×
31.05.2020
220.018.232a

Результат интеллектуальной деятельности: Способ определения ориентации естественной трещиноватости горной породы

Вид РИД

Изобретение

№ охранного документа
0002722431
Дата охранного документа
29.05.2020
Аннотация: Использование: для определения ориентации естественной трещиноватости горной породы. Сущность изобретения заключается в том, что осуществляют спуск в обсаженную скважину измерительного оборудования на глубину ниже исследуемого интервала, подъем оборудования с записью каротажных диаграмм плотности цементного камня с привязкой к изменению угла регистратором при помощи излучателей и детекторов гамма-излучения и датчика углового положения относительно выбранной ориентировочной плоскости. Ориентировочной плоскостью выбирают вертикальную плоскость, идущую через магнитный меридиан север-юг, определяемый инклинометром, спускаемым в составе измерительного оборудования. Одновременно определяют при помощи дополнительных датчиков гамма-излучения толщину стенок труб обсадной колонны в исследуемом интервале. Ориентацию естественной трещиноватости определяют по направлению максимальной глубины в противоположных направлениях от скважины проникновения цементного камня в пласт, превосходящее вероятностное отклонение. Чувствительность детекторов гамма-излучения могут регулировать в обратной зависимости от толщины стенок труб обсадной колонны для нивелирования затухания гамма-излучения. Технический результат: обеспечение возможности определения преобладающей ориентации естественной трещиноватости горной породы в обсаженных скважинах с абсолютной привязкой по сторонам света при помощи инклинометра. 1 з.п. ф-лы, 3 ил.

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам определения трещиноватости горной породы с привязкой к направлению.

Прибор для контроля технического состояния обсаженных скважин (патент на ПМ RU № 39958, МПК G01V 5/12, E21B 47/00, опубл. 20.08.2004 Бюл. № 23), содержащий кожух, заглушки, центраторы и размещенные внутри кожуха прибора измерительные зонды плотномера и толщиномера, причем в нижней заглушке установлены шток с источником гамма излучения, наконечник и свинцовый экран с коллимационными окнами для источника и приемного преобразователя зонда толщиномера, а на верхней заглушке – электронный блок, взаимоэкранированные свинцовым экраном, равномерно расположенные и равноудаленные от оси прибора приемные преобразователи зонда плотномера и, расположенный по оси прибора, приемный преобразователь зонда толщиномера, причем приемные преобразователи зонда плотномера развернуты на 180°, центраторы установлены по концам кожуха прибора и выполнены в виде втулки с равномерно расположенными по окружности продольными пазами, в которые установлены опоры, зафиксированные с двух сторон, а прибор снабжен узлом соединения со средством его доставки.

Этим прибором осуществляют способ контроля технического состояния обсаженных скважин, включающий последовательное протягивания прибора от одного исследуемого интервала к другому с записью каротажных диаграмм, при этом источник гамма излучения генерирует гамма кванты, а приемные преобразователи зонда толщиномера и зондов плотномера принимают и преобразуют рассеиваемое от исследуемого пространства гамма излучение, информацию с которых через электронный блок и кабель передают в наземный регистратор.

Недостатками данного способа являются отсутствие привязки к направлению измерений, узкая область применения из-за исследования только состояния труб трубопроводом или обсадной колонны.

Известна также забойная телеметрическая система (патент RU № 2509210, МПК E21B 47/12, E21B 47/20, E21B 47/02, G01V 5/1, опубл. 10.03.2014 Бюл. № 7), содержащая соединенные между собой модуль электрогенератора-пульсатора, модуль инклинометра, модуль гамма-каротажа, включающие телеметрические блоки, причем она дополнительно содержит блок анализа и управления коммутатором и коммутатор, соединенные с указанными модулями, при этом вход блока анализа и управления коммутатором соединен с выходом блока управления пульсациями модуля гамма-каротажа, установленным в модуле гамма-каротажа, и первым входом коммутатора, а выход блока анализа и управления коммутатором соединен с входом управления коммутатора, второй вход коммутатора соединен с выходом блока управления пульсациями модуля инклинометра, установленным в модуле инклинометра, а выход коммутатора соединен с входом пульсатора, установленным в модуле электрогенератора-пульсатора, причем модуль инклинометра выполнен с возможностью раздельной или совместной работы с модулем гамма-каротажа.

