×
06.07.2020
220.018.2ffb

Результат интеллектуальной деятельности: ДАТЧИК ПОСТОЯННОГО МАГНИТНОГО ПОЛЯ НА ОСНОВЕ МАГНИТОПЛАЗМОННОГО КРИСТАЛЛА

Вид РИД

Изобретение

Аннотация: Изобретение относится к технике измерений постоянных магнитных полей и может быть использовано для создания на его основе магнитооптических приборов. Технический результат – расширение арсенала датчиков для измерения постоянного магнитного поля на локальных участках. Технический результат достигается в устройстве (магнитоплазмонном кристалле – МПлК), состоящем из одномерной дифракционной решетки с субволновым периодом и, нанесенных на нее тонкого слоя благородного металла с отрицательной действительной частью диэлектрической проницаемости, тонкого слоя ферромагнитного металла, и диэлектрического пассивирующего слоя. Данный вид МПлК характеризуется возможностью возбуждения поверхностных плазмон-поляритонов дифракционным методом, позволяющим усилить магнитооптические эффекты в узком спектральном диапазоне возбуждения поверхностных плазмон-поляритонов. 7 з.п. ф-лы, 4 ил.

Изобретение относится к технике измерений постоянных магнитных полей и может быть использовано для создания на его основе магнитооптических приборов. Также способ может быть применен в дефектоскопии проводников и магнитопроводов.

Известно техническое решение по патенту РФ RU2478218 (МПК G 01R33/02, опубл. 27.03.2011 г.) твердотельного датчика магнитного поля. Твердотельный датчик магнитного поля содержит пьезоэлектрик, на котором расположены электроды для связи с устройством регистрации напряжения, и магниточувствительный элемент, связанный с источником переменного тока, также датчик содержит алмазную мембрану, а пьезоэлектрик и магниточувствительный элемент выполнены в виде тонких пленок, при этом пленка пьезоэлектрика расположена поверх алмазной мембраны, а магниточувствительный элемент из магнитострикционного материала расположен на поверхности пьезоэлектрика. Магниточувствительный элемент представляет собой проводник с током из токопроводящего магнитострикционного материала (никель), который с помощью контактов подсоединен к источнику переменного тока. Измерение величины магнитного поля определяется по величине механических деформаций в тонкопленочном пьезоэлектрике в результате воздействия двух сил (динамических - за счет изменение линейных размеров пленки никеля и силы Ампера).

Известно техническое решение по заявке на изобретение SU1818602 (МПК G 01R33/032, опубл. 30.05.1993 г.) устройство для определения пространственного распределения магнитного поля. Устройство содержит пленочный датчик магнитного поля, обладающий экваториальным, меридиональным и полярным эффектами Керра, и регистрирующий прибор. Пространственное разрешение устройства определяется из соотношений b=4-5 d, b= 2Is d/Hc, где d - толщина пленки; b - пространственное разрешение пленки; Is - намагниченность насыщения пленки; Hc - коэрцитивная сила

Технический результат, на получение которого направлено изобретение заключается в расширении арсенала датчиков для измерения постоянного магнитного поля на локальных участках.

Технический результат достигается в устройстве (магнитоплазмонном кристалле - МПлК), состоящем из одномерной дифракционной решетки с субволновым периодом и нанесённых на нее тонкого слоя благородного металла с отрицательной действительной частью диэлектрической проницаемости, тонкого слоя ферромагнитного металла, и диэлектрического пассивирующего слоя. Данный вид МПлК характеризуется возможностью возбуждения поверхностных плазмон-поляритонов дифракционным методом, позволяющим усилить магнитооптические эффекты в узком спектральном диапазоне возбуждения поверхностных плазмон-поляритонов.

Предпочтительно в качестве металла с отрицательной действительной частью диэлектрической проницаемости использовать или золото, или серебро, или платина.

Предпочтительно в качестве ферромагнитного металла использовать или железо, или никель, или пермаллой.

Предпочтительно выполнение слоя ферромагнитного металла с пассивирующим слоем нитрида кремния.

Предпочтительно выполнение одномерной дифракционной решетки с синусоидальной или трапециевидной формой профиля с периодом в диапазоне от 100 нм до 1000 нм и высотой профиля в диапазоне от 5 нм до 150 нм.

