×
14.05.2020
220.018.1c69

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ КОМПЛЕКСНОГО АЛЮМИНИЙСОДЕРЖАЩЕГО КОАГУЛЯНТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии переработки природного сырья с получением комплексного алюминийсодержащего коагулянта в форме твердого продукта и его использованием в процессах очистки воды промышленного и хозяйственно-бытового происхождения. Способ включает вскрытие минерального концентрата серной кислотой при постоянном перемешивании с последующим отделением твердой части и отверждением путем введения в образовавшийся после вскрытия концентрата раствор стехиометрического количества гидроксида алюминия в виде суспензии в воде в расчете на непрореагировавшую серную кислоту и самопроизвольной кристаллизацией. Причем в качестве сырья используют перовскитовый, или аризонитовый, или ильменитовый, или сфеновый концентрат, обработку ведут 80-93% серной кислотой при отношении твердой фазы в граммах к жидкой фазе в миллилитрах 1-(1-5) в течение 1-4 ч при температуре 160-200°С. Технический результат заключается в разработке технологии получения комплексного коагулянта из альтернативных источников минерального сырья с повышенным содержанием активного компонента и высокой эффективностью реагента по отношению к органическим соединениям. 14 пр.

Изобретение относится к технологии переработки природного сырья с получением комплексного алюминий-содержащего коагулянта в форме твердого продукта и его использованием в процессах очистки воды промышленного и хозяйственно-бытового происхождения.

Известен способ получения неочищенного комплексного алюмокремниевого коагулянта при обработке нефелинового концентрата растворами серной кислотой. Раствор самопроизвольно затвердевает и отправляется на дозревание (Равич Б.М., Окладников В.П. и др. Комплексное использование сырья и отходов - М.: Химия, 1988 288 стр. стр. 178-182).

Недостатками способа являются высокое содержанием примесей непрореагировавшего кремнезема (сиштофа) в товарном продукте, высокой коррозионной активностью и низкое содержание активного компонента.

Известен способ получения комплексного алюмокремниевого коагулянта в процессе обработки нефелиновой руды водными растворами серной или соляной кислотой, с получением сильно разбавленных растворов (Патент РФ 2039711 C02F 1/52 Захаров В.И.; Петрова В.И. дата публикации 20.07.1995).

Основными недостатками данного способа являются низкое содержание активного компонента в растворе, склонность растворов к гелированию, высокое содержание инертных примесей.

Известен способ получения комплексного коагулянта в процессе обработки алунитов или бокситов серной кислотой (Арлюк Б.И., Лайнер Ю.А., Пивнев А.И. Комплексная переработка щелочного алюминий-содержащего сырья. Москва: Металлургия, 1994. 384 с.).

Существенным недостатком данного метода является низкая скорость процесса и высокие энергозатраты.

Известен способ получения комплексного алюмокремниевого реагента, включающий обработку нефелинового концентрата водными растворами серной кислоты, отделение нерастворимой части, с последующим обезвоживаем упаркой под вакуумом ниже температуры кипения или диспергированием в газе теплоносителе, (пат. РФ 2388693 от 10.05.2010 г.).

Недостатком указанного способа являются низкое содержание активного компонента, значительные энергозатраты на процесс сушки растворов и сложная аппаратурная схема производства.

Наиболее близким по достигаемому результату и технической сущности (прототип) является способ получения комплексного алюмокремниевого коагулянта в процессе обработки нефелинового сырья разбавленной серной кислотой с последующим доукреплением растворов гидроксидом алюминия и серной кислотой до достижения плотности суспензии 1,3-1,4 кг/дц3 с самопроизвольной кристаллизацией продукта (Пат РФ №2588535).

Основным недостатком данного способа-прототипа является ограниченная сырьевая база (нефелиновые породы) и низкое содержание активных соединений кремния и алюминия в конечном продукте, а также недостаточная эффективность реагента по отношению к нефтепродуктам и растворенным органическим веществам.

Задачей данного изобретения является разработка технологии получения комплексного коагулянта (далее КК) из альтернативных источников минерального сырья, с повышенным содержанием активного компонента (более 15% по сумме водорастворимых оксидов Ti, Al или Fe) и высокой эффективностью реагента по отношению к органическим соединениям.