Этой системой осуществляют контроль при работе бурильного инструмента, включающий модуль инклинометра, модуль гамма-каротажа и модуль электрогенератора-пульсатора, которые спускают в скважину, предварительно соединяя попарно через кабельные соединения и монтируя в защитный кожух, способный выдерживать высокое давление бурового раствора, создаваемое при бурении насосами, в процессе работы прокачкой потока бурового раствора через направляющий аппарат и ротор гидротурбины электрогенератора для выработки электрическое напряжение, поступающее на модули инклинометра и гамма-каротажа для контроля за состоянием стенок скважины, при совместной работе модуль гамма-каротажа является ведущим по отношению к модулю инклинометра, при этом электронный блок модуля гамма-каротажа периодически опрашивает по интерфейсной линии связи электронный блок модуля инклинометра и получает от него инклинометрическую информацию.

Недостатками данного способа являются узкая область применения из-за возможности работы в составе с бурильным инструментом при прокачке бурового раствора и исследования только состояния стенок скважины в процессе бурения.

Наиболее близким по технической сущности является устройство для исследования цементного кольца за обсадной колонной в скважине (патент RU № 2254598, МПК G01V 5/12, опубл. 20.06.2005 Бюл. № 17), содержащее корпус и неподвижный относительно корпуса экран с коллимационными окнами для источника и детекторов гамма-излучения; детекторы гамма-излучения, расположенные равномерно по периметру корпуса устройства на двух уровнях дальности относительно источника, соответствующих двум измерительным зондам - малому и большому и взаимоэкранированных, электронную схему, датчик углового положения, отличающееся тем, что парные детекторы гамма-излучения малого и большого зондов расположены по обе стороны от источника гамма-излучения, причем парные детекторы гамма-излучения малого и большого зондов, расположенные с одной стороны источника гамма-излучения, смещены в поперечном сечении относительно парных детекторов гамма-излучения малого и большого зондов, расположенных с другой стороны источника гамма-излучения, на угол, равный 360/N, где N - общее число парных детекторов малого и большого зондов; датчик углового положения жестко ориентирован в плоскости, проходящей через ось устройства и продольную ось одного из парных детекторов гамма-излучения малого и большого зондов, электронная схема снабжена телесистемой.

Данным устройством осуществляется способ исследования цементного кольца за обсадной колонной, включающий спуск в скважину на глубину исследуемого интервала и при последующем подъем выше исследуемого интервала, запись каротажных диаграмм наземным регистратором, при этом детекторы гамма-излучения, расположенные равномерно по окружности устройства, регистрируют интенсивность рассеянного гамма-излучения и выдают N-ное число селективных диаграмм, соответствующих количеству установленных детекторов, по N числу каналов телесистемы одновременно, а датчик углового положения регистрирует изменение угла между ориентированной плоскостью, проходящей через ось устройства и ось одной пары детекторов, условно принятых за отсчетные - нулевые, например детекторов А, и апсидальной плоскостью скважины, сигналы с детекторов гамма-излучения и датчика углового положения формируются в блоке формирователей импульсов, преобразуются в блоках регистров, упаковываются в контроллере телесистемы и через согласующее устройство и выходной блок передаются на наземный регистратор, при этом на наземном регистраторе записывают диаграммы от всех детекторов гамма-излучения и углограмма от датчика углового положения.

Недостатками данного способа являются привязка показаний датчиков углового положения только к относительной системе координат, достаточной для определения целостности цементного кольца и его плотности.

Недостатками всех способов является то, что они не предназначены для определения ориентации естественной трещиноватости горной породы в обсаженных скважинах, так как гамма-каротаж при этом проводится без привязки по сторонам света и без учета толщины стенок труб обсадной колонны, что не позволяет определить глубину проникновения цементного раствора в соответствующую горную породу.

Технической задачей предполагаемого изобретения является создание способа, позволяющего определить преобладающую ориентацию естественной трещиноватости горной породы в обсаженных скважинах с абсолютной привязкой по сторонам света при помощи инклинометра.

Техническая задача решается способом определения ориентации естественной трещиноватости горной породы, включающим спуск в обсаженную скважину измерительного оборудования на глубину ниже исследуемого интервала, подъем оборудования с записью каротажных диаграмм плотности цементного камня с привязкой к изменению угла регистратором при помощи излучателей и детекторов гамма-излучения и датчика углового положения относительно выбранной ориентировочной плоскости.