Предпочтительно выполнение слоя металла с отрицательной действительной частью диэлектрической проницаемости толщиной в диапазоне от 5 до 300 нм.

Предпочтительно выполнение слоя ферромагнитного металла толщиной в диапазоне от 3 нм до 300 нм.

Изобретение иллюстрируется рисунками.

На фиг.1 показан пример реализации устройства:

а) приведен общий вид устройства при измерении магнитного поля в плоскости сенсора вблизи магнитной сферы, где 1 - источник электромагнитных волн, 2 - возбужденный поверхностный плазмон-поляритон, 3 - детектор электромагнитного излучения, 4 - слой нитрида кремния, 5 - слой ферромагнитного металла, 6 - слой благородного металла, 7 - одномерная дифракционная решетка с субволновым периодом и синусоидальным профилем, 8 - источник внешнего постоянного поля неизвестной напряженности, выполненный в форме сферы, 9 - компонента постоянного магнитного поля рассеяния от магнитной сферы 8 (НDC) сонаправленная внешнему контролируемому переменному полю (НАC) 10. Полукруглый вырез в реальном устройстве отсутствует и сделан на рисунке для иллюстрации полей рассеяния от магнитной сферы 1 в плоскости устройства,

б) - изображение поверхности устройства, полученное с помощью атомно-силового микроскопа, где вставка в виде графика отражает пространственную модуляцию профиля, извлеченную из снимка АСМ,

в) - поперечное изображение МПлК, полученное с помощью сканирующего электронного микроскопа, где 11 - одномерная дифракционная решетка с субволновым периодом и синусоидальным профилем, 12 - слой благородного металла, 13 - слой ферромагнитного металла, 14 - слой нитрида кремния.

г) спектральные зависимости коэффициента отражения (R) с дифракционным провалом на кривой 15 и величины экваториального эффекта Керра, , с резонансным усилением на кривой 16.

На фиг.2 показана полевая зависимость магнитооптического отклика от напряженности внешнего переменного поля, измеренная на резонансной длине волны и пересчитанная как отношение сигнала к шуму для МПлК состоящего из одномерной дифракционной решетки из полимера с синусоидальным профилем с периодом 320 нм и высотой 20 нм, покрытой слоем серебра толщиной 100 нм, 100 нм слоем железа и слоем нитрида кремния толщиной 20 нм.

На фиг.3 показаны:

а) пример цикла размагничивания МПлК состоящего из одномерной дифракционной решетки из полимера с синусоидальным профилем с периодом 320 нм и высотой 20 нм, покрытой слоем серебра толщиной 100 нм, 100 нм слоем железа и слоем нитрида кремния толщиной 20 нм. Величина посчитанная для частной петли гистерезиса, полученной в ходе размагничивания 1, участок максимального спада сигнала, , – 2.

б) полевые зависимости магнитооптического отклика аналогичных МПлК, отличающихся толщиной железного слоя. 3 – для толщины железа 100 нм, 4 - 50 нм, 5 - 20 нм и 6 - 5 нм.

На фиг.4 приведены полевые зависимости – 1, – 2 и – 3, измеренные для МПлК, состоящего из одномерной дифракционной решетки из полимера с синусоидальным профилем с периодом 320 нм и высотой 20 нм, покрытой слоем серебра толщиной 100 нм, 100 нм слоем железа и слоем нитрида кремния толщиной 20 нм.

Изобретение может быть осуществлено в следующем устройстве. На подложке 7, выполненной из полимера в виде одномерной дифракционной решетки с синусоидальным профилем с периодом 320 нм, расположен слой 6 из серебра (Ag) – металла с отрицательной действительной частью диэлектрической проницаемости, на который нанесен слой 5 из Fe, являющегося ферромагнитным, защищенный слоем 4 выполненным из нитрида кремния.

Устройство работает следующим образом. На поверхность слоя 5 через прозрачный слой 4 в плоскости перпендикулярной полосам дифракционной решетки 7 (направленным вдоль оси у), под выбранным углом направляют n-поляризованное электромагнитное излучение необходимой длины волны от источника 1 для выполнения условий фазового синхронизма и возбуждения поверхностного плазмон-поляритона 2. Интенсивность отраженного света измеряется с помощью регистрирующего устройства 3.

