×
16.05.2020
220.018.1d74

Результат интеллектуальной деятельности: Трансформант дрожжей Pichia pastoris, продуцирующий бета-глюканазу

Вид РИД

Изобретение

Аннотация: Изобретение относится к микробиологии и биотехнологии. Получены продуцирующие β-глюканазу трансформанты дрожжей Pichia pastoris, содержащие ген bgl, кодирующий эндо-β-1,3(4)-D-глюканазу из Bacillus safensis или фермент, аминокислотная последовательность которого гомологична ей не менее чем на 96%. Изобретение позволяет получать фермент с высокой степенью эффективности. 1 з.п. ф-лы, 2 ил., 3 пр.

Изобретение относится к микробиологии и биотехнологии и касается получения трансформантов дрожжей Pichia pastoris, способных продуцировать бета-глюканазу (β-глюканазу).

β-глюканы представляют собой семейство полисахаридов, состоящих из мономеров D-глюкозы, соединенных посредством β-гликозидных связей и являются естественным компонентом клеточных стенок бактерий, грибов, дрожжей или злаков, таких как овес или ячмень. β-глюканы различного происхождения различаются структурой, уровнем разветвления и молекулярной массой, а также физико-химическими свойствами.

β- глюканазы - группа ферментов, катализирующих расщепление β-глюканов с β-1,2-, β-1,3-, β-1,4- и β-1,6-связями.

Важное значение среди ферментов, относящихся к этой группе имеют β-1,3-1,4-глюканазы, которые находят широкое применение, в частности, в пивоварении и при производстве пищевых добавок [FEBS Lett., 1975, 52, 202-207].

Применение β-глюканаз в процессе пивной ферментации приводит к увеличению экстракции семян ячменя и уменьшению количества сусла, снижению образования избыточной вязкости и уменьшения появления осадка в пиве. β-1,3-1,4-глюканазы применяют также в качестве добавки к кормам сельскохозяйственных животных с однокамерным желудком. В птицеводческих и свиноводческих отраслях водорастворимый некрахмальный полисахарид β-глюкан действует как антипитательный агент. Корм для домашних животных, смешанный с ферментами β-1,3-1,4-глюканазы и ксиланазы, усиливает увеличение веса, потребление корма и усвояемость азота (+5,6%) и липидов (+6,2%), а также уменьшает образование липкого помета, что существенно уменьшает санитарные проблемы [Trends in Biotechnology, 1993, 11(10), 424-430].

Природными источниками β-глюканаз являются различные микроорганизмы: бактерии, грибы, дрожжи и актиномицеты.

Большинство кормовых ферментных препаратов, в состав которых входят β-глюканазы, имеют грибное происхождение, тогда как разработка рекомбинантных продуцентов ферментов на основе дрожжей представляет большой интерес с научной и технологической точки зрения, поскольку они более удобны для проведения генно-инженерных работ и быстрее накапливают целевой фермент в сравнении с грибными продуцентами. Существенным преимуществом дрожжевых продуцентов является также то, что на их основе значительно легче создавать продуценты моноферментов, тогда как грибные продуценты обычно синтезируют комплексы целлюлитических ферментов. Промышленное получение моноферментов позволяет более эффективно решать задачи составления оптимальной композиции ферментов при использовании различных субстратов.

Наиболее перспективным является создание продуцентов ферментов на основе рекомбинантных штаммов метилотрофных дрожжей Pichia pastoris. При использовании несбраживаемых источников углерода (глицерина, метанола и т.п.) дрожжи Pichia pastoris способны к росту с образованием биомассы высокой плотности, что позволяет получать значительные количества гетерологичного белка [Appl. Microbiol. Biotechnol., 2000, 54(6), 741-750]. При этом процесс культивирования метилотрофных дрожжей достаточно прост, поскольку их рост не блокируется продуктами метаболизма [FEMS Microbiol. Rev., 2000, 24:45-66, doi: 10.111l/j.l574-6976.2000.tb00532.x].