Поставленная задача решается путем вскрытия минерального концентрата серной кислотой, при постоянном перемешивании, с последующим отделением твердой части и отверждением путем введения в образовавшийся после вскрытия концентрата раствор стехиометрического количества гидроксида алюминия в виде суспензии в воде в расчете на непрореагировавшую серную кислоту и самопроизвольной кристаллизацией, при этом в качестве сырья используют перовскитовый или аризонитовый или ильменитовый или сфеновый концентраты, обработку ведут 80-93% серной кислотой при соотношении твердой фазы в граммах к жидкой фазе в миллилитрах 1-(1-5), в течение 1-4 часов, при температуре 160-200°С.

К основным достоинствам предлагаемого способа следует отнести использование новых сырьевых источников, отсутствие необходимости сушки растворов, повышенное содержание активного компонента (сумма водорастворимых оксидов металлов) в товарном продукте, а также повышенную эффективность удаления загрязняющих веществ органической природы за счет наличия в составе реагента продуктов частичного гидролиза соединений титана.

Сущность предлагаемого способа и достигаемые результаты более наглядно могут быть проиллюстрированы следующими примерами.

ПРИМЕР №1

К измельченному (менее 1 мм) перовскитовому концентрату массой 10 грамм приливают 50 мл 80% серной кислоты (Т:Ж 1:5).

CaTiO3+2H2SO4+nH2O=TiOSO4*H2O+CaSO4

Реакционную смесь интенсивно перемешивают при нагревании до 160°С в течение 4 часов. Эффективность вскрытия 84%, состав раствора - 10,9 г TiOSO4; 10,6 г CaSO4*2H2O; 1,6 г не прореагировавшего первовскитового концентрата и 77,9 г (78% H2SO4). Полученный раствор декантируют для удаления не прореагировавшего остатка и примеси CaSO4. В полученный раствор вводят суспензию гидроксида алюминия (32,2 грамма Al(ОН)3) в 16 мл воды необходимую для нейтрализации свободной серной кислоты с образованием 18-водного кристаллогидрата сульфата алюминия (стехиометрическое количество).

Al(ОН)3+H2SO4+12H2O=Al2(SO4)3*18H2O В течение 20 минут полученную суспензию интенсивно перемешивают шнековым реактором, а затем извлекают из реактора и охлаждают на кристаллизационном столе. Полное отверждение (кристаллизация) в условиях естественного охлаждения протекает за счет химического связывания влаги сульфатом алюминия в форму кристаллогидрата и заканчивается в течение 30 минут. Полученный продукт содержит 91,85% кристаллического Al2(SO4)3*18H2O (14,7% Al2O3), 7,4% TiOSO4*nH2O (3,3% TiO2). Нерастворимые примеси CaSO4 0,75%.

ПРИМЕР №2

К измельченному (менее 1 мм) перовскитовому концентрату массой 10 грамм приливают 25 мл 86% серной кислоты (Т:Ж 1:2,5).

CaTiO3+2 H2SO4+nH2O=TiOSO4*H2O+CaSO4

Реакционную смесь интенсивно перемешивают при нагревании до 180°С в течение 2 часа. Эффективность вскрытия 70%, состав раствора - 9,1 г TiOSO4; 8,8 г CaSO4*2H2O; 3,0 г не прореагировавшего первовскитового концентрата и 37,7 г (83% H2SO4). Полученный раствор декантируют для удаления не прореагировавшего остатка и примеси CaSO4.

В полученный раствор вводят суспензию гидроксида алюминия (16,7 грамма Al(ОН)3) в 12 мл воды необходимую для нейтрализации свободной серной кислоты с образованием 18-водного кристаллогидрата сульфата алюминия (стехиометрическое количество).

Al(ОН)3+H2SO4+12H2O=Al2(SO4)3*18H2O

В течение 20 минут полученную суспензию интенсивно перемешивают шнековым реактором, а затем извлекают из реактора и охлаждают на кристаллизационном столе. Полное отверждение (кристаллизация) в условиях естественного охлаждения протекает за счет химического связывания влаги сульфатом алюминия в форму кристаллогидрата и заканчивается в течение 15 минут. Полученный продукт содержит 87,95% кристаллического Al2(SO4)3*18H2O (14,0% Al2O3) и 11,3% TiOSO4*nH2O (5,1% TiO2). Нерастворимые примеси CaSO4 0,75%.

