×
20.05.2020
220.018.1dbe

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОПРЕОБРАЗОВАТЕЛЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к солнечной энергетике, в частности к способу изготовления фотопреобразователей, и может быть использовано в электронной промышленности для преобразования световой энергии в электрическую энергию. Способ изготовления фотопреобразователя включает формирование меза-структуры из фоточувствительной полупроводниковой гетероструктуры А3В5, нанесение антиотражающего покрытия, формирование диэлектрического покрытия на периферии фоточувствительной области и на боковой поверхности меза-структуры, формирование шин омического контакта на фронтальной поверхности гетероструктуры и контактной площадки на боковой поверхности меза-структуры, покрытой слоем диэлектрика, формирование тыльного омического контакта. Изобретение позволяет увеличить быстродействие фотопреобразователя. 2 з.п. ф-лы, 2 ил.

Изобретение относится к солнечной энергетике, в частности, к способу изготовления фотопреобразователей (ФЭП), и может быть использовано в электронной промышленности для преобразования световой энергии в электрическую энергию.

При изготовлении фотопреобразователя с высоким быстродействием важным аспектом является снижение емкости фотопреобразователя, которое может быть достигнуто путем уменьшения размера меза-структуры, ограничивающей p-n переход. Снижение рабочей площади возможно путем вывода фронтальной контактной площадки фотопреобразователя на диэлектрическое покрытие, что приводит к ряду технологических проблем, из-за сложности создания надежной пассивации p-n перехода.

Известен способ изготовления фотопреобразователя (см. патент RU 2469438, МПК H01L 31/0224, опубликован 10.12.2012), включающий формирование двух мез на подложке, поверхность одной из которых является чувствительной площадкой, а другой является контактной, создание тыльного и фронтального омических контактов. Тыльный контакт выполнен сплошным и нанесен со стороны подложки, а фронтальный выполнен в виде мостика, причем продольная ось мостика сориентирована под углом 40-50° к кристаллическому направлению {110} подложки А3В5. Мостик электрически изолирован от мезы с контактной площадкой анодным окислом и нанесенным на него по меньшей мере еще одним слоем диэлектрика. Способ изготовления фотопреобразователя обеспечивает возможность увеличения эффективности за счет одновременного увеличения быстродействия и обнаружительной способности прибора.

Недостатком известного способа изготовления фотопреобразователя является низкая механическая прочность и ненадежность фронтального омического контакта, выполненного в виде мостика.

Известен способ изготовления фотопреобразователя (см. полезную модель RU 162563, МПК G01T 1/20 опубликован 20.06.2016), включающий формирование на n+ подложке GaAs i-слоя GaAs с остаточной концентрацией примеси порядка 1012 см-3, слоя p-GaAs базы, слоя n+ AlxGa1-xAs широкозонного окна эмиттера, травление меза-структуры, пассивицию мезы полиимидом, формирование тыльного омического контакта к n+ подложке GaAs и фронтального омического контакта к широкозонному окну эмиттера.

Недостатком известного способа изготовления фотопреобразователя является низкая эффективность за счет отсутствия антиотражающего покрытия на фоточувствительной области, что приводит к увеличению степени отражения падающего излучения. Также недостатком является низкая мощность фотопреобразователя за счет отсутствия шин фронтального омического контакта. Пассивация только боковой поверхности мезы полиимидом приводит к снижению надежности и выхода годных приборов, за счет возможности подпыления материала фронтального омического контакта на боковую поверхность мезы при нарушении адгезии полиимида к структуре.

Известен способ изготовления фотопреобразователя (см. заявку WO 2009128678, МПК H01L 31/42, опубликована 22.10.2019), включающий формирование полупроводниковой гетероструктуры, токоотводящего электрода и пассивирующего слоя между гетероструктурой и электродом, при этом пассивирующий слой включает в себя первый слой, содержащий оксид кремния, второй слой, содержащий нитрид кремния, третий слой, содержащий оксид или оксинитрид кремния.

Недостатком известного способа изготовления фотопреобразователя является низкое быстродействие, за счет отсутствие этапа формирования меза-структуры и вывода контактной площадки за пределы меза-струткуры.