Известны примеры создания продуцентов β-глюканаз на основе дрожжей Pichia pastoris.

Показано [J. Ind. Microbiol. Biotechnol., 2012 39(6), 869-876], что ген bgl16C1 из Penicillium pinophilum, кодирующий эндо-1,3(4)-β-D-глюканазу, эффективно экспрессируется в клетках дрожжей Pichia pastoris, при этом активность рекомбинантной β-глюканазы в культуральной жидкости при культивировании в 15-литровом ферментере составляет 28721 ед/мл.

Известны также рекомбинантные штаммы Pichia pastoris, продуцирующие термостабильную β-1,3-1,4-глюканазу из Bacillus amyloliquefaciens. [CN 101899458].

В работе [Биотехнология, 2018, Т. 34, №5, С. 12-22] описан ген bgl из Bacillus pumilus, кодирующий β-глюканазу, относящуюся к классу эндо-β-1,3(4)-D-глюканаз (Е.С. 3.2.1.6).

Поскольку гены β-глюканаз различного происхождения экспрессируются в дрожжах Pichia pastoris с различной эффективностью [Биотехнология, 2018, 34(4), 26-36] для конструирования высокопродуктивных штаммов важной задачей является отбор генов, кодирующих β-глюканазу и эффективно работающих в дрожжах Pichia pastoris.

Поиск новых высокоактивных β-глюканаз, обладающих свойствами, необходимыми для их индустриального использования и способных эффективно выражаться в дрожжах, а также создание на их основе промышленно значимых продуцентов является актуальной задачей.

Задачей заявляемого изобретения является расширение арсенала рекомбинантных микроорганизмов, продуцирующих β-глюканазу,

Задача решена путем получения - трансформанта дрожжей Pichia pastoris, продуцирующего β-глюканазу, содержащего ген bgl, кодирующий эндо-β-1,3(4)-D-глюканазу из Bacillus safensis или фермент, аминокислотная последовательность которого гомологична ей не менее, чем на 96%.

К ферментам, аминокислотная последовательность которых гомологична эндо-β-1,3(4)-D глюканазе из Bacillus safensis [NCBI: WP_034622736.1] [NCBI: MH553379] не менее, чем на 96% относятся, например, эндо-β-1,3(4)-D-глюканаза из Bacillus pumilus [NCBI: МН553379], или эндо-β-1,3(4)-D-глюканаза из Bacillus stratosphericus [NCBI: WP_103132685.1], или эндо-β-1,3(4)-D-глюканаза из Bacillus altitudinis [NCBI: WP_073416011.1], или эндо-β-1,3(4)-D-глюканаза из Bacillus aerius [NCBI: PYH23823.1], или эндо-β-1,3(4)-D-глюканаза из Bacillus cellulasensis [NCBI: KIL24001.1], или эндо-β-1,3(4)-D-глюканаза из Bacillus australimaris [NCBI: WP_060698046.]

Получение трансформанта включает введение гена bgl из Bacillus safensis в клетки дрожжей Pichia pastoris с помощью экспрессионной кассеты, включающей в свой состав ген bgl, промотор, работающий в дрожжах Pichia pastoris, сигнальный пептид для осуществления секреции фермента в культуральную жидкость, терминатор, маркерный ген и, предпочтительно, сайт для гомологичной интеграции в хромосому. Интеграцию осуществляют путем либо гомологичной, либо негомологичной рекомбинации. Трансформацию экспрессионной кассеты в клетки дрожжей Pichia pastoris осуществляют путем электоропорации [http://tools.thermofisher.com/content/sfs/manuals/pich_man.pdf] или методом с использованием полиэтиленгликоля или протопластов [http://www.thermofisher.com/order/catalog/product/K173001].