ПРИМЕР №3

К измельченному (менее 1 мм) перовскитовому концентрату массой 10 грамм приливают 10 мл 93% серной кислоты (Т:Ж 1:1).

CaTiO3+2H2SO4+nH2O=TiOSO4*H2O+CaSO4

Реакционную смесь интенсивно перемешивают при нагревании до 200°С в течение 1 час. Эффективность вскрытия 57%, состав раствора - 7,4 г TiOSO4; 7,2 г CaSO4*2H2O; 4,3 г не прореагировавшего первовскитового концентрата и 12,6 г (90% H2SO4). Полученный раствор декантируют для удаления не прореагировавшего остатка и примеси CaSO4.

В полученный раствор вводят суспензию гидроксида алюминия (6,0 грамма Al(ОН)3) в 7 мл воды необходимую для нейтрализации свободной серной кислоты с образованием 18-водного кристаллогидрата сульфата алюминия (стехиометрическое количество).

Al(ОН)3+H2SO4+12H2O=Al2(SO4)3*18H2O

В течение 20 минут полученную суспензию интенсивно перемешивают шнековым реактором, а затем извлекают из реактора и охлаждают на кристаллизационном столе. Полное отверждение (кристаллизация) в условиях естественного охлаждения протекает за счет химического связывания влаги сульфатом алюминия в форму кристаллогидрата и заканчивается в течение 15 минут. Полученный продукт содержит 76,85% кристаллического Al2(SO4)3*18H2O (12,3% Al2O3) и 22,4% TiOSO4*nH2O (10,1% TiO2). Нерастворимые примеси CaSO4 0,75%.

ПРИМЕР №4

К измельченному (менее 1 мм) ильменитовому концентрату массой 10 грамм приливают 50 мл 80% серной кислоты (Т:Ж 1:5).

FeTiO3+2H2SO4+nH2O=TiOSO4*nH2O+FeSO4*nH2O

Реакционную смесь интенсивно перемешивают при нагревании до 200°С в течение 4 часов. Эффективность вскрытия 99%, состав раствора - 10,9 г TiOSO4; 9,9 г FeSO4; 0,1 г не прореагировавшего ильменитового концентрата и 73,5 г (76% H2SO4). Полученный раствор декантируют для удаления не прореагировавшего остатка.

В полученный раствор вводят суспензию гидроксида алюминия (29,8 грамма Al(ОН)3) в 20 мл воды необходимую для нейтрализации свободной серной кислоты с образованием 18-водного кристаллогидрата сульфата алюминия (стехиометрическое количество).

Al(ОН)3+H2SO4+12H2O=Al2(SO4)3*18H2O

В течение 20 минут полученную суспензию интенсивно перемешивают шнековым реактором, а затем извлекают из реактора и охлаждают на кристаллизационном столе. Полное отверждение (кристаллизация) в условиях естественного охлаждения протекает за счет химического связывания влаги сульфатом алюминия в форму кристаллогидрата и заканчивается в течение 30 минут. Полученный продукт содержит 86,0% кристаллического Al2(SO4)3*18H2O (13,8% Al2O3) и 7,4% TiOSO4*H2O (3,4% TiO2) и 6,7% FeSO4*7H2O (3,2% FeO).

ПРИМЕР №5

К измельченному (менее 1 мм) ильменитовому концентрату массой 10 грамм приливают 25 мл 86% серной кислоты (Т:Ж 1:2,5).

FeTiO3+2H2SO4+nH2O=TiOSO4*nH2O+FeSO4*nH2O

Реакционную смесь интенсивно перемешивают при нагревании до 180°С в течение 2 часов. Эффективность вскрытия 83%, состав раствора - 9,1 г TiOSO4; 8,3 г FeSO4; 1,7 г не прореагировавшего ильменитового концентрата и 33,9 г (82% H2SO4). Полученный раствор декантируют для удаления не прореагировавшего остатка.

В полученный раствор вводят суспензию гидроксида алюминия (14,7 грамма Al(ОН)3) в 10 мл воды необходимую для нейтрализации свободной серной кислоты с образованием 18-водного кристаллогидрата сульфата алюминия (стехиометрическое количество).