Новым является то, что ориентировочной плоскостью выбирают вертикальную плоскость, идущую через магнитный меридиан север-юг, определяемым инклинометром, спускаемым в составе измерительного оборудования, одновременно определяют при помощи дополнительных датчиков гамма-излучения толщину стенок труб обсадной колонны в исследуемом интервале, а ориентацию естественной трещиноватости определяют по направлению максимальной глубины в противоположных направлениях от скважины проникновения цементного камня в пласт, превосходящее вероятностное отклонение.

Новым является также, что чувствительность детекторов гамма-излучения регулируется в обратной зависимости от толщины стенок труб обсадной колонны для нивелирования затухания гамма-излучения.

На фиг. 1 изображена схема реализации способа.

На фиг. 2 изображены разрезы обсадной колонны с цементным камнем по сторонам света: север-юг (N-S) и запад-восток (W-O).

На фиг. 3 изображены развертки соответствующих разрезов, где за ноль принято направление на север (N) – каротажные диаграммы.

Способ определения ориентации естественной трещиноватости горной породы включает спуск в зацементированную обсадную колонну 1 скважины 2 измерительного оборудования 3 на глубину ниже исследуемого интервала (не показан), подъем оборудования 3 с записью каротажных диаграмм (фиг. 3) плотности цементного камня 4 (фиг. 1 – 3) с привязкой к изменению угла регистратором при помощи соответственно излучателей 5 (фиг. 1) и детекторов 6 гамма-излучения и датчика углового положения 7 относительно выбранной ориентировочной плоскости. Ориентировочной плоскостью выбирают вертикальную плоскость, идущую через магнитный меридиан север-юг (N-S, фиг. 2), определяемым инклинометром 8 (фиг. 1), спускаемым в составе измерительного оборудования. Одновременно определяют при помощи дополнительных датчиков 9 гамма-излучения толщину стенок h1 (фиг. 3) и h2 труб обсадной колонны 1 в исследуемом интервале. Ориентацию естественной трещиноватости определяют по направлению максимальной глубины Н в противоположных направлениях 10 и 11 от скважины 2 проникновения цементного камня 4 в пласт 12 (фиг. 1), превосходящее вероятностное отклонение. В случаях, когда при строительстве скважины 2 применялись трубы обсадной колонны 1 различной толщины h1 (фиг. 3) и h2, на участке с более толстыми трубами h2 детекторы 6 (фиг. 1) гамма-излучения для определения плотности цементного камня 4 настраивают электронным блоком 13 более чувствительным для нивелирования затухания гамма-излучения, так как увеличение толщины стенок h2 (фиг. 3) снижает глубину проникновения H и усиливают затухание гамма-излучений. Для регулирования чувствительности детекторов 6 (фиг. 1) электронные блоки 13 настраиваются в лабораторных условиях, чтобы выдавать сопоставимые с остальными измерениями результаты для построения каротажных диаграмм (фиг. 3) соответствующих действительности.

Конструктивные элементы и технологические соединения

Пример конкретного выполнения.

После бурения скважины 2 (фиг. 1) в нее спустили и зацементировали обсадную колонну 1 (с наружным диаметром 146 мм) с образованием в ее затрубье цементного камня 4. Во время цементирования цементный раствор проникает внутрь горной породы, вскрытой скважиной 2, пропорционально ее проницаемости: где проницаемость выше, особенно в направлении преобладающей трещиноватости, цементный раствор проникает на большую глубину Н (фиг. 3) от скважины 2 (Фиг. 1). Для исследования скважины 2 в обсадную колонну 1 спустили на геофизическом кабеле 14 (для подачи электрического питания и передачи информации на устье) измерительное оборудование 3 ниже исследуемого интервала. При помощи кабеля 14 поднимали оборудование 3, при этом излучатели 5 генерируют гамма-излучения (γ-излучения), датчики 9 и детекторы 6 принимают их, преобразовывают в электрические сигналы, которые принимаются, обрабатываются с привязкой к угловому положению, определяемому датчиком 7 и передаются на поверхность, где блоком обработки (не показан) перерабатываются и строятся каротажные диаграммы (фиг. 3). Датчик 7 (фиг. 1) определяет угловое положение измеряемой информации относительно ориентировочной плоскости – вертикальную плоскость, идущую через магнитный меридиан N-S (фиг. 2), который определяется инклинометром 8 (фиг. 1). Датчики 9 (приемники γ-излучения, настроенные более грубо чем детекторы 6), идущие перед детекторами 6 при подъеме вверх, определяют h1 (фиг. 3) и h2 труб обсадной колонны 1 в исследуемом интервале для настройки чувствительности детекторов 6 (фиг. 1). В ходе исследований оборудованием 3 определили четыре основные зоны в исследуемом интервале: первая 15 сверху – с содержанием глины, вторая, продуктовый пласт 12 – песчаник, третья 16 – глина, четвертая 17 – известняк. Толщина трубы обсадной колонны 1 по всей длине составила h1=7,0 мм (фиг. 3), а в третьей зоне 16 (фиг. 1) – h2=7,7 мм (фиг. 3). Разрезы А-А, Б-Б,