Конструирование экспрессионной кассеты осуществляют стандартными методами генетической инженерии [Рыбчин В.Н. Основы генетической инженерии. - СПб.: СПбГТУ, 1999. Sambrook J., Maniatis Т., Fritsch Е. Molecular cloning: a laboratory manual. - N.Y.: Cold Spring Harbor Laboratory, 1989.] с использованием генетических элементов, подходящих для работы с дрожжами Pichia pastoris. В качестве промоторов используют AOX1, DAS, FLD1, ICL1, PHO89, THI11, ADH1, ENO1, GUT1, GAP, TEF1, PGK1, GCW14, G1, G6 или другие [Appl Microbiol Biotechnol (2014) 98:5301-5317]. В качестве сигнальных пептидов используют α-фактор, PHO1, SUC2, PHA-E, KILM1, pGKL, CLY, CLY-L8, K28 pre-pro-toxin или другие [Appl Microbiol Biotechnol (2014) 98:5301-5317]. В качестве селективных маркеров используют любые подходящие маркеры, например, гены резистентности к антибиотикам зеоцину, генетицину (G418) или бластицидину С, а также гены комплементирующие ауксотрофные мутации в геноме Pichia pastoris, например, HIS4, МЕТ2, ADE1, ARG4, URA3, URA5, GUT1 [Yeast 2005; 22: 249-270]. В качестве плечей для гомологичной интеграции используют последовательности генов АОХ1, HIS4 [http://www.thermofisher.com/order/catalog/product/V17520] или другие последовательности, гомологичные участкам хромосомы дрожжей Pichia pastoris.

Изобретение проиллюстрировано следующей фигурой.

Фиг. 1. Экспрессионная кассета 1

Фиг. 2 Электрофорез гена bgl Bacillus safensis

Изобретение подтверждено следующими примерами.

Пример 1. Конструирование трансформанта дрожжей Pichia pastoris, несущего ген bgl из Bacillus safensis

Получают плазмидный вектор pPIC-bglSaf, содержащий интегративную экспрессионную кассету. В качестве источника гена bgl используют тотальную геномную ДНК штамма Bacillus safensis ВКПМ В-13331. Синтезируют ДНК гена bgl методом ПЦР с использованием праймеров bgl-saf-1 и bgl-saf-2, содержащих на 5'-концах сайты рестрикции для клонирования - EcoRI и NotI, соответственно:

bgl-saf-1 5'-aagaattccaaacgggcggttcgttatatga-3'

bgl-saf-2 5'- aagcggccgcttatctaattgtgtaaggca-3'

Полученный фрагмент ДНК обрабатывают рестриктазами EcoRI и NotI и клонируют в состав экспрессионного вектора pPIC9 (http://www.thermofisher.com/order/catalog/product/V17520).

В состав экспрессионного плазмидного вектора pPIC-bglPum входят следующие генетические элементы:

1. Ген bgl Bacillus safensis, встроенный в единую рамку считывания с нуклеотидной последовательностью сигнального пептида α-фактора, под контролем АОХ1 промотора

2. Терминатор транскрипции ТТАОХ1

3. Дрожжевой селективный маркер His4

4. Область интеграции - нуклеотидная последовательность гена АОХ1

5. Селективный маркер для клеток E.coli - ген bla, кодирующий β-лактамазу,

придающий клеткам устойчивость к ампициллину.

6. Бактериальный pUC origin.

Для получения интегративной экспрессионной кассеты 1 (фиг. 1) плазмиду pPIC-bglSaf обрабатывают эндонуклеазой рестрикции BglII.

Полученную интегративную экспрессионную кассету трансформируют в клетки Pichia pastoris.

Штамм Pichia pastoris GS115 (his4) предварительно выращивают в жидкой питательной среде YP (мас. %: дрожжевой экстракт - 1, пептон - 2, вода - остальное) с добавлением глюкозы (мас. 2%) до концентрации 1×108 клеток на 1 мл. Клетки центрифугируют, промывают в ледяной стерильной воде, а затем в ледяном растворе 1 М сорбитола. Промытые клетки инкубируют в 25 мМ растворе дитиотрейтола в течение 15 минут, затем промывают в ледяном растворе 1 М сорбитола. Обработанные таким образом клетки ресуспендируют в ледяном растворе 1 М сорбитола в концентрации 1-5×109 клеток на 1 мл. Аликвоту, объемом 40 мкл клеточной суспензии, переносят в охлажденный эппендорф, добавляют 400 нг ДНК экспрессионной интеграционной кассеты, и инкубируют во льду 5 минут. Смесь клеток и ДНК переносят в предварительно охлажденную кювету для электропорации. Электропорацию проводят при следующих условиях: 1,5 кВ, 400 Ом, 25 uF. После порации добавляют 1 мл ледяного раствора 1 М сорбитола.