Al(ОН)3+H2SO4+12H2O=Al2(SO4)3*18H2O

В течение 20 минут полученную суспензию интенсивно перемешивают шнековым реактором, а затем извлекают из реактора и охлаждают на кристаллизационном столе. Полное отверждение (кристаллизация) в условиях естественного охлаждения протекает за счет химического связывания влаги сульфатом алюминия в форму кристаллогидрата и заканчивается в течение 30 минут. Полученный продукт содержит 78,2% кристаллического Al2(SO4)3*18H2O (12,5% Al2O3) и 11,4% TiOSO4*H2O (5,1% TiO2) и 10,4% FeSO4*7H2O (4,9% FeO).

ПРИМЕР №6

К измельченному (менее 1 мм) ильменитовому концентрату массой 10 грамм приливают 10 мл 93% серной кислоты (Т:Ж 1:1).

FeTiO3+2H2SO4+nH2O=TiOSO4*nH2O+FeSO4*nH2O

Реакционную смесь интенсивно перемешивают при нагревании до 160°С в течение 1 часа. Эффективность вскрытия 62%, состав раствора - 6,8 г TiOSO4; 6,2 г FeSO4; 3,8 г не прореагировавшего ильменитового концентрата и 10,2 г (87% H2SO4). Полученный раствор декантируют для удаления не прореагировавшего остатка.

В полученный раствор вводят суспензию гидроксида алюминия (4,7 грамма Al(ОН)3) в 6 мл воды необходимую для нейтрализации свободной серной кислоты с образованием 18-водного кристаллогидрата сульфата алюминия (стехиометрическое количество).

Al(ОН)3+H2SO4+12H2O=Al2(SO4)3*18H2O

В течение 20 минут полученную суспензию интенсивно перемешивают шнековым реактором, а затем извлекают из реактора и охлаждают на кристаллизационном столе. Полное отверждение (кристаллизация) в условиях естественного охлаждения протекает за счет химического связывания влаги сульфатом алюминия в форму кристаллогидрата и заканчивается в течение 30 минут. Полученный продукт содержит 60,9% кристаллического Al2(SO4)3*18H2O (9,7% Al2O3) и 20,5% TiOSO4*H2O (9,2% TiO2) и 18,6% FeSO4*7H2O (8,7% FeO).

ПРИМЕР №7

К измельченному аризонитовому концентрату массой 10 грамм приливают 50 мл 80% серной кислоты (Т:Ж 1:5).

Fe2O3*TiO2+6 H2SO4=3 TiOSO4*H2O+Fe2(SO4)3*H2O

Реакционную смесь интенсивно перемешивают при нагревании до 200°С в течение 4 часов. Степень вскрытия 95%, состав раствора - 11,4 г TiOSO4; 9,5 г Fe2(SO4)3; 0,5 г не прореагировавшего ильменитового концентрата и 72,1 г (76% H2SO4). Полученный раствор декантируют для удаления не прореагировавшего остатка.

В полученный раствор вводят суспензию гидроксида алюминия (29,1 грамма Al(ОН)3) в 20 мл воды необходимую для нейтрализации свободной серной кислоты с образованием 18-водного кристаллогидрата сульфата алюминия (стехиометрическое количество).

Al(ОН)3+H2SO4+12 H2O=Al2(SO4)3*18H2O

В течение 20 минут полученную суспензию интенсивно перемешивают шнековым реактором, а затем извлекают из реактора и охлаждают на кристаллизационном столе. Полное затвердевание (кристаллизация) в условиях естественного охлаждения заканчивается в течение 30 минут. Полученный продукт содержит 85,6% Al2(SO4)3*18H2O (13,7% Al2O3) и 7,9%TiOSO4*nH2O (3,6%TiO2) и 6,5% Fe2(SO4)3*6H2O (2,7% Fe2O3).

ПРИМЕР №8

К измельченному аризонитовому концентрату массой 10 грамм приливают 25 мл 86% серной кислоты (Т:Ж 1:2,5).

Fe2O3*TiO2+6 H2SO4=3 TiOSO4*H2O+Fe2(SO4)3*H2O

Реакционную смесь интенсивно перемешивают при нагревании до 180°С в течение 2 часов. Степень вскрытия 79%, состав раствора - 9,5 г TiOSO4; 7,9 г Fe2(SO4)3; 2,1 г не прореагировавшего ильменитового концентрата и 32,8 г (81% H2SO4). Полученный раствор декантируют для удаления не прореагировавшего остатка.

