями, перемещающимися во вращающемся переменном электромагнитном поле интенсивностью от 42 до 67 мТл, данный диапазон интенсивности электромагнитного поля обеспечивает минимизацию удельных затрат электроэнергии, а также позволяет отказаться от использования частотных преобразователей циклической частоты колебаний тока устройств его создающего и позволяют осуществлять питание от 3-х фазной цепи промышленной частоты Приведённые воздействия позволяют интенсифицировать диффузию высоко окислительного химического реагента в утилизируемой среде и обеспечить лизис оболочек цитоплазм, протоплазм клеток патогенных микроорганизмов. В табл. 1 приведена последовательность реализации и образуемые эффекты при утилизации бесподстилочного навоза в биоорганическое удобрение.

Таблица 1 – Этапы реализации способа утилизации бесподстилочного навоза в биоорганическое удобрение

№ этапа Наименование этапа Эффект реализации
1 Создание температурного диапазона утилизируемой среды + 18… + 26°С в накопителях/отстойниках. Бактериостатическое действие на психрофильные (ниже + 18… + 20°С) и термофильные патогенные микроорганизмы (свыше + 40°С).
2 Прецизионная дозировка высокооксилительных химических реагентов, с концентрацией 14…32 мг/л. Благодаря высоко окислительной способности химического реагента происходит его диффузионное проникновение в протоплазмы и цитоплазмы клеток опасных в эпидемиологическом отношении форм.
3 Механическое воздействие ферромагнитными телами перемещающемся вращающемся во вращающемся переменном электромагнитном поле интенсивностью от 27 до 42 мТл. Интенсификация диффузии высоко окислительного химического реагента и механическое разрушение патогенных бактерицидных форм.
4 Отстаивание обработанной среды в течении 4…6 часов. Получение жидкого биоорганического удобрения, безопасного в эпидемиологическом и экологическом отношении, обладающего биогенными свойствами.

Результатом реализации 4-х этапов предлагаемого способа является получение среды безопасной в эпидемиологическом отношении и при этом обладающей биогенными свойствами, что позволяет использовать её в качестве жидкого биоорганического удобрения.

Предлагаемое изобретение по сравнению с наиболее близким аналогом и другими известными техническими решениями имеет следующие преимущества:

– отсутствие микробиологического активатора компостирования, требующего микроклимата, способствующего жизнедеятельности мезофильных микроорганизмов;

– минимизация влияния рН, цветности, мутности и фазово-дисперсных свойств утилизируемого материала на эффект обеспечения эпидемиологической безопасности биогенного биоорганического удобрения;

– сниженная удельная энергоёмкость и продолжительность операций за счёт применения физико-химического активатора и комплексной реализации операции компостирования/обработки;

– повышенная экологическая безопасность полученного биоорганического биогенного удобрения за счёт применения химических реагентов, например, активного хлора, обеспечивающих пролонгированный бактерицидный эффект;

– стабильность биогенных свойств альгобактериального сообщества патогенной среды вне зависимости от времени контакта обрабатываемого биоорганического материала.

Способ утилизации бесподстилочного навоза в биоорганическое удобрение, включающий обработку отходов химическим реагентом, компостирование, отличающийся тем, что утилизируемая среда с добавленным высокоокислительным химическим реагентом подвергается воздействию ферромагнитными телами, перемещающимися во вращающемся переменном электромагнитном поле, интенсивностью от 27 до 42 мТл промышленной циклической частоты колебаний электрического тока в сети при параллельном естественном компостировании за счёт мезофильного температурного диапазона, а в качестве химического реагента используют дезинфектанты и антисептики, например, активный хлор с концентрацией 14…32 мг/л, при температуре от +18 до +26°С.
Источник поступления информации: Роспатент

Showing 11-20 of 51 items.
06.07.2018
№218.016.6cb1

Противоударный элемент одежды

Изобретение относится к защитным элементам одежды отдельных частей тела человека и может применяться в сфере охраны труда и/или в спорте для снижения травматизма при ударах или толчках. Технический результат достигается тем, что противоударный элемент одежды, представляющий из себя крепящуюся с...
Тип: Изобретение
Номер охранного документа: 0002660314
Дата охранного документа: 05.07.2018
19.07.2018
№218.016.721a