Селекцию трансформантов ведут на агаризованной среде YNB (HiMedia Laboratories Pvt. Limited, Индия) с добавлением глюкозы (2 мас. %) в течение 5 суток при температуре 30°С.

Для отбора наиболее продуктивных трансформантов проводят их культивирование в жидкой ферментационной питательной среде YP с добавлением метанола (3 мас. %) в 96-луночных планшетах при 30°С в течение 72 ч на качалке (250 об/мин). В качестве контроля используют штамм Pichia pastoris GS115 (his4).

Определение активности β-глюканазы в культуральной жидкости проводят с использованием ДНС метода [Anal. Chem., 1959, 31 (3), 426-428] в 96-луночном планшете следующим образом. В каждой лунке смешивают 25 мкл 1% раствора субстрата β-глюкана ячменя в 0,5 М ацетатном буфере (рН 6) и 25 мкл культуральной жидкости. Инкубацию проводят при 50°С 10 минут, после чего добавляют в лунку 50 мкл раствора ДНС. Планшет прогревают при 99°С 10 минут и измеряют оптическую плотность окрашенного раствора при длине волны 546 нм. В качестве стандарта используют раствор глюкозы.

По результатам ферментации отбирают наиболее продуктивный трансформант №47, который при культивировании в планшете синтезирует β-глюканазу в количестве 114 ед/мл культуральной жидкости.

Для подтверждения наличия в хромосоме полученного штамма вставки гена bgl Bacillus safensis методом полимеразной цепной реакции (ПЦР) используют хромосомальную ДНК, выделенную из клеток этого штамма и специфические праймеры BglPum-f и BglPum-r

bgl-saf-1 5'-aagaattccaaacgggcggttcgttatatga-3'

bgl-saf-2 5'- aagcggccgcttatctaattgtgtaaggca-3'

Режим реакции ПЦР:

95°С - 3 мин - 1 цикл

30 циклов:

95°С - 30 сек

60°С - 30 сек

72°С - 60 сек

72°С - 5 мин - 1 цикл.

Для контроля величины амплифицированного фрагмента ДНК при электрофорезе использован молекулярный маркер GeneRuler 1 kb DNA Ladder (Fermentas) (линия 2, фиг. 2, размер фрагментов снизу вверх 10000, 8000, 6000, 5000, 4000, 3500, 3000, 2500, 2000, 1500, 1000, 750, 500, 250 п.н.). Наработка фрагмента ДНК размером 642 п.н. (линия 1 фиг. 2) свидетельствует о присутствии в хромосоме штамма вставки гена bgl Bacillus safensis

Пример 2. Продукция β-глюканазы трансформантом Pichia pastoris 47, несущим ген bgl из Bacillus safensis

Посевную культуру выращивают в пробирках (50 мл) с 10 мл жидкой питательной среды YP с добавлением глюкозы (2 мас. %) при 30°С в течение 24 ч на качалке (250 об/мин). Посев ферментационной среды осуществляют в соотношении 1/10.

Ферментацию проводят при 30°С на качалке (250 об/мин) в питательной среде состава (мас. %): дрожжевой экстракт - 0,5, пептон - 1, вода - остальное с добавлением глюкозы (1 мас. %) в пробирках (50 мл) с рабочим объемом 5 мл. Через 18 часов добавляют метанол (1 мас. %) Ферментацию продолжают в течение 72 часов, добавляя метанол (1 мас. %) через каждые 24 часа. После окончания ферментации определяют количество фермента β-глюканазы в культуральной жидкости с использованием ДНС метода.