Поверхностные плазмон-поляритоны (ППП) представляют собой связанные колебания электромагнитного поля и электронного газа металла, распространяющиеся вдоль границы раздела между металлом и диэлектриком. При этом электромагнитное поле волны локализовано вблизи границы между двумя средами c различными знаками диэлектрической проницаемости. Возбуждение ППП позволяет усилить взаимодействие электромагнитного поля падающего оптического излучения и ферромагнитого металла, что приводит к усилению экваториального магнитооптического эффекта Керра, заключающегося в изменении интенсивности отраженного света при воздействии магнитного поля. Возбуждение ППП и усиление экваториального магнитооптического эффекта Керра при использовании МПлК достигается в узком спектральном диапазоне при выполнении условий фазового синхронизма и сильно зависит от диэлектрической проницаемости сред на границе раздела и угла падения света.

Для определения рабочего диапазона измеряемых датчиком постоянных магнитных полей, МПлК размагничивают путем измерения петель гистерезиса в убывающем максимальном внешнем магнитном поле , которое прикладывается в направлении расположения полос одномерной дифракционной решетки, где N – номер шага измерения. Т.к. величина , то для сравнения магнитных и магнитооптических свойств, из измеренных зависимостей, получают зависимости . Результаты измерений приведены на фиг.3. Величина рассчитана как полная ширина на полувысоте первой производной и позволяет оценить ширину склона зависимости . На резонансной длине волны полевая зависимость магнитооптического отклика совпадает по форме и положению с полевой зависимостью . После измерения , рассчитывают первую производную , напряженность устанавливается так, чтобы соответствовать значению поля в максимуме . Таким образом, переменное поле выставляют приблизительно на середину склона . После этого вносят датчик в измеряемое постоянное поле , и, в виду того, что магнитные поля аддитивны, измеряют изменившееся значение . Вклад в изменившееся значение магнитооптического отклика вносит только компонента внешнего постоянного магнитного поля сонаправленная приложенному переменному магнитному полю. Результаты измерений полевых зависимостей , , а так же измеренные при использовании МПлК на основе дифракционной решетки с периодом/высотой 320/20 нм покрытой слоями серебра (100 нм), железа (100 нм) и нитрида кремния (20 нм), показаны на фиг.4.

При использовании магнитооптических эффектов можно достичь высоких значений локальности измерений путем фокусировки луча осветителя, получить возможность сканировать определенную область для построения карты распределения компоненты магнитного поля в определенном объеме перемещением оптического пучка по поверхности МПлК. После поворота на 90 градусов устройства в его плоскости (штрихи дифракционной решетки направлены вдоль оси х, а источник магнитного поля при этом остается неподвижным) определяют распределение второй горизонтальной компоненты постоянного поля. При расположении устройства перпендикулярно плоскости первоначального измерения (штрихи дифракционной решетки направлены вдоль оси z, а источник магнитного поля при этом остается неподвижным) определяют третью компоненту магнитного поля.

В заявленном устройстве достигается технический результат в виде расширения арсенала датчиков для измерения постоянных магнитных полей, поскольку техническое решение является новым и неожиданным для специалистов в области физики измерения магнитных полей.


ДАТЧИК ПОСТОЯННОГО МАГНИТНОГО ПОЛЯ НА ОСНОВЕ МАГНИТОПЛАЗМОННОГО КРИСТАЛЛА
ДАТЧИК ПОСТОЯННОГО МАГНИТНОГО ПОЛЯ НА ОСНОВЕ МАГНИТОПЛАЗМОННОГО КРИСТАЛЛА
ДАТЧИК ПОСТОЯННОГО МАГНИТНОГО ПОЛЯ НА ОСНОВЕ МАГНИТОПЛАЗМОННОГО КРИСТАЛЛА
ДАТЧИК ПОСТОЯННОГО МАГНИТНОГО ПОЛЯ НА ОСНОВЕ МАГНИТОПЛАЗМОННОГО КРИСТАЛЛА
Источник поступления информации: Роспатент