Устройство для реконструкции изображений на основе хэш-функций

Изобретение относится к области вычислительной техники. Технический результат изобретения заключается в уменьшении погрешности и увеличении скорости при восстановлении изображений за счет использования хэш-функций для блоков. Устройство содержит: блок хранения изображения, блок хранения...
Тип: Изобретение
Номер охранного документа: 0002661534
Дата охранного документа: 17.07.2018
22.09.2018
№218.016.88d4

Способ газопламенного напыления порошковых материалов с получением покрытия на никелевой основе посредством термораспылителя

Изобретение относится к области газотермических технологий и может быть использовано при нанесении порошковых покрытий методом низкоскоростного газопламенного напыления. Способ газопламенного напыления порошкового покрытия на никелевой основе посредством термораспылителя включает активирование...
Тип: Изобретение
Номер охранного документа: 0002667266
Дата охранного документа: 18.09.2018
05.10.2018
№218.016.8f7c

Индуктор с замкнутым перемещением рабочих тел

Изобретение относится к аппаратам физико-химического воздействия на жидкие среды и может быть использовано в сельском, коммунальном хозяйстве, химической промышленности и других областях. Индуктор с замкнутым перемещением рабочих тел состоит из корпуса, внутри которого расположен...
Тип: Изобретение
Номер охранного документа: 0002668906
Дата охранного документа: 04.10.2018
11.10.2018
№218.016.8ff1

Быстродействующий операционный усилитель с дифференцирующей цепью коррекции

Изобретение относится к области радиотехники и аналоговой микроэлектроники и может быть использовано в различных аналоговых и аналого-цифровых интерфейсах для обработки сигналов датчиков. Технический результат заключается в повышении максимальной скорости нарастания выходного напряжения и...
Тип: Изобретение
Номер охранного документа: 0002669075
Дата охранного документа: 08.10.2018
01.11.2018
№218.016.98bb

Способ сорбционной очистки вод от аммонийного азота предприятий рыборазведения

Изобретение может быть использовано в химической промышленности и водоочистке. Сорбционную очистку вод от аммонийного азота предприятий рыборазведения осуществляют при подаче сорбента, перемешивании и отделении твердой фазы. В качестве сорбента используют химически или термически активированную...
Тип: Изобретение
Номер охранного документа: 0002671329
Дата охранного документа: 30.10.2018
09.11.2018
№218.016.9be6

Способ электрохимического окисления спиртов

Настоящее изобретение относится к способу электрохимического окисления спиртов, включающему приготовление реакционной смеси, состоящей из окисляемого спирта, воды, органического растворителя, в качестве которого используется хлористый метилен, йодида калия, нитроксильного радикала ряда...
Тип: Изобретение
Номер охранного документа: 0002671827
Дата охранного документа: 07.11.2018
14.11.2018
№218.016.9cf0

Средство для лечения и профилактики острого послеродового эндометрита сельскохозяйственных животных

Изобретение относится к ветеринарии, в частности к средству для лечения и профилактики острого послеродового эндометрита сельскохозяйственных животных. Средство содержит активнодействующие вещества и пенообразующую основу, включающую гидрокарбонат натрия, лимонную кислоту, сульфат натрия,...
Тип: Изобретение
Номер охранного документа: 0002672250
Дата охранного документа: 13.11.2018
23.11.2018
№218.016.9fb9

Масса для изготовления абразивного инструмента

Изобретение относится к области абразивной обработки и может быть использовано при шлифовании вязких труднообрабатываемых материалов. Масса включает абразив, глину, высокопрочный ферритный чугун, порошок серого чугуна, дийодид хрома и древесную муку с заданным размером частиц. В результате...
Тип: Изобретение
Номер охранного документа: 0002672973
Дата охранного документа: 21.11.2018
23.11.2018
№218.016.a002

Устройство для отделочно-упрочняющей обработки

Изобретение относится к устройствам для отделочно-упрочняющей обработки. Устройство содержит упруго установленный на станине со средствами для загрузки и выгрузки барабан с приводом. Барабан выполнен в виде установленной наклонно под острым углом относительно горизонтальной оси вращения...
Тип: Изобретение
Номер охранного документа: 0002672974
Дата охранного документа: 21.11.2018
Showing 11-20 of 31 items.
20.01.2018
№218.016.1be2

Устройство для транспортировки легкоповреждаемой плодоовощной продукции

Устройство для транспортировки легкоповреждаемой плодоовощной продукции содержит контейнер, включающий наружное ограждение в виде жестко соединенных рам, к которым прикреплены ограждающие элементы. На днище контейнера в шахматном порядке на расстоянии друг от друга и от боковых поверхностей...
Тип: Изобретение
Номер охранного документа: 0002636569
Дата охранного документа: 23.11.2017
13.02.2018
№218.016.2473