Известен способ изготовления фотопреобразователя (см. патент RU 2575972, МПК H01L 31/18, опубликован 27.02.2016), включающий эпитаксиальное выращивание на подложке GaSb n-типа проводимости тыльного высоколегированного контактного слоя n+-GaSb и буферного слоя n-GaSb со стороны лицевой поверхности подложки n-GaSb; нанесение на лицевую поверхность буферного слоя n-GaSb диэлектрической маски (например Si3N4) методом плазмохимического осаждения, соответствующей топологии p-n-перехода; легирование буферного слоя n-GaSb через диэлектрическую маску диффузией цинка из газовой фазы в квазизамкнутом контейнере с образованием p-n-перехода; удаление на тыльной стороне подложки p-n перехода; формирование тыльного и фронтального омических контактов; разделительное травление структуры на отдельные фотоэлементы и нанесение антиотражающего покрытия.

Недостатком известного способа изготовления фотопреобразователя является низкая рабочая мощность и низкое быстродействие. Использование диэлектрической маски Si3N4 для пассивации p-n перехода возможно только при планарной поверхности структуры. При планаризации данным диэлектрическим покрытием вертикальной стенки мезы возможно снижение толщины пленки, образование проколов в диэлектрике и снижение выхода годных приборов.

Известен способ изготовления фотопреобразователя (см. заявка на патент RU 2680983, МПК H01L 31/18, опубликован 01.03.2019), совпадающий с настоящим решением по наибольшему числу существенных признаков и принятый за прототип, включающий формирование антиотражающего покрытия на фронтальной поверхности фоточувствительной полупроводниковой гетероструктуры А3В5, формирование шин и контактной площадки фронтального омического контакта, нанесение сплошного тыльного омического контакта, изготовление меза-структуры вне контактной площадки и фотоактивной области.

Недостатком известного способа изготовления фотопреобразователя является ограничение быстродействия прибора. Формирование фронтального омического контакта осуществляется только на поверхности меза-структуры. Поэтому для обеспечения приемлемых омических потерь и возможности крепления токосъемных электродов к контактной площадке размер меза-структуры должен быть существенно больше размера фотоактивной области, а значительная часть площади р-n перехода оказывается закрыта фронтальным омическим контактом. Следствием этого является высокая диффузионная емкость фотопреобразователя, что приводит к снижению быстродействия.

Задачей настоящего технического решения является увеличение быстродействия фотоэлектрического преобразователя, изготовленного заявляемым способом.

Поставленная задача достигается тем, что способ изготовления фотопреобразователя включает изготовление меза-структуры из полупроводниковой фоточувствительной гетероструктуры на основе соединений А3В5, при этом на фронтальную поверхность гетероструктуры наносят антиотражающее покрытие, формируют шины омического контакта на фронтальной поверхности, сплошной омический контакт на тыльной поверхности полупроводниковой фоточувствительной гетероструктуры и контактную площадку. Новым в заявляемом техническом решении является то, что меза-структуру формируют перед нанесением антиотражающего покрытия, наносят слой диэлектрика на боковую поверхность меза-структуры, а контактную площадку формируют на боковой поверхности меза-структуры, покрытой слоем диэлектрика.

Слой диэлектрика может быть выполнен из полиимида.

На боковую поверхность меза-структуры перед нанесением слоя диэлектрика может быть нанесено антиотражающее покрытие.

Фотопреобразователь формируют на основе меза-структуры, ограничивающей область p-n перехода полупроводниковой фоточувствительной гетероструктуры, и покрытой слоем диэлектрика, на который выводится контактная токоотводящая площадка фронтального омического контакта. Вывод части фронтального омического контакта за пределы меза-структуры и формирование контактной площадки на слое диэлектрика позволяет уменьшить его омическое сопротивление и сформировать площадки для приварки внешних токосъемных электродов без увеличения площади p-n перехода, а, следовательно, и диффузионной емкости. Возникающий при этом рост паразитной емкости за счет увеличения площади контактной площадки при рабочих напряжениях фотоэлектрического преобразователя на несколько порядков меньше диффузионной, а поэтому не оказывает заметного влияния на быстродействие.