Showing 1-5 of 5 items.
20.06.2018
№218.016.64a3

Микроманипулятор на основе бимагнитных микропроводов с сердцевиной, покрытой асимметричной внешней оболочкой, и способы его использования

Группа изобретений относится к области механики, микросистемной техники и наномеханики, в частности к технике манипуляторов (пинцетов) для захвата и перемещения нано- и микрообъектов. Сущность изобретений заключается в том, что микроманипулятор содержит, по крайней мере, один манипулирующий...
Тип: Изобретение
Номер охранного документа: 0002658108
Дата охранного документа: 19.06.2018
21.07.2018
№218.016.72eb

Устройство мозг-машинного интерфейса для дистанционного управления экзоскелетными конструкциями

Изобретение относится к информационным технологиям и нейрофизиологии и может быть использовано для мозг-машинного интерфейса. Устройство выполнено в виде носимого беспроводного устройства с возможностью регистрации электрофизиологических и биометрических параметров оператора. Устройство...
Тип: Изобретение
Номер охранного документа: 0002661756
Дата охранного документа: 19.07.2018
23.08.2019
№219.017.c2f7

Датчик температуры для устройства оптогенетического контроля функций мозга

Изобретение относится к области медицинской техники, а более конкретно к конструкции тонкопленочных платиновых резисторов для изготовления температурных датчиков в составе устройства оптогенетического контроля функций мозга, вживляемых в мозг живого организма. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002698014
Дата охранного документа: 21.08.2019
26.05.2023
№223.018.7025

Рентгеновский трансфокатор на основе рефракционных линз

Использование: для инструментальной фокусировки, ступенчатого изменения фокусного расстояния рентгенооптической системы, управления параметрами потока рентгеновского излучения (РИ) и синхротронного излучения (СИ) в каналах СИ. Сущность изобретения заключается в том, что рентгеновский...
Тип: Изобретение
Номер охранного документа: 0002796201
Дата охранного документа: 17.05.2023
03.06.2023
№223.018.765b

Способ изготовления филамента для 3d-5d-печати с заданными магнитными свойствами

Изобретение относится к технологиям изготовления филамента для 3D-5D принтеров. Предложен способ изготовления филамента, заключающийся в растворении полимера в растворителе до достижения гомогенизации с последующим добавлением порошка магнитного материала от 5 до 15 % масс. к общей массе и...
Тип: Изобретение
Номер охранного документа: 0002796571
Дата охранного документа: 25.05.2023
Showing 21-30 of 41 items.
29.08.2018
№218.016.80ab

Применение n-метил-пара-анизидина в качестве ингибитора коррозии в углеводородном топливе

Изобретение раскрывает применение N-метил-пара-анизидина в качестве ингибитора коррозии в углеводородном топливе. Техническим результатом изобретения является повышение коррозионных свойств углеводородных топлив. 6 з.п. ф-лы, 7 табл.
Тип: Изобретение
Номер охранного документа: 0002665062
Дата охранного документа: 28.08.2018
22.09.2018
№218.016.88ed

Применение n,n-диметил-пара-анизидина в качестве ингибитора сульфоводородной коррозии и водородного охрупчивания

Изобретение относится к нефтяной и газовой промышленности, в частности к ингибитору сульфоводородной коррозии в водно-углеводородных и углеводородных агрессивных средах с высоким содержанием серосодержащих соединений, в том числе сероводорода, хлоридов и других факторов коррозионной активности...
Тип: Изобретение
Номер охранного документа: 0002667265
Дата охранного документа: 18.09.2018
26.09.2018
№218.016.8b96

Применение n-метил-пара-анизидина в качестве ингибитора сульфоводородной коррозии и водородного охрупчивания

Изобретение относится к нефтяной и газовой промышленности, в частности к ингибитору сульфоводородной коррозии в водно-углеводородных и углеводородных агрессивных средах с высоким содержанием серосодержащих соединений, в том числе сероводорода, хлоридов и других факторов коррозионной активности...
Тип: Изобретение
Номер охранного документа: 0002667928
Дата охранного документа: 25.09.2018
20.02.2019
№219.016.bff5