Через 72 часа ферментации количество фермента составило 597 ед/мл культуральной жидкости.

Пример 3. Конструирование трансформантов дрожжей Pichia pastoris, несущих ген bgl из Bacillus altitudinis

Получают плазмидный вектор pPIC-bglAlt, содержащий интегративную экспрессионную кассету. В качестве источника гена bgl используют тотальную геномную ДНК штамма Bacillus altitudinis ВКПМ В-11231. Синтезируют ДНК гена bgl методом ПЦР с использованием праймеров bgl-alt-1 и bgl-alt-2, содержащих на 5'-концах сайты рестрикции для клонирования - EcoRI и NotI, соответственно:

bgl-alt-1 5'-aagaattccaaacgggcggttcgttatatga-3'

bgl-alt-2 5'-aagcggccgcttatctaattgtgtaaggca-3'

Полученный фрагмент ДНК обрабатывают рестриктазами EcoRI и NotI и клонируют в состав экспрессионного вектора pPIC9 (http://www.thermofisher.coni/order/catalog/product/V17520).

В состав экспрессионного плазмидного вектора pPIC-bglAlt входят следующие генетические элементы:

1. Ген bgl_Bacillus altitudinis, встроенный в единую рамку считывания с нуклеотидной последовательностью сигнального пептида α-фактора, под контролем АОХ1 промотора

2. Терминатор транскрипции ТТАОХ1

3. Дрожжевой селективный маркер His4

4. Область интеграции - нуклеотидная последовательность гена АОХ1

5. Селективный маркер для клеток E.coli - ген bla, кодирующий β-лактамазу, придающий клеткам устойчивость к ампициллину.

6. Бактериальный pUC origin.

Для получения интегративной экспрессионной кассеты плазмиду pPIC-bglAlt обрабатывают эндонуклеазой рестрикции BglII.

Трансформацию указанной интегративной экспрессионной кассеты в дрожжи Pichia pastoris GS115 (his4), отбор наиболее активных трансформантов и определение активности β-глюканазы в культуральной жидкости проводят как описано в примере 1.

По результатам ферментации отобран наиболее продуктивный трансформант №68, который при культивировании в планшете синтезирует β-глюканазу в количестве 98 ед/мл культуральной жидкости.

Пример 3. Конструирование трансформантов дрожжей Pichia pastoris, несущих ген bgl из Bacillus pumilus

Получают плазмидный вектор pPIC-bglPum, содержащий интегративную экспрессионную кассету. В качестве источника гена bgl используют тотальную геномную ДНК штамма Bacillus pumilus Bg57 ВКПМ В-13195. [Биотехнология, 2018, Т. 34, №5, С. 12-22] Синтезируют ДНК гена bgl методом ПЦР с использованием праймеров bgl-pum-1 и bgl-pum-2, содержащих на 5'-концах сайты рестрикции для клонирования - EcoRI и NotI, соответственно:

bgl-pum-1 5'-aagaattccaaacgggcgggtcgttttatga-3'

bgl-pum-2 5'-aagcggccgcttatctttttgtgtaacgca-3'

Полученный фрагмент ДНК обрабатывают рестриктазами EcoRI и NotI и клонируют в состав экспрессионного вектора pPIC9 (http://www.thermofisher.com/order/catalog/product/V17520).

В состав экспрессионного плазмидного вектора pPIC-bglPum входят следующие генетические элементы:

1. Ген bgl_Bacillus pumilus, встроенный в единую рамку считывания с нуклеотидной последовательностью сигнального пептида α-фактора, под контролем АОХ1 промотора

2. Терминатор транскрипции ТТАОХ1

3. Дрожжевой селективный маркер His4

4. Область интеграции - нуклеотидная последовательность гена АОХ1

5. Селективный маркер для клеток E.coli - ген bla, кодирующий β-лактамазу, придающий клеткам устойчивость к ампициллину.

6. Бактериальный pUC origin.

Для получения интегративной экспрессионной кассеты плазмиду pPIC-bglPum обрабатывают эндонуклеазой рестрикции BglII.

