×
07.06.2020
220.018.253d

Результат интеллектуальной деятельности: Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур

Вид РИД

Изобретение

Аннотация: Изобретение относится к аддитивной 3D-технологии производства объемных микроразмерных структур из наночастиц. Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур содержит сообщенный с регулируемым источником 1 транспортного газа блок 2 получения потока аэрозоля, блок 3 оптимизации наночастиц по размеру и форме, содержащий устройство для нагрева потока транспортного газа с наночастицами. Выход 4 блока 2 получения потока аэрозоля сообщен с блоком 2 получения потока аэрозоля с наночастицами, а выход 5 - с печатающей головкой 6. Блок 3 оптимизации наночастиц выполнен в виде рабочей камеры с входным 7 и выходным 8 оптически прозрачными окнами. Устройство нагрева потока транспортного газа с наночастицами выполнено в виде лазерно-оптического устройства 9 с регулятором мощности 10 и установлено перед входным окном 7 блока оптимизации. Над и под оптически прозрачными окнами 7, 8 блока 3 оптимизации наночастиц установлены измерители 11, 12 мощности лазерного излучения, а на входе 13 и выходе 14 потока транспортного газа с наночастицами блока оптимизации - анализаторы 15, 16 размеров наночастиц. Обеспечивается упрощение получения оптимального размера наночастиц в автоматическом режиме для их спекания на подложке. 1 з.п. ф-лы, 3 ил.

Изобретение относится к аддитивной 3D-технологии для производства преимущественно объемных микроразмерных структур из наночастиц.

Известно устройство для получения частиц при аддитивном изготовлении объемных структур, содержащее сообщенный с регулируемым источником транспортного газа блок получения потока аэрозоля, содержащий устройство нагрева потока транспортного газа с частицами, при этом вход блока оптимизации сообщен с блоком получения потока аэрозоля с частицами [1].

Однако данное устройство не позволяет получать наночастицы сферической формы нужного диаметра для эффективного спекания на подложке при аддитивном изготовлении объемных микроразмерных структур.

Известно устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур, содержащее сообщенный с регулируемым источником транспортного газа блок получения потока аэрозоля, блок оптимизации наночастиц по размеру и форме, содержащий устройство нагрева потока транспортного газа с наночастицами, при этом вход блока оптимизации сообщен с блоком получения потока аэрозоля с наночастицами, а выход - с печатающей головкой [2].

Однако при применении указанного технического решения возникают трудности в изменении температуры при нагреве аэрозоля с наночастицами в потоке транспортного газа для получения наночастиц сферической формы требуемого размера, так как применяемые нагревательные элементы являются инерционными и требуется сравнительно большой промежуток времени, например, для уменьшения температуры нагрева. При применении данного устройства приходится вручную поддерживать оптимальный режим получения наночастиц сферической формы нужного размера.

Результат, для достижения которого направлено данное техническое решение, заключается в упрощении получения наночастиц оптимального размера и сферической формы для их спекания в автоматическом режиме.

Указанный результат достигается за счет того, что в устройстве для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур, содержащем сообщенный с регулируемым источником транспортного газа блок получения потока аэрозоля, блок оптимизации наночастиц по размеру и форме, содержащий устройство нагрева потока транспортного газа с наночастицами, при этом выход блока получения потока аэрозоля сообщен с блоком оптимизации, выход которого соединен с печатающей головкой, его блок оптимизации наночастиц выполнен в виде рабочей камеры с входным и выходным оптически прозрачными окнами, причем устройство нагрева потока транспортного газа с наночастицами выполнено в виде лазерно-оптического устройства с регулятором мощности и установлено перед входным окном блока оптимизации, над и под оптически прозрачными окнами блока оптимизации наночастиц установлены измерители мощности лазерного излучения соответственно до и после оптимизации, а на входе и выходе потока транспортного газа с наночастицами блока оптимизации - анализаторы размеров наночастиц до и после оптимизации.

Указанный результат достигается также за счет того, что устройство снабжено блоком управления процессом оптимизации, входы которого подключены к измерителям мощности лазерного излучения и анализаторам размеров наночастиц до и после оптимизации, а выходы соответственно с регуляторами потока транспортного газа и мощности лазерно-оптического устройства.