В-В и Г-Г соответствующей каждой зоны 15, 12, 16 и 17 показаны на фиг. 2 с ориентацией севером наверх. В третьей зоне 16 чувствительность детекторов 6 из-за большей толщины h2 (фиг. 3) труб обсадной колонны 1 была повышена электронным блоком 13 (фиг. 1) для нивелирования затухания γ-излучения в соответствии с толщиной h2 (фиг. 3). В других зонах 15 (фиг. 1), 12 и 17 чувствительность детекторов 6 поддерживалась блоком 13 на начальном уровне. Полученные сигналы с датчиков 9 и детекторов 6 обрабатывались подавались кабелем 14 на поверхность, где блоком обработки строятся каротажные диаграммы (фиг. 3) состояния цементного камня 4. Для улучшения точности измерений оборудование 3 (фиг. 1) рекомендуется оснащать с двух сторон центраторами 18. Из диаграмм (фиг. 3) в зоне продуктивного пласта 12 (фиг. 1) разрез Б-Б (фиг. 2) выявили явные максимумы 10 (фиг. 3) (по направлению на восток – O) и 11 (по направлению на запад – W) по сравнению с другими направлениями и превосходящими вероятностное отклонение (для данной скважины определили отклонение – 2 мм (определяется эмпирическим путем). Исходя из максимумов 10 и 11 определили преобладающую ориентацию естественной трещиноватости в направлении W-O (фиг. 2) в продуктивном пласте 12 (фиг. 1).

Так как перепад плотностей между горными породами в зонах 15, 12, 16 и 17 и цементным камнем 4 очень отличается, то граница перехода между ними легко определяется гамма-каротажем детекторами 6, а привязка к направлению сторон N-S и O-W позволяет определить преобладающую ориентацию трещиноватости горных пород.

Предлагаемый способ позволяет определить преобладающую ориентацию естественной трещиноватости горной породы в обсаженных скважинах с абсолютной привязкой по сторонам света при помощи инклинометра.


Способ определения ориентации естественной трещиноватости горной породы
Способ определения ориентации естественной трещиноватости горной породы
Способ определения ориентации естественной трещиноватости горной породы
Источник поступления информации: Роспатент

Showing 11-20 of 170 items.
13.12.2019
№219.017.ecc9

Устройство для подготовки образца керна к определению трещиностойкости

Изобретение относится к горному делу, в частности к нефтегазодобывающей промышленности, и касается устройств для подготовки керна с целью определения их трещиностойкости. Устройство для подготовки образца керна к определению трещиностойкости включает основание с установленным на нем устройством...
Тип: Изобретение
Номер охранного документа: 0002708847
Дата охранного документа: 11.12.2019
13.12.2019
№219.017.ece4

Способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины

Изобретение относится нефтегазодобывающей промышленности, а именно к способам интенсификации работы скважин формированием трещин в продуктивном пласте (гидроразрыв пласта - ГРП). Способ включает строительство горизонтальной скважины, вскрывающей продуктивный пласт. Спускают в скважину на...
Тип: Изобретение
Номер охранного документа: 0002708747
Дата охранного документа: 11.12.2019
13.12.2019
№219.017.ecff

Универсальная переходная катушка устьевой арматуры (варианты)