Трансформацию указанной интегративной экспрессионной кассеты в дрожжи Pichia pastoris GS115 (His4), отбор наиболее активных трансформантов и определение активности β-глюканазы в культуральной жидкости проводят как описано в Примере 1.

По результатам ферментации отобран наиболее продуктивный трансформант №85, который при культивировании в планшете синтезирует β-глюканазу в количестве 103 ед/мл культуральной жидкости.


Трансформант дрожжей Pichia pastoris, продуцирующий бета-глюканазу
Трансформант дрожжей Pichia pastoris, продуцирующий бета-глюканазу
Источник поступления информации: Роспатент

Showing 21-30 of 35 items.
02.10.2019
№219.017.cca8

Рекомбинантный штамм дрожжей pichia pastoris - продуцент бета-глюканазы

Изобретение относится к микробиологии и биотехнологии. Предложен рекомбинантный штамм дрожжей Pichia pastoris ВКПМ Y-4463, продуцирующий β-глюканазу. Указанный штамм содержит ген bgl, кодирующий эндо-β-1,3(4)-D-глюканазу из Bacillus pumilus. Штамм продуцирует β-глюканазу в количестве 618 ед./мл...
Тип: Изобретение
Номер охранного документа: 0002701494
Дата охранного документа: 26.09.2019
02.10.2019
№219.017.cd7c

Кристаллообразующий штамм бактерий brevibacillus laterosporus с широким спектром антагонистической активности и его применение

Группа изобретений относится к биотехнологии и включает кристаллообразующий штамм бактерий Brevibacillus laterosporus ВКПМ В-13186 и варианты его применения. Предлагаемый штамм является спорообразующим и обладает широким спектром антагонистической активности против различных видов организмов,...
Тип: Изобретение
Номер охранного документа: 0002701502
Дата охранного документа: 26.09.2019
15.11.2019
№219.017.e232

Мутантная рекомбинантная термостабильная фитаза

Изобретение относится к области биотехнологии. Мутантная рекомбинантная термостабильная фитаза PhyCf-t, зрелая часть которой имеет аминокислотную последовательность, приведенную в перечне последовательностей под номером SEQ ID NO: 3, начиная с 23 аминокислотного остатка, отличается от...
Тип: Изобретение
Номер охранного документа: 0002706086
Дата охранного документа: 13.11.2019
10.12.2019
№219.017.ebe1

Трансформант дрожжей pichia pastoris, продуцирующий фитазу

Изобретение относится к микробиологии и биотехнологии. Получен трансформант дрожжей Pichia pastoris, продуцирующий фитазу из Citrobacter freundii, несущий в составе хромосомы оптимизированный синтетический ген, кодирующий указанную фитазу, нуклеотидная последовательность которого приведена в...
Тип: Изобретение
Номер охранного документа: 0002708446
Дата охранного документа: 06.12.2019
29.01.2020
№220.017.fb04

Антикоагулянтное лекарственное средство, представляющее собой синтетический дипептид ac-trp-arg-pip ⋅hcl, фармацевтическая композиция, включающая это антикоагулянтное лекарственное средство

Группа изобретений относится к медицине и касается антикоагулянтного лекарственного средства, представляющего собой синтетический дипептид Ac-Trp-Arg-Pip⋅HCl или его фармацевтически приемлемые соли. Группа изобретений также касается фармацевтической композиции, включающей в качестве...
Тип: Изобретение
Номер охранного документа: 0002712194
Дата охранного документа: 27.01.2020
05.02.2020
№220.017.fdcf

Способ повышения продукции изолимонной кислоты у дрожжей yarrowia lipolytica, дрожжи вида yarrowia lipolytica, обладающие способностью к продукции изолимонной кислоты

Группа изобретений относится к микробиологической промышленности. Предложен способ повышения продукции изолимонной кислоты в условиях избытка источника углерода и лимита по азоту с использованием дрожжей Yarrowia lipolytica, в которых усилен уровень экспрессии гена Y. lipolytica YALI0E34672g,...
Тип: Изобретение
Номер охранного документа: 0002713124
Дата охранного документа: 03.02.2020
15.02.2020
№220.018.02d5