Пример выполнения заявляемого технического решения поясняется чертежами, где на фиг. 1 представлено заявляемое устройство, на фиг. 2, 3 - гистограмма распределения наночастиц до и после их оптимизации в блоке оптимизации.

Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур, содержит сообщенный с регулируемым источником 1 транспортного газа блок 2 получения потока аэрозоля, блок 3 оптимизации наночастиц по размеру и форме, содержащий устройство нагрева потока транспортного газа с наночастицами, при этом выход 4 блока 2 получения потока аэрозоля сообщен с блоком 2 получения потока аэрозоля с наночастицами, а выход 5 - с печатающей головкой 6.

Блок 3 оптимизации наночастиц выполнен в виде рабочей камеры с входным 7 и выходным 8 оптически прозрачными окнами.

Устройство нагрева потока транспортного газа с наночастицами выполнено в виде лазерно-оптического устройства 9 с регулятором мощности 10 и установлено перед входным окном 7 блока оптимизации, над и под оптически прозрачными окнами 7, 8 блока 3 оптимизации наночастиц установлены измерители 11, 12 мощности лазерного излучения соответственно до и после оптимизации, а на входе 13 и выходе 14 потока транспортного газа с наночастицами блока оптимизации - анализаторы 15, 16 размеров наночастиц до и после оптимизации.

Устройство получения наночастиц снабжено также блоком 17 управления процессом оптимизации, входы 18-21 которого подключены к измерителям 11, 12 мощности лазерного излучения и анализаторам 15, 16 размеров наночастиц до и после оптимизации, а выходы 22, 23 соответственно с регуляторами 24, 10 потока транспортного газа и мощности лазерно-оптического устройства.

Работа устройства поясняется примером получения наночастиц требуемого размера для их спекания на подложке при аддитивном изготовлении объемных микроразмерных структур в автоматическом режиме. Управление размером наночастиц осуществляют на основании гистограммы распределения частиц по размерам путем подстройки параметров транспортного газа и лазерно-оптического устройства с использованием обратной связи в виде измерителей мощности лазерного излучения и анализаторов размеров наночастиц до и после оптимизации (фиг. 2, 3). Для подстройки параметров системы используют в качестве управляющих величин получаемые при анализе гистограммы распределения частиц по размерам, используя их медианное значение и изменение медианного размера наночастиц до и после их оптимизации.

Таким образом данное техническое решение позволит упростить получение оптимального размера наночастиц в автоматическом режиме для их спекания на подложке при аддитивном изготовлении объемных микроразмерных структур.

Источники информации

1. Патент US №10022789, МПК - B22D 23/00, 07.2018

2. Патент RU №2704358, МПК - B22F 3/105, 2018


Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур
Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур
Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур
Устройство для получения наночастиц при аддитивном изготовлении объемных микроразмерных структур
Источник поступления информации: Роспатент

Showing 11-20 of 33 items.
19.10.2019
№219.017.d849

Способ изготовления молекулярно-электронной ячейки низкошумящего широкополосного гидрофона для донных исследований

Изобретение относится к измерительной технике. Предлагаемый способ изготовления молекулярно-электронной ячейки для гидрофона позволяет обеспечить измерение слабых низкочастотных сейсмических и акустических сигналов, распространяющихся в жидких, твердых и газообразных средах. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002703488
Дата охранного документа: 17.10.2019
30.10.2019
№219.017.dbab

Способ изготовления объемных микроразмерных структур из наночастиц и устройство для его осуществления

Группа изобретений относится к аддитивному изготовлению объемных микроразмерных структур из наночастиц путем спекания наночастиц на подложке. Получают поток аэрозоля с наночастицами в импульсно-периодическом газовом разряде в потоке транспортного газа, затем производят нагрев аэрозоля с...
Тип: Изобретение
Номер охранного документа: 0002704358
Дата охранного документа: 28.10.2019
30.10.2019
№219.017.dbb2

Аппарат для электрохимического получения слоистых металлических нанопроводов

Изобретение относится к устройствам для гальванического получения наноструктур. Аппарат для автоматизированного получения слоистых металлических нанопроводов с контролируемым составом вдоль их длинной оси включает набор емкостей с растворами электролитов и промывочными растворами, электроды,...
Тип: Изобретение
Номер охранного документа: 0002704363
Дата охранного документа: 28.10.2019
01.11.2019
№219.017.dca7