Формирование меза-структуры выполняют на начальном этапе изготовления фотопреобразователя для ограничения площади p-n перехода и снижения диффузионной емкости фотопреобразователя. Пассивацию боковой поверхности меза-структуры слоем диэлектрика проводят для защиты и изоляции p-n перехода полупроводниковой гетероструктуры при проведении последующей операции формирования контактной площадки. Для увеличения надежности процесса изготовления фотопреобразователя можно дополнительно нанести слой диэлектрика на периферию фронтальной поверхности меза-структуры. Таким образом, при нанесении фронтального омического контакта исключается вероятность подпыления материала омического контакта на боковую поверхность меза-структуры даже при снижении адгезии слоя диэлектрика к структуре, что приводит к увеличению выхода годных приборов. Для увеличения надежности пассивации p-n перехода на боковой поверхности меза-структуры перед нанесением диэлектрического покрытия выполняют нанесение антиотражающего покрытия. Нанесение слоя антиотражающего покрытия проводят в едином технологическом цикле на фронтальную фоточувствительную поверхность гетероструктуры для снижения степени отражения падающего излучения, на периферию фоточувствительной области и на боковую поверхность меза-структуры для пассивации и изоляции p-n перехода. Использование полиимида в качестве слоя диэлектрика обеспечивает надежную изоляцию p-n перехода и высокую степень планаризации поверхности, позволяющей проводить формирование монолитного омического контакта.

Заявляемое техническое решение поясняется чертежами, где:

на фиг. 1 показана схема фотопреобразователя, изготовленного заявляемым способом;

на фиг. 2 показана зависимость относительного увеличения диффузионной емкости фотопреобразователя от отношения диаметра поверхности меза-структуры к диаметру фоточувствительной области.

На фиг. 1, 2 показаны: 1 - фоточувствительная полупроводниковая гетероструктура А3В5, 2 - меза-структура, 3 - антиотражающее покрытие, 4 - фоточувствительная область, 5 - диэлектрик, 6 - фронтальный омический контакт, 7 - тыльный омический контакт, 8 - шины фронтального омического контакта, 9 - контактная площадка; кривая 10 - отношение диаметра поверхности меза-структуры к диаметру фоточувствительной области равно 1,05, относительное увеличение диффузионной емкости фотопреобразователя составляет 1,2; кривая 11 - отношение диаметра поверхности меза-структуры к диаметру фоточувствительной области равно 1,2, относительное увеличение диффузионной емкости фотопреобразователя составляет 1,5; кривая 12 - отношение диаметра поверхности меза-структуры к диаметру фоточувствительной области 1-3, относительное увеличение диффузионной емкости фотопреобразователя составляет 1-7,5;.

Настоящий способ изготовления фотопреобразователя выполняют в несколько стадий: на полупроводниковой фоточувствительной гетероструктуре на основе соединений А3В5 1 (см. фиг 1) изготавливают меза-структуру 2. Далее проводят формирование антиотражающего покрытия 3 локально на фоточувствительную область 4. Возможно нанесение антиотражающего покрытия и на боковую поверхность меза-структуры 2. Наносят слой диэлектрика 5 локально на боковую поверхность меза-структуры. Далее проводят формирование фронтального омического контакта 6 и тыльного омического контакта 7 в несколько этапов. На фоточувствительной области 4 вне антиотражающего покрытия 3 формируют шины 8 фронтального омического контакта 6. На поверхности диэлектрика 5 формируют контактную площадку 9 фронтального омического контакта 6. На первом этапе формирования омических контактов проводят напыление слоев материалов омических контактов, затем выполняют их вжигание, далее проводят электрохимическое утолщение фронтального и тыльного омических для увеличению рабочей мощности фотопреобразователя, за счет увеличения электрической проводимости омических контактов, а также для увеличения однородности и монолитности фронтального омического контакта на гетерогранице гетероструктура - антиотражающее покрытие - диэлектрик. Топология фотопреобразователя выполнена при отношении диаметра поверхности меза-структуры к диаметру полученной фоточувствительной области, не закрытой омическим контактом, в диапазоне 1,05-1,2 (см. фиг 2), при этом относительное увеличение диффузионной емкости составляет 1,2-1,5 (кривые 10 и 11, см. фиг. 2). Отношение диаметра поверхности меза-структуры к диаметру полученной фоточувствительной области менее 1,05 приводит к увеличению омических потерь. Отношение диаметра поверхности меза-структуры к диаметру полученной фоточувствительной области более 1,2 приводит к относительному увеличению диффузионной емкости более 1,5, что соответствует кривой 12 на графике, что ведет к снижению быстродействия фотопреобразователя, а также росту рекомбинационных потерь.