Изобретение относится к устьевой арматуре и может быть использовано в нефтедобывающей промышленности при ремонте скважин в процессе спуско-подъёмных операций колонны труб, в том числе при спуско-подъёмных операциях в паронагнетательной скважине как однорядной, так и двухрядной колонны труб....
Тип: Изобретение
Номер охранного документа: 0002708738
Дата охранного документа: 11.12.2019
13.12.2019
№219.017.ed32

Стенд для опрессовки превентора на скважине

Изобретение относится к нефтедобывающей промышленности, в частности к устройствам для опрессовки превентора на скважине и/или на стендовой скважине базы производственного обслуживания. Стенд для опрессовки превентора на скважине включает опорную трубу, проходящую через корпус превентора, нижнюю...
Тип: Изобретение
Номер охранного документа: 0002708748
Дата охранного документа: 11.12.2019
13.12.2019
№219.017.ed39

Устройство для опрессовки превентора на скважине

Изобретение относится к нефтедобывающей промышленности и предназначено для опрессовки превентора на скважине. Устройство для опрессовки превентора на скважине включает опорную трубу, проходящую через корпус превентора, установленный в опорной трубе полый шток и размещённую на опорной трубе...
Тип: Изобретение
Номер охранного документа: 0002708737
Дата охранного документа: 11.12.2019
13.12.2019
№219.017.ed3c

Способ бурения боковых стволов из горизонтальной части необсаженной скважины

Изобретение относится к области бурения боковых стволов нефтяных и газовых скважин. Перед бурением боковых стволов на устье горизонтальной скважины с необсаженным стволом снизу вверх собирают компоновку: телесистема, одна утяжеленная бурильная труба, клин-отклонитель с углом наклона рабочей...
Тип: Изобретение
Номер охранного документа: 0002708743
Дата охранного документа: 11.12.2019
13.12.2019
№219.017.ed89

Переходная катушка устьевой арматуры

Изобретение относится к устьевой арматуре и может быть использовано в нефтедобывающей промышленности при ремонте скважин в процессе спуско-подъёмных операций (СПО) колонны труб, в том числе при СПО в паронагнетательную скважину двухрядной колонны труб. Предложена переходная катушка устьевой...
Тип: Изобретение
Номер охранного документа: 0002708739
Дата охранного документа: 11.12.2019
19.12.2019
№219.017.ef42

Способ бурения и освоения бокового ствола из горизонтальной скважины (варианты)

Группа изобретений относится к области строительства многозабойных скважин. Перед бурением бокового ствола определяют расстояние до водоносного пласта. В процессе спуска компоновки колонну НКТ оснащают тремя пусковыми муфтами. После спуска компоновки на колонне НКТ в интервал зарезки бокового...
Тип: Изобретение
Номер охранного документа: 0002709262
Дата охранного документа: 17.12.2019
19.12.2019
№219.017.ef4e

Способ бурения и освоения боковых стволов из горизонтальной скважины

Изобретение относится к области бурения и освоения боковых стволов нефтяных и газовых скважин. Перед бурением боковых стволов с основным горизонтальным открытым стволом на устье скважины снизу вверх собирают компоновку: телесистема, одна утяжелённая бурильная труба, клин-отклонитель. Спускают...
Тип: Изобретение
Номер охранного документа: 0002709263
Дата охранного документа: 17.12.2019
25.12.2019
№219.017.f21a

Компоновка низа бурильной колонны для бурения боковых стволов из горизонтальной части необсаженной скважины

Изобретение относится к техническим средствам для бурения боковых стволов из горизонтальной части необсаженной скважины, в частности к устройствам для бурения с применением длинномерных гибких труб (колтюбинга). Компоновка низа бурильной колонны (КНБК) для бурения боковых стволов из...
Тип: Изобретение
Номер охранного документа: 0002710052
Дата охранного документа: 24.12.2019
Showing 11-20 of 23 items.
25.08.2017
№217.015.ab3a

Устройство для ориентации и доставки гибкой трубы в боковой ствол скважины

Изобретение относится к области бурения скважин и может быть использовано в качестве средства для ориентации и доставки гибкой трубы в боковые стволы скважин при ремонте многоствольных скважин и проведении различных технологических операций. Устройство включает поворотный корпус, снабженный...
Тип: Изобретение
Номер охранного документа: 0002612181
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.af8d