Способ определения значений параметров разрядного контура с нагруженным на газоразрядный межэлектродный промежуток емкостным накопителем энергии, обеспечивающих максимальную энергоэффективность получения наночастиц в импульсном газовом разряде

Способ определения значений параметров разрядного контура с нагруженным на газоразрядный межэлектродный промежуток емкостным накопителем энергии, обеспечивающих максимальную энергоэффективность получения наночастиц в импульсном газовом разряде может быть использован для повышения электрического...
Тип: Изобретение
Номер охранного документа: 0002704566
Дата охранного документа: 29.10.2019
27.11.2019
№219.017.e6ec

Инфракрасный детектор и способ его изготовления

Изобретение относится к области измерительной техники и касается инфракрасного детектора ИК-диапазона. Инфракрасный детектор включает в себя активный слой, содержащий коллоидные квантовые точки и плазмонные наноантенны, расположенные между встречно-штыревыми электродами. При этом при...
Тип: Изобретение
Номер охранного документа: 0002707202
Дата охранного документа: 25.11.2019
19.12.2019
№219.017.ef24

Оптический смеситель излучения четырехчастотного лазерного гироскопа зеемановского типа

Изобретение относится к области высокоточной лазерной гироскопии, а именно к детектированию сигналов четырехчастотного лазерного гироскопа зеемановского типа. Оптический смеситель служит для формирования сигнала четырехчастотного лазерного гироскопа зеемановского типа и имеет функцию...
Тип: Изобретение
Номер охранного документа: 0002709428
Дата охранного документа: 17.12.2019
12.06.2020
№220.018.26a4

Способ аддитивного изготовления объемных микроразмерных структур из наночастиц

Изобретение относится к аддитивной 3D-технологии изготовления объемных микроразмерных структур из наночастиц. Способ включает получение потока аэрозоля с наночастицами в потоке транспортного газа, нагрев аэрозоля в потоке транспортного газа с обеспечением получения наночастиц сферической формы...
Тип: Изобретение
Номер охранного документа: 0002723341
Дата охранного документа: 09.06.2020
25.06.2020
№220.018.2b0c

Способ обеспечения температурной стабильности параметров молекулярно-электронного преобразователя в области высоких частот

Изобретение относится к измерительной технике, в частности к способу обеспечения температурной стабильности параметров молекулярно-электронных преобразователей, используемых в линейных и угловых акселерометрах. Это изобретение может найти применение в сейсмодатчиках, датчиках для стабилизации...
Тип: Изобретение
Номер охранного документа: 0002724303
Дата охранного документа: 22.06.2020
25.06.2020
№220.018.2b0f

Молекулярно-электронный гидрофон с компенсацией статического давления

Изобретение относится к акустической метрологии. Молекулярно-электронный гидрофон с компенсацией статического давления содержит молекулярно-электронный преобразователь, жестко закрепленный внутри герметичного корпуса, заполненного легкосжимаемой жидкостью и разделенного на две камеры жесткой...
Тип: Изобретение
Номер охранного документа: 0002724296
Дата охранного документа: 22.06.2020
25.06.2020
№220.018.2b26

Преобразующий элемент молекулярно-электронного преобразователя диффузионного типа

Изобретение относится к измерительной технике в частности к чувствительным элементам (электродным узлам) молекулярно-электронных преобразователей диффузионного типа. Сущность изобретения заключатся в том, что в преобразующем элементе молекулярно-электронного преобразователя диффузионного типа,...
Тип: Изобретение
Номер охранного документа: 0002724297
Дата охранного документа: 22.06.2020
Showing 11-20 of 39 items.
25.08.2017
№217.015.b77a

Способ интуитивно копирующего управления одноковшовым экскаватором

Изобретение относится к области машиностроения, может быть использовано в ручных гидравлических системах управления подвижными наземными, авиационными и морскими объектами и предназначено для формирования посредством гидрораспределителей команд по четырем каналам управления для одноковшовых...
Тип: Изобретение
Номер охранного документа: 0002614866
Дата охранного документа: 30.03.2017
26.08.2017
№217.015.e0ea

Трубчатый элемент электрохимического устройства с тонкослойным твердооксидным электролитом (варианты) и способ его изготовления