Пример 1. Был изготовлен фотопреобразователь в несколько стадий: на полупроводниковой фоточувствительной гетероструктуре на основе соединений А3В5 сформирована меза-структура с диаметром поверхности 85 мкм.

Проведено формирование антиотражающего покрытия путем осаждения слоев TiOx/SiO2 (при x близком к 2) локально на фоточувствительную область и на боковую поверхность меза-структуры, при этом часть фоточувствительной области под создание шин фронтального омического контакта оставлена не закрытой антиотражающим покрытием. Нанесен слой полиимида локально на поверхность антиотражающего покрытия на боковой поверхности меза-структуры и на периферии фоточувствительной области.

На фоточувствительной области вне антиотражающего покрытия сформированы шины фронтального омического контакта. На фронтальной поверхности полиимида сформирована контактная площадка фронтального омического контакта. На фронтальную поверхность полупроводниковой фоточувствительной гетероструктуры n-типа проводимости проведено напыление слоев Au(Ge)/Ni/Au. На тыльную поверхность гетероструктуры p-типа проводимости выполнено напыление слоев Ag(Mn)/Ni/Au. Проведено вжигание омических контактов при температуре 360°С в течение 30 сек. Далее проведено электрохимическое утолщение фронтального и тыльного омических контактов путем осаждения слоя золота в импульсном режиме толщиной 2 мкм, слоя никеля толщиной 0,1 мкм и слоя золота толщиной 0,1 мкм. Топология фотопреобразователя выполнена при отношении диаметра поверхности меза-структуры к диаметру полученной фоточувствительной области, не закрытой омическим контактом, равном 1,2.

Пример 2. Был изготовлен фотопреобразователь способом, описанном в примере 1 со следующими отличительными признаками. Формирование меза-структуры выполнено с диаметром поверхности 530 мкм. Сформирован фронтальный омический контакт к гетероструктуры n-типа проводимости путем напыления слоев Au(Ge)/Ni/Au. Проведено формирование тыльного омического контакта к гетероструктуре p-типа проводимости путем напыления слоев Cr/Au. Выполнено вжигание омических контактов при температуре 370°С в течение 60 сек. Проведено электрохимическое наращивание фронтального и тыльного омических контактов путем осаждения слоя золота толщиной 4 мкм, осаждения слоя никеля толщиной 0,2 мкм и осаждения слоя золота толщиной 0,2 мкм. Отношение диаметра поверхности меза-структуры к диаметру полученной фоточувствительной области, не закрытой омическим контактом, составило 1,05.

Пример 3. Был изготовлен фотопреобразователь способом, описанном в примере 1 со следующими отличительными признаками. Формирование меза-структуры выполнено с диаметром поверхности 220 мкм. Выполнено вжигание омических контактов при температуре 365°С в течение 40 сек. Проведено электрохимическое наращивание фронтального и тыльного омических контактов путем осаждения слоя золота толщиной 3 мкм, осаждения слоя никеля толщиной 0,1 мкм и осаждения слоя золота толщиной 0,1 мкм. Отношение диаметра поверхности меза-структуры к диаметру полученной фоточувствительной области, не закрытой омическим контактом, составило 1,1.

Результатом процесса изготовления фотопреобразователя данным способом стало увеличение его быстродействия.


СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОПРЕОБРАЗОВАТЕЛЯ
СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОПРЕОБРАЗОВАТЕЛЯ
Источник поступления информации: Роспатент

Showing 11-20 of 114 items.
20.10.2013
№216.012.773e

Топливный элемент и батарея топливных элементов

Изобретение относится к области электрохимической энергетики. Топливный элемент (1) включает мембранно-электродную сборку (2), к аноду которой примыкает упругая пластинчатая диэлектрическая прокладка из химически инертного материала (12), первая и вторая герметизирующие прокладки (5), (8). В...
Тип: Изобретение
Номер охранного документа: 0002496186
Дата охранного документа: 20.10.2013
27.01.2014
№216.012.9cf6

Способ получения слоя прозрачного проводящего оксида на стеклянной подложке

Изобретение относится к технологии тонкопленочных фотоэлектрических преобразователей с текстурированным слоем прозрачного проводящего оксида. Способ получения слоя прозрачного проводящего оксида на стеклянной подложке включает нанесение на стеклянную подложку слоя оксида цинка ZnO химическим...
Тип: Изобретение
Номер охранного документа: 0002505888
Дата охранного документа: 27.01.2014
10.05.2014
№216.012.c135