Способ разработки нефтяных месторождений на поздней стадии эксплуатации

Изобретение относится к добыче углеводородов, а именно к разработке нефтяных месторождений на поздней стадии эксплуатации. Технический результат – повышение эффективности способа эксплуатации за счет своевременности ввода необходимых методов увеличения нефтеотдачи. Способ включает начальный...
Тип: Изобретение
Номер охранного документа: 0002611097
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.b0c3

Способ геонавигации бурильного инструмента и управления его траекторией при проводке скважин в нужном направлении

Изобретение относится к буровой технике и предназначено для геонавигации бурильного инструмента и управления его траекторией при проводке скважин в нужном направлении. Изобретение обеспечивает повышение точности наведения забоя ствола бурящейся горизонтальной скважины в нужном направлении, в...
Тип: Изобретение
Номер охранного документа: 0002613364
Дата охранного документа: 16.03.2017
13.02.2018
№218.016.249f

Способ исследования горизонтальных скважин

Предлагаемое изобретение относится к нефтяной и газовой промышленности и может быть использовано для исследования горизонтальных скважин и выполнения в них водоизоляционных и ремонтно-исправительных работ. Способ включает спуск скважинного прибора (СП) с помощью колтюбинговой трубы в скважину....
Тип: Изобретение
Номер охранного документа: 0002642694
Дата охранного документа: 25.01.2018
10.05.2018
№218.016.3da9

Способ испытания продуктивных пластов в процессе бурения скважин и устройство для его осуществления (варианты)

Группа изобретений относится к области бурения, а именно к средствам для исследования продуктивных пластов бурящихся нефтедобывающих скважин. Техническим результатом является расширение функциональных возможностей наддолотного модуля - НДМ в составе бурильного инструмента и снижение трудозатрат...
Тип: Изобретение
Номер охранного документа: 0002648120
Дата охранного документа: 22.03.2018
29.12.2018
№218.016.ad62

Способ заводнения продуктивных коллекторов нефтегазовой залежи на поздней стадии эксплуатации

Изобретение относится к области добычи продукции из буровых скважин, а именно к способам усиленной добычи углеводородов методом циклического вытеснения водой. Решаемая задача заключается в повышении нефтеотдачи добывающих скважин за счет одновременного использования стационарной закачки...
Тип: Изобретение
Номер охранного документа: 0002676344
Дата охранного документа: 28.12.2018
20.05.2019
№219.017.5cd9

Устройство для охлаждения электродвигателей насосных агрегатов, установленных в перекачивающих станциях

Изобретение относится к средствам охлаждения двигателей и может быть использовано для охлаждения электродвигателей насосных агрегатов. Устройство содержит контур охлаждения электродвигателя и высокотемпературный контур, заполненные легкоиспаряющейся жидкостью и соединенные между собой...
Тип: Изобретение
Номер охранного документа: 0002688059
Дата охранного документа: 17.05.2019
02.10.2019
№219.017.cb0c

Устройство для экспресс-оценки газового фактора нефтегазовых скважин в процессе отбора глубинных проб пластового флюида

Изобретение относится к области исследования пластов в нефтегазовых скважинах путем дистанционного отбора проб жидкостей или газа и их опробования непосредственно в скважинах и используется для определения газового фактора в пластовом флюиде. Техническим результатом является усовершенствование...
Тип: Изобретение
Номер охранного документа: 0002701408
Дата охранного документа: 26.09.2019
06.02.2020
№220.017.ff5c

Способ изоляции заколонных перетоков в скважине

Изобретение относится к способу изоляции заколонных перетоков в скважине. Техническим результатом является снижение трудоемкости. Способ изоляции заколонных перетоков в скважине включает разбуривание месторождения скважинами, пересекающими пласт, состоящий из водонасыщенных и нефтенасыщенной...
Тип: Изобретение
Номер охранного документа: 0002713279
Дата охранного документа: 04.02.2020
25.03.2020
№220.018.0f4c

Устройство для охлаждения электрических установок для насосных агрегатов, установленных в перекачивающих станциях

Изобретение относится к области машиностроения, к средствам охлаждения электродвигателей насосных агрегатов, подшипниковых узлов и частотных преобразователей электродвигателей, установленных в помещениях перекачивающих станций. Устройство содержит соединенные друг с другом посредством...
Тип: Изобретение
Номер охранного документа: 0002717484
Дата охранного документа: 23.03.2020
+ добавить свой РИД