Трансформант дрожжей pichia pastoris, продуцирующий ксиланазу

Изобретение относится к микробиологии и биотехнологии, в частности к трансформанту дрожжей Pichia pastoris, продуцирующему ксиланазу и содержащему ген xyl, кодирующий эндо-1,4-β-ксиланазу из Paenibacillus brasilensis или фермент, аминокислотная последовательность которого гомологична ей не...
Тип: Изобретение
Номер охранного документа: 0002714113
Дата охранного документа: 11.02.2020
05.03.2020
№220.018.090f

Фармацевтическая композиция для лечения глазных инфекций, вызванных метициллин-устойчивыми штаммами staphylococcus aureus, включающая в качестве активного начала n-концевой chap-домен эндолизина бактериофага k staphylococcus aureus

Изобретение относится к биотехнологии, в частности к фармацевтической композиции для лечения глазных инфекций, вызванных метициллин-устойчивыми штаммами , включающей в качестве активного начала N-концевой СНАР-домен эндолизина бактериофага K . Заявляемая фармацевтическая композиция не токсична...
Тип: Изобретение
Номер охранного документа: 0002715694
Дата охранного документа: 02.03.2020
07.03.2020
№220.018.0a64

Фосфолипаза а2 для экспрессии в дрожжах (варианты)

Изобретение относится к биотехнологии и касается вариантов фосфолипазы А2 для экспрессии в дрожжах. Предложен вариант фосфолипазы А2, структурный ген которой кодирует белок, включающий аминокислотную последовательность фосфолипазы А2 штамма А-2688 Streptomyces violaceoruber, содержащую замену...
Тип: Изобретение
Номер охранного документа: 0002716087
Дата охранного документа: 05.03.2020
03.06.2020
№220.018.23aa

Трансформант дрожжей komagataella kurtzmanii, продуцирующий бета-глюканазу

Изобретение относится к биотехнологии и представляет собой трансформант дрожжей Komagataella kurtzmanii, продуцирующий эндо-β-1,3(4)-D-глюканазу из Bacillus pumilus или фермент, аминокислотная последовательность которого гомологична ей не менее чем на 96%, а именно эндо-β-1,3(4)-D-глюканазу из...
Тип: Изобретение
Номер охранного документа: 0002722563
Дата охранного документа: 01.06.2020
Showing 21-30 of 47 items.
05.12.2018
№218.016.a3a9

Штамм бактерий paenibacillus species - продуцент ксиланазы

Изобретение относится к микробиологической промышленности. Штамм бактерий Paenibacillus species X1, обладающий способностью синтезировать ксиланазу, депонирован во Всероссийской Коллекции Промышленных Микроорганизмов под регистрационным номером ВКПМ В-13092. Штамм бактерий Paenibacillus species...
Тип: Изобретение
Номер охранного документа: 0002673971
Дата охранного документа: 03.12.2018
05.12.2018
№218.016.a3c6

Штамм бактерий paenibacillus species - продуцент β-глюканазы

Изобретение относится к микробиологической промышленности. Штамм бактерий Paenibacillus sp. Bg1, обладающий способностью использовать β-глюкан как единственный источник углерода и синтезировать β-ксиланазу, депонирован во Всероссийской Коллекции Промышленных Микроорганизмов под регистрационным...
Тип: Изобретение
Номер охранного документа: 0002673967
Дата охранного документа: 03.12.2018
10.04.2019
№219.017.07ae

Рекомбинантный штамм дрожжей yarrowia-lipolytica - продуцент липазы

Изобретение относится к области микробиологии и биотехнологии. Получен рекомбинантный штамм дрожжей Yarrowia lipolytica ВКПМ Y-3323 - продуцент фермента липазы. Штамм сконструирован из штамма W29 посредством инактивации гена URA3 с последующей трансформацией полученного трансформанта...
Тип: Изобретение
Номер охранного документа: 0002451075
Дата охранного документа: 20.05.2012
29.05.2019
№219.017.63e4