В полученный раствор вводят суспензию гидроксида алюминия (14,1 грамма Al(ОН)3) в 12 мл воды необходимую для нейтрализации свободной серной кислоты с образованием 18-водного кристаллогидрата сульфата алюминия (стехиометрическое количество).

Al(ОН)3+H2SO4+12 H2O=Al2(SO4)3*18H2O

В течение 20 минут полученную суспензию интенсивно перемешивают шнековым реактором, а затем извлекают из реактора и охлаждают на кристаллизационном столе. Полное затвердевание (кристаллизация) в условиях естественного охлаждения заканчивается в течение 30 минут. Полученный продукт содержит 77,6% Al2(SO4)3*18H2O (12,4% Al2O3) и 12,2%TiOSO4*nH2O (5,5%TiO2)и 10,2% Fe2(SO4)3*6H2O (4,3% Fe2O3).

ПРИМЕР №9

К измельченному аризонитовому концентрату массой 10 грамм приливают 10 мл 93% серной кислоты (Т:Ж 1:1).

Fe2O3*TiO2+6 H2SO4=3TiOSO4*H2O+Fe2(SO4)3*H2O

Реакционную смесь интенсивно перемешивают при нагревании до 160°С в течение 1 часа. Степень вскрытия 59%, состав раствора - 7,1 г TiOSO4; 5,9 г Fe2(SO4)3; 4,1 г не прореагировавшего ильменитового концентрата и 9,43 г (86% H2SO4). Полученный раствор декантируют для удаления не прореагировавшего остатка.

В полученный раствор вводят суспензию гидроксида алюминия (4,3 грамма Al(ОН)3) в 5 мл воды необходимую для нейтрализации свободной серной кислоты с образованием 18-водного кристаллогидрата сульфата алюминия (стехиометрическое количество).

Al(ОН)3+H2SO4+12 H2O Al2(SO4)3*18H2O

В течение 20 минут полученную суспензию интенсивно перемешивают шнековым реактором, а затем извлекают из реактора и охлаждают на кристаллизационном столе. Полное затвердевание (кристаллизация) в условиях естественного охлаждения заканчивается в течение 30 минут. Полученный продукт содержит 58,7% Al2(SO4)3*18H2O (9,4% Al2O3) и 22,5% TiOSO4*nH2O (10,1% TiO2) и 18,8% Fe2(SO4)3*6H2O (7,9% Fe2O3).

ПРИМЕР №10

К измельченному (менее 1 мм) сфеновому концентрату массой 10 грамм приливают 50 мл 80% серной кислоты (Т:Ж 1:5).

CaSiTiO5+2H2SO4=TiOSO4*H2O+CaSO4+SiO2*2H2O

Реакционную смесь интенсивно перемешивают при нагревании до 200°С в течение 4 часов. Эффективность вскрытия 82%, состав раствора - 6,7 г TiOSO4; 5,6 г CaSO4; 3.9 г SiO2*2H2O; 1,8 г не прореагировавшего ильменитового концентрата и 78,2 г (78% H2SO4). Полученный раствор декантируют для удаления не прореагировавшего и нерастворимого осадка CaSO4 и SiO2*2H2O остатка.

В полученный раствор вводят суспензию гидроксида алюминия (32,3 грамма Al(ОН)3) в 30 мл воды необходимую для нейтрализации свободной серной кислоты с образованием 18-водного кристаллогидрата сульфата алюминия (стехиометрическое количество).

Al(ОН)3+H2SO4+12H2O=Al2(SO4)3*18H2O

В течение 20 минут полученную суспензию интенсивно перемешивают шнековым реактором, а затем извлекают из реактора и охлаждают на кристаллизационном столе. Полное отверждение (кристаллизация) в условиях естественного охлаждения протекает за счет химического связывания влаги сульфатом алюминия в форму кристаллогидрата и заканчивается в течение 30 минут. Полученный продукт содержит 93,4% кристаллического Al2(SO4)3*18H2O (14,9% Al2O3) и 4,6% TiOSO4*nH2O (2,1% TiO2). Нерастворимые примеси (CaSO4 и SiO2*2H2O) 2%.