Способ бесспутниковой навигации

Изобретение относится к области радионавигации и может быть использовано в системах определения местоположения и слежения за траекторией перемещающихся в надземном пространстве объектов по сигналам навигационных бесспутниковых систем, использующих RFID-технологию. Достигаемый технический...
Тип: Изобретение
Номер охранного документа: 0002642507
Дата охранного документа: 25.01.2018
04.04.2018
№218.016.3009

Керамический аэратор

Изобретение относится к обработке природных и сточных вод воздухом. Керамический аэратор содержит цельнокерамический пустотелый корпус 1 со стенками из монофракций керамических порошков с центральным отверстием 2 и винтовой нарезкой 3 в корпусе 1, входной штуцер 4 и подводящий трубопровод 5...
Тип: Изобретение
Номер охранного документа: 0002645141
Дата охранного документа: 15.02.2018
10.05.2018
№218.016.3b8a

Бензонасос с гомогенизацией топлива

Изобретение может быть использовано в системах топливоподачи двигателей внутреннего сгорания (ДВС). Предложен бензонасос, состоящий из впускного штуцера 1, компенсационной камеры 2, соединенной с входом впускного клапана 3, выход которого соединен с накопительной камерой 4, которую образуют...
Тип: Изобретение
Номер охранного документа: 0002647355
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.4066

Устройство для контроля изнашивания тормозной колодки

Изобретение относится к области транспортного машиностроения. Устройство для контроля изнашивания тормозной колодки, взаимодействующей с тормозным барабаном и имеющей фрикционную накладку, содержит проводник, источник питания и амперметр. В теле фрикционной накладки на ее рабочей поверхности...
Тип: Изобретение
Номер охранного документа: 0002648924
Дата охранного документа: 28.03.2018
09.06.2018
№218.016.5c54

Устройство для контроля нежелательных углов поворота рулевого колеса, оборудованного гидроусилителем

Устройство относится к системам рулевого управления транспортных средств и может быть использовано при конструировании и изготовлении гидравлических рулевых усилителей транспортных средств. Устройство состоит из реостата 1, жестко закрепленного на корпусе 2 транспортного средства. Вывод «А»...
Тип: Изобретение
Номер охранного документа: 0002655966
Дата охранного документа: 30.05.2018
29.08.2018
№218.016.8147

Гидравлический рулевой усилитель

Изобретение относится к области транспортного машиностроения, а именно к системам рулевого управления транспортных средств, и может быть использовано при конструировании и изготовлении гидравлических рулевых усилителей транспортных средств. Устройство состоит из трубопровода 1, внутри которого...
Тип: Изобретение
Номер охранного документа: 0002665109
Дата охранного документа: 28.08.2018
05.10.2018
№218.016.8f7c

Индуктор с замкнутым перемещением рабочих тел

Изобретение относится к аппаратам физико-химического воздействия на жидкие среды и может быть использовано в сельском, коммунальном хозяйстве, химической промышленности и других областях. Индуктор с замкнутым перемещением рабочих тел состоит из корпуса, внутри которого расположен...
Тип: Изобретение
Номер охранного документа: 0002668906
Дата охранного документа: 04.10.2018
11.10.2018
№218.016.8f93

Способ очистки наружных поверхностей стекол и зеркал транспортных средств

Изобретение относится к области транспортных средств, а именно к способу очистки зоны обзора с использованием жидкости и механических стеклоочистителей. Стекло 1 транспортного средства на наружной (по отношению к салону автомобиля) поверхности имеет плато 2, геометрические размеры которого...
Тип: Изобретение
Номер охранного документа: 0002669148
Дата охранного документа: 08.10.2018
01.11.2018
№218.016.98bb

Способ сорбционной очистки вод от аммонийного азота предприятий рыборазведения

Изобретение может быть использовано в химической промышленности и водоочистке. Сорбционную очистку вод от аммонийного азота предприятий рыборазведения осуществляют при подаче сорбента, перемешивании и отделении твердой фазы. В качестве сорбента используют химически или термически активированную...
Тип: Изобретение
Номер охранного документа: 0002671329
Дата охранного документа: 30.10.2018
+ добавить свой РИД