Изобретение относится к высокотемпературным электрохимическим устройствам (ЭХУ) с твердым оксидным электролитом, таким как электрохимические генераторы или топливные элементы, кислородные насосы, электролизеры, конвертеры, а именно к конструкции трубчатого элемента с тонкослойным несущим...
Тип: Изобретение
Номер охранного документа: 0002625460
Дата охранного документа: 14.07.2017
26.08.2017
№217.015.e36c

Акустический анализатор для определения размеров и электрокинетического потенциала несферических наноразмерных частиц в жидких средах

Использование: для определения размеров и электрокинетического потенциала несферических наноразмерных частиц в жидких средах. Сущность изобретения заключается в том, что акустический анализатор содержит вычислительный блок и измерительную ячейку, в которой установлены акустический измеритель,...
Тип: Изобретение
Номер охранного документа: 0002626214
Дата охранного документа: 24.07.2017
29.12.2017
№217.015.f86d

Способ изготовления композитного катодного материала

Изобретение относится к электронной технике, в частности к катодам, работающим в режиме автотермоэлектронной эмиссии. Cпособ изготовления композитного катодного материала включает подготовку порошка активного компонента и нанопорошка матричного металла, смешивание и перемешивание порошка...
Тип: Изобретение
Номер охранного документа: 0002639719
Дата охранного документа: 22.12.2017
29.12.2017
№217.015.f9f3

Способ автоматического ограничения скорости автомобиля

Изобретение относится к технике автоматического управления ограничением скорости движения транспортных средств. При осуществлении способа автоматического ограничения скорости автомобиля задают допускаемую скорость движения. Сравнивают с допускаемой скоростью движения фактическую скорость...
Тип: Изобретение
Номер охранного документа: 0002639934
Дата охранного документа: 25.12.2017
10.05.2018
№218.016.4b05

Способ определения значений параметров потока, обеспечивающих максимальную ориентацию вытянутых и пластинчатых нанообъектов вдоль потока жидкой среды

Использование: для определения значений параметров потока, обеспечивающих максимальную ориентацию вытянутых и пластинчатых нанообъектов вдоль потока жидкой среды. Сущность изобретения заключается в том, что используют измерительную ячейку в форме кольцевого канала переменного сечения для...
Тип: Изобретение
Номер охранного документа: 0002651606
Дата охранного документа: 23.04.2018
18.05.2018
№218.016.51f3

Способ измерения концентрации агломератов несферических наноразмерных частиц в жидких средах

Использование: для определения концентрации агломератов несферических наноразмерных частиц в жидких средах. Сущность изобретения заключается в том, что используют измерительную ячейку в форме кольцевого канала переменного сечения для создания ускоренного потока, содержащую побудитель...
Тип: Изобретение
Номер охранного документа: 0002653143
Дата охранного документа: 07.05.2018
09.06.2018
№218.016.5bf6

Батарея трубчатых твердооксидных элементов с тонкослойным электролитом электрохимического устройства и узел соединения трубчатых твердооксидных элементов в батарею (варианты)

Изобретение относится к высокотемпературным электрохимическим устройствам на основе твердооксидных элементов (ТОЭ) - элементов с твердым электролитом, точнее к конструкции батареи трубчатых ТОЭ и узлов соединения (УС) ТОЭ в батарею. Техническим результатом является создание батареи, в которой...
Тип: Изобретение
Номер охранного документа: 0002655671
Дата охранного документа: 29.05.2018
19.07.2018
№218.016.7251

Плоский спиральный индуктор сильного магнитного поля (варианты)

Изобретение относится к электротехнике и может быть использовано в индукторах устройств для магнитно-импульсной обработки материалов (МИОМ), такой как прессование порошков, штамповка листовых заготовок и т.д., использующих ток высокой частоты и большой амплитуды для генерации сильного...
Тип: Изобретение
Номер охранного документа: 0002661496
Дата охранного документа: 17.07.2018
25.10.2018
№218.016.958e

Устройство для изготовления объемных изделий

Изобретение может быть использовано при изготовлении объемных изделий. Устройство содержит лазерное устройство 13 и камеру 1 построения с системой 4 для поддержания в камере рабочей среды. Платформа 2 построения со стойкой 3 снабжена устройствами 5, 6 соответственно, предназначенными для...
Тип: Изобретение
Номер охранного документа: 0002670500
Дата охранного документа: 23.10.2018
+ добавить свой РИД