ПРИМЕР №11

К измельченному (менее 1 мм) сфеновому концентрату массой 10 грамм приливают 25 мл 86% серной кислоты (Т:Ж 1:2,5).

CaSiTiO5+2H2SO4=TiOSO4*H2O+CaSO4+SiO2*2H2O

Реакционную смесь интенсивно перемешивают при нагревании до 180°С в течение 2 часов. Эффективность вскрытия 69%, состав раствора - 5,7 г TiOSO4; 4,8 г CaSO4; 3,2 г SiO2*2H2O; 3,1 г не прореагировавшего ильменитового концентрата и 37,8 г (83% H2SO4). Полученный раствор декантируют для удаления не прореагировавшего и нерастворимого осадка CaSO4 и SiO2*2H2O остатка.

В полученный раствор вводят суспензию гидроксида алюминия (16,7 грамма Al(ОН)3) в 12 мл воды необходимую для нейтрализации свободной серной кислоты с образованием 18-водного кристаллогидрата сульфата алюминия (стехиометрическое количество).

Al(ОН)3+H2SO4+12H2O=Al2(SO4)3*18H2O

В течение 20 минут полученную суспензию интенсивно перемешивают шнековым реактором, а затем извлекают из реактора и охлаждают на кристаллизационном столе. Полное отверждение (кристаллизация) в условиях естественного охлаждения протекает за счет химического связывания влаги сульфатом алюминия в форму кристаллогидрата и заканчивается в течение 30 минут. Полученный продукт содержит 90,7% кристаллического Al2(SO4)3*18H2O (14,5% Al2O3) и 7,3% TiOSO4*nH2O (3,3% TiO2). Нерастворимые примеси (CaSO4 и SiO2*2H2O) 2%.

ПРИМЕР №12

К измельченному (менее 1 мм) сфеновому концентрату массой 10 грамм приливают 10 мл 93% серной кислоты (Т:Ж 1:1).

CaSiTiO5+2H2SO4=TiOSO4*H2O+CaSO4+SiO2*2H2O Реакционную смесь интенсивно перемешивают при нагревании до 160°С в течение 1 часа. Эффективность вскрытия 55%, состав раствора - 4,5 г TiOSO4; 3,8 г CaSO4; 2.6 г SiO2*2H2O; 4,5 г не прореагировавшего ильменитового концентрата и 12,8 г (90% H2SO4). Полученный раствор декантируют для удаления не прореагировавшего и нерастворимого осадка CaSO4 и SiO2*2H2O остатка.

В полученный раствор вводят суспензию гидроксида алюминия (6,1 грамма Al(ОН)3) в 7 мл воды необходимую для нейтрализации свободной серной кислоты с образованием 18-водного кристаллогидрата сульфата алюминия (стехиометрическое количество).

Al(ОН)3+H2SO4+12H2O=Al2(SO4)3*18H2O В течение 20 минут полученную суспензию интенсивно перемешивают шнековым реактором, а затем извлекают из реактора и охлаждают на кристаллизационном столе. Полное отверждение (кристаллизация) в условиях естественного охлаждения протекает за счет химического связывания влаги сульфатом алюминия в форму кристаллогидрата и заканчивается в течение 30 минут. Полученный продукт содержит 83,2% кристаллического Al2(SO4)3*18H2O (13,3% Al2O3) и 14,8% TiOSO4*nH2O (6,7% TiO2). Нерастворимые примеси (CaSO4 и SiO2*2H2O) 2%.

ПРИМЕР 13

Из образцов комплексных алюминий-содержащих коагулянтов, полученных по технологии примеров 1, 4, 7, 11 готовят 10% раствор, в качестве растворов сравнения берут аналогичные растворы алюмокремниевого коагулянта-флокулянта (прототип) и сульфата алюминия. В сточную воду с содержанием нефтепродуктов 5,3 мг/л и рН 7,9 вносят 5 мл раствора коагулянта/литр очищаемой сточной воды. Смесь интенсивно перемешивают 2 минуты, затем снижают скорость и перемешивают еще 8 минут. Смесь декантируют 30 минут и фильтруют.