Концентраторный каскадный фотопреобразователь

Изобретение относится к полупроводниковым фотопреобразователям, в частности к концентраторным каскадным солнечным фотоэлементам, которые преобразуют концентрированное солнечное излучение в электроэнергию. Концентраторный каскадный фотопреобразователь содержит подложку (1) p-Ge, в которой создан...
Тип: Изобретение
Номер охранного документа: 0002515210
Дата охранного документа: 10.05.2014
20.07.2014
№216.012.dfe7

Способ отбраковки мощных светодиодов на основе ingan/gan

Изобретение относится к полупроводниковой технике. Способ включает измерение значения спектральной плотности низкочастотного шума каждого светодиода при подаче напряжения в прямом направлении и плотности тока из диапазона 0.1
Тип: Изобретение
Номер охранного документа: 0002523105
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e266

Активный материал для мазера с оптической накачкой и мазер с оптической накачкой

Изобретение относится к квантовой электронике. Активный материал для мазера с оптической накачкой содержит кристалл карбида кремния, содержащего парамагнитные вакансионные дефекты. Мазер с оптической накачкой включает генератор (1) сверхвысокой частоты (СВЧ), циркулятор (2), магнит (3), между...
Тип: Изобретение
Номер охранного документа: 0002523744
Дата охранного документа: 20.07.2014
10.09.2014
№216.012.f3f6

Способ изготовления каскадных солнечных элементов на основе полупроводниковой структуры galnp/galnas/ge

Способ изготовления каскадных солнечных элементов включает последовательное нанесение на фронтальную поверхность фоточувствительной полупроводниковой структуры GaInP/GaInAs/Ge пассивирующего слоя и контактного слоя GaAs, локальное удаление контактного слоя травлением через маску фоторезиста....
Тип: Изобретение
Номер охранного документа: 0002528277
Дата охранного документа: 10.09.2014
10.01.2015
№216.013.1d6b

Способ получения платинусодержащих катализаторов на наноуглеродных носителях

Изобретение относится к области водородной энергетики, а именно к разработке катализаторов для воздушно-водородных топливных элементов (ВВТЭ), в которых в качестве катализаторов можно использовать платинированные углеродные материалы. Способ получения платинусодержащих катализаторов на...
Тип: Изобретение
Номер охранного документа: 0002538959
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1dfa

Многопереходный солнечный элемент

Многопереходный солнечный элемент содержит подложку p-Ge (1), в которой создан нижний p-n переход (2), и последовательно выращенные на подложке нуклеационный слой (3) n-GaInP, буферный слой (4) n-GaInAs, нижний туннельный диод (5), средний p-n переход (6), содержащий слой тыльного...
Тип: Изобретение
Номер охранного документа: 0002539102
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.224c

Инжекционный лазер с многоволновым модулированным излучением

Использование: для управления лазерным излучением. Сущность изобретения заключается в том, что инжекционный лазер с многоволновым модулированным излучением на основе гетероструктуры содержит первый оптический Фабри-Перо резонатор, ограниченный с одной стороны первым отражателем, с другой...
Тип: Изобретение
Номер охранного документа: 0002540233
Дата охранного документа: 10.02.2015
10.04.2015
№216.013.3c9c

Способ изготовления фотопреобразователя на основе gaas

Изобретение относится к области изготовления фоточувствительных полупроводниковых приборов на основе GaAs, позволяющих преобразовывать мощное узкополосное излучение в электрическую энергию для энергоснабжения наземных и космических объектов. Способ изготовления фотопреобразователя на основе...
Тип: Изобретение
Номер охранного документа: 0002547004
Дата охранного документа: 10.04.2015
Showing 11-20 of 32 items.
12.01.2017
№217.015.648e

Способ изготовления многопереходного солнечного элемента

Изобретение относится к солнечной энергетике и может быть использовано в электронной промышленности для преобразования световой энергии в электрическую. Способ изготовления многопереходного солнечного элемента согласно изобретению включает последовательное формирование субэлемента из Ge с p-n...
Тип: Изобретение
Номер охранного документа: 0002589464
Дата охранного документа: 10.07.2016
10.05.2018
№218.016.3d03