Применение 6-окси-2,2,4-триметил-1,2-дигидрохинолина или 6-окси-2,2,4-триметил-1,2,3,4-тетрагидрохинолина в качестве противотуберкулезного вещества

Изобретение относится к области медицины и фармакологии и касается применения 6-окси-2,2,4-триметил-1,2-дигидрохинолина или 6-окси-2,2,4-триметил-1,2,3,4-тетрагидрохинолина в качестве противотуберкулезного вещества, обладающего высокой эффективностью. 1 табл.
Тип: Изобретение
Номер охранного документа: 0002372916
Дата охранного документа: 20.11.2009
17.03.2019
№219.016.e2e1

Производные пара-метоксианилинов, повышающие стойкость углеводородных топлив к детонации, и топливная композиция (варианты)

Изобретение относится к применению N-ацетил-пара-метоксианилина, N-метил-N-ацетил-пара-метоксианилина, N-метил-пара-метоксианилина, N,N-диметил-пара-метоксианилина или их смеси, без или вместе с оксигенатами, в качестве компонентов или присадок для повышения стойкости углеводородных топлив к...
Тип: Изобретение
Номер охранного документа: 0002309944
Дата охранного документа: 10.11.2007
23.03.2019
№219.016.ecb5

Антидетонационная добавка к бензину на основе алкоксизамещенных анилинов и топливные композиции, ее содержащие

Изобретение относится к добавкам, повышающим антидетонационную стойкость углеводородных топлив, в частности бензинов. Антидетонационная добавка к бензину содержит, по меньшей мере, два соединения алкоксизамещенных анилинов общей формулы (1) при R=-OCH в орто-, или мета-, или пара-положении...
Тип: Изобретение
Номер охранного документа: 0002305128
Дата охранного документа: 27.08.2007
10.04.2019
№219.017.04f4

Применение производных пара-этоксианилинов, повышающих стойкость углеводородных топлив к детонации, и топливная композиция (варианты)

Изобретение относится к применению N-ацетил-пара-этоксианилина, N-метил-N-ацетил-пара-этоксианилина, N-метил-пара-этоксианилина, N,N-диметил-пара-этоксианилина или их смеси, без или вместе с оксигенатами, в качестве компонентов или присадок для повышения стойкости углеводородных топлив к...
Тип: Изобретение
Номер охранного документа: 0002309943
Дата охранного документа: 10.11.2007
09.05.2019
№219.017.4c7c

Производные ортоэтоксианилинов, повышающие стойкость углеводородных топлив к детонации, и топливные композиции

Изобретение относится к N-метил-N-ацетил-орто-этоксианилину, обладающему антидетонационными свойствами, а также к применению N-ацетил-орто-этоксианилина, N-метил-N-ацетил-орто-этоксианилина, N-метил-орто-этоксианилина, N,N-диметил-орто-этоксианилина или их смеси, без или вместе с оксигенатами,...
Тип: Изобретение
Номер охранного документа: 0002314286
Дата охранного документа: 10.01.2008
09.05.2019
№219.017.4c7d

Производные ортометоксианилинов, повышающие стойкость углеводородных топлив к детонации, и топливные композиции

Изобретение относится к применению N-ацетил-орто-метоксианилина, N-метил-N-ацетил-орто-метоксианилина, N-метил-орто-метоксианилина, N,N-диметил-орто-метоксианилина или их смеси, без или вместе с оксигенатами, в качестве компонентов или присадок для повышения стойкости углеводородных топлив к...
Тип: Изобретение
Номер охранного документа: 0002314287
Дата охранного документа: 10.01.2008
09.05.2019
№219.017.4cba

Модификатор взрывчатых веществ

Изобретение относится к взрывчатым веществам, в том числе газогенерирующим составам, ракетным топливам и порохам. Предложен модификатор взрывчатых веществ, выбранных из ряда сложных полных или неполных нитратов одноатомных, двухатомных, трехатомных или многоатомных спиртов, нитроцеллюлозы,...
Тип: Изобретение
Номер охранного документа: 0002318789
Дата охранного документа: 10.03.2008
+ добавить свой РИД