Способ микробиологического синтеза молочной кислоты и рекомбинантный штамм дрожжей schizosaccharomyces pombe для его осуществления

Изобретение относится к биотехнологической промышленности, в частности к способам получения молочной кислоты. Молочную кислоту получают путем культивирования рекомбинантного штамма дрожжей рода Schizosaccharomyces - продуцента молочной кислоты, содержащего, по крайней мере, один чужеродный ген...
Тип: Изобретение
Номер охранного документа: 0002268304
Дата охранного документа: 20.01.2006
29.05.2019
№219.017.6917

Генетическая конструкция для получения стабильных трансформантов грибов рода rhizopus

Изобретение относится к микробиологической промышленности и касается вектора, предназначенного для получения стабильно трансформированных штаммов грибов Rhizopus oryzae. Охарактеризованный вектор содержит селективный генетический маркер и нуклеотидную последовательность, представленную в SEQ ID...
Тип: Изобретение
Номер охранного документа: 0002439157
Дата охранного документа: 10.01.2012
10.07.2019
№219.017.ac7e

Штамм дрожжей rhodosporidium diobovatum - продуцент каротиноидов

Изобретение относится к биотехнологии. Получают штамм Rhodosporidium diobovatum ВКПМ Y-3158 - продуцент каротиноидов с высоким содержанием β-каротина путем многоступенчатой селекции с использованием мутагена нитрозогуанидина. Культивируют на питательной среде, содержащей источники углерода,...
Тип: Изобретение
Номер охранного документа: 0002399659
Дата охранного документа: 20.09.2010
10.07.2019
№219.017.b03a

Штамм дрожжей rhodosporidium diobovatum - продуцент каротиноидов

Изобретение относится к биотехнологии, в частности к микробиологии. Штамм Rhodosporidium diobovatum ВКПМ Y - 3159 культивируют на питательной среде, содержащей источники углерода, азота и минеральные соли в течение 72 ч. Получают биомассу, содержащую каротиноиды в количестве 5,0-6,5 мг/г сухой...
Тип: Изобретение
Номер охранного документа: 0002406757
Дата охранного документа: 20.12.2010
15.08.2019
№219.017.bfa9

Рекомбинантный штамм бактерии escherichia coli - продуцент l-треонина

Изобретение относится к области биотехнологии. Предложен рекомбинантный штамм Escherichia coli ВКПМ В-12204 - продуцент L-треонина. Изобретение позволяет расширить арсенал бактерий вида Escherichia coli, способных к продукции L-треонина, и продуцировать при ферментации в ферментере с...
Тип: Изобретение
Номер охранного документа: 0002697219
Дата охранного документа: 13.08.2019
16.08.2019
№219.017.c006

Бактерия вида escherichia coli - продуцент l-треонина, способ микробиологического синтеза l-треонина с ее использованием.

Группа изобретений относится к области биотехнологии. Предложена бактерия вида Escherichia coli, обладающая способностью продуцировать L-треонин, отличающаяся тем, что в ней инактивирован ген yifK. Предложен способ микробиологического синтеза L-треонина с использованием указанной бактерии....
Тип: Изобретение
Номер охранного документа: 0002697499
Дата охранного документа: 14.08.2019
02.10.2019
№219.017.cc07

Рекомбинантный штамм дрожжей pichia pastoris - продуцент ксиланазы

Изобретение относится к микробиологии и биотехнологии. Предложен рекомбинантный штамм дрожжей Pichia pastoris ВКПМ Y-4393, продуцирующий ксиланазу. Указанный штамм содержит ген xyl, кодирующий эндо-1,4-β-ксиланазу из Paenibacillus brasilensis. Штамм продуцирует фермент в количестве 1114 ед./мл...
Тип: Изобретение
Номер охранного документа: 0002701308
Дата охранного документа: 25.09.2019
+ добавить свой РИД