Способ изготовления диодов для средневолнового ик диапазона спектра

Изобретение относится к оптоэлектронной технике, а именно к полупроводниковым приборам, предназначенным для детектирования и испускания инфракрасного ИК излучения при комнатной температуре. Способ изготовления диодов для средневолнового ИК диапазона спектра включает выращивание...
Тип: Изобретение
Номер охранного документа: 0002647978
Дата охранного документа: 21.03.2018
10.05.2018
№218.016.3d0e

Способ изготовления диодов средневолнового ик диапазона спектра

Изобретение относится к оптоэлектронной технике. Способ изготовления диодов средневолнового ИК диапазона спектра включает выращивание на подложке из арсенида индия твердого раствора InAsSbP и разделенные р-n-переходом слои p- и n-типа проводимости, нанесение на поверхность гетероструктуры...
Тип: Изобретение
Номер охранного документа: 0002647979
Дата охранного документа: 21.03.2018
20.12.2018
№218.016.a963

Способ изготовления фотодетекторов мощного оптоволоконного свч модуля

Изобретение может быть использовано для создания мощных СВЧ фотодетекторов на основе эпитаксиальных структур GaAs/AlGaAs, чувствительных к излучению на длине волны 810-860 нм. Способ изготовления фотодетекторов мощного оптоволоконного СВЧ модуля включает создание на полупроводниковой подложке...
Тип: Изобретение
Номер охранного документа: 0002675408
Дата охранного документа: 19.12.2018
29.12.2018
№218.016.acdd

Способ изготовления импульсного фотодетектора

Изобретение относится к области разработки и изготовления фоточувствительных полупроводниковых приборов на основе GaAs. Способ изготовления мощного импульсного фотодетектора, работающего в фотовольтаическом режиме (с нулевым напряжением смещения), на основе GaAs включает последовательное...
Тип: Изобретение
Номер охранного документа: 0002676221
Дата охранного документа: 26.12.2018
29.12.2018
№218.016.acf3

Способ изготовления свч фотодетектора

Изобретение относится к оптоэлектронике и может быть использовано для создания мощного СВЧ фотодетектора на основе эпитаксиальных структур GaAs/AlGaAs, чувствительных к излучению на длине волны 810-860 нм. Способ заключается в создании многослойной структуры из системы чередующихся слоев AlGaAs...
Тип: Изобретение
Номер охранного документа: 0002676185
Дата охранного документа: 26.12.2018
29.12.2018
№218.016.acfa

Свч фотоприемник лазерного излучения

Изобретение относится к полупроводниковым приборам, применяемым в электронике. СВЧ фотоприемник лазерного излучения состоит из подложки 1, выполненной из n-GaAs, и последовательно осажденных: слоя тыльного потенциального барьера 2 n-AlGaAs, базового слоя, выполненного из n-GaAs 3, с толщиной...
Тип: Изобретение
Номер охранного документа: 0002676188
Дата охранного документа: 26.12.2018
29.12.2018
№218.016.acff

Свч фотодетектор лазерного излучения

Изобретение относится к полупроводниковой электронике и может быть использовано для создания фотодетекторов (ФД) лазерного излучения (ЛИ). СВЧ фотодетектор лазерного излучения состоит из подложки 1, выполненной из n-GaAs, и последовательно осажденных: Брегговского отражателя 2, настроенного на...
Тип: Изобретение
Номер охранного документа: 0002676187
Дата охранного документа: 26.12.2018
03.03.2019
№219.016.d231

Способ изготовления мощного фотодетектора

Изобретение может быть использовано для создания СВЧ-фотодетекторов на основе эпитаксиальных структур GaAs/AlGaAs, чувствительных к излучению на длине волны 810-860 нм. Способ заключается в создании фоточувствительной области и контактной площадки для бондинга вне фоточувствительной области на...
Тип: Изобретение
Номер охранного документа: 0002680983
Дата охранного документа: 01.03.2019
11.03.2019
№219.016.db2f

Биореактор вытеснения с мембранным устройством подвода и стерилизации газового питания

Изобретение относится к биореакторам асептического выращивания микроорганизмов, в частности к инокуляторам, посевным аппаратам, и может найти применение в микробиологической, пищевой, медицинской промышленности, а также в сфере образования и науки. Биореактор вытеснения с мембранным устройством...
Тип: Изобретение
Номер охранного документа: 0002415913
Дата охранного документа: 10.04.2011
+ добавить свой РИД