Эффективность очистки составляет по нефтепродуктам:

53% для коагулянта, полученного из ильменитового концентрата;

48% для коагулянта, полученного из сфенового концентрата;

54% для коагулянта, полученного из аризонитового концентрата;

45% для коагулянта, полученного из перовскитового концентрата;

34% для алюмокремниевого коагулянта-флокулянта (прототип).

ПРИМЕР 14

Из образцов комплексных алюминий-содержащих коагулянтов, полученных по технологии примеров 1, 4, 7, 11 готовят 5% раствор, в качестве растворов сравнения берут аналогичные растворы алюмокремниевого коагулянта-флокулянта (прототип) и сульфата алюминия. В сточную воду процессов нанесения покрытий с использованием аммиачнотартратных комплексов Cu (100 мг/л) и рН 11,8 вносят 5 мл раствора коагулянта/литр очищаемой сточной воды. Смесь интенсивно перемешивают 2 минуты, затем снижают скорость и перемешивают еще 8 минут. Смесь декантируют 30 минут и фильтруют.

Эффективность очистки от органического комплекса меди составила:

33% для коагулянта, полученного из ильменитового концентрата;

32% для коагулянта, полученного из сфенового концентрата;

35% для коагулянта, полученного из аризонитового концентрата; 29% для коагулянта, полученного из перовскитового концентрата; 18% для алюмокремниевого коагулянта-флокулянта (прототип).

Как видно из примеров технический результат от вышеперечисленного - использование различных минеральных источников в качестве сырья, увеличение содержания активного компонента в продукте (от 17 до 35% по сумме водорастворимых оксидов металлов), повышенная эффективность полученных реагентов в процессах очистки сточных вод органических веществ.

Способ получения комплексного алюминийсодержащего коагулянта, включающий вскрытие минерального концентрата серной кислотой при постоянном перемешивании с последующим отделением твердой части и отверждением путем введения в образовавшийся после вскрытия концентрата раствор стехиометрического количества гидроксида алюминия в виде суспензии в воде в расчете на непрореагировавшую серную кислоту и самопроизвольной кристаллизацией, отличающийся тем, что в качестве сырья используют перовскитовый, или аризонитовый, или ильменитовый, или сфеновый концентрат, обработку ведут 80-93% серной кислотой при отношении твердой фазы в граммах к жидкой фазе в миллилитрах 1-(1-5) в течение 1-4 ч при температуре 160-200°С.
Источник поступления информации: Роспатент

Showing 21-30 of 62 items.
20.06.2018
№218.016.6479

Способ очистки промышленных и сточных вод от соединений хрома

Изобретение может быть использовано для очистки сточных вод процессов нанесения гальванических покрытий. Для осуществления способа сточные воды, содержащие соединения хрома(VI), обрабатывают соединениями титана(II или III) в количестве 100-200% от стехиометрического при интенсивном...
Тип: Изобретение
Номер охранного документа: 0002658032
Дата охранного документа: 19.06.2018
17.08.2018
№218.016.7c33

Способ переработки лактата аммония в молочную кислоту и её сложные эфиры

Изобретение относится к производству органических продуктов из возобновляемого сырья, в частности к способам переработки лактата аммония, полученного микробиологическим синтезом, в молочную кислоту и ее сложные эфиры (алкиллактататы). Способ переработки лактата аммония в молочную кислоту и...
Тип: Изобретение
Номер охранного документа: 0002664125
Дата охранного документа: 15.08.2018
29.08.2018
№218.016.806f

Способ получения аминосодержащих производных циклофосфазенов

Изобретение относится к способу получения аминосодержащих производных циклофосфазенов, которые могут использоваться в авиационной, автомобильной промышленности, электронике, строительстве. Предложенный способ заключается в том, что соответствующие аминосодержащие производные циклофосфазенов...
Тип: Изобретение
Номер охранного документа: 0002665057
Дата охранного документа: 28.08.2018
26.09.2018
№218.016.8b9c

Способ получения 4-аллил-2-метоксифеноксифторциклофосфазенов

Изобретение относится к способу получения соединений, содержащих элементы V или XV группы периодической системы Менделеева, а именно 4-аллил-2-метоксифеноксифторциклофосфазенов, которые могут быть использованы для модификации полимерных композиций. 4-аллил-2-метоксифеноксифторциклофосфазены...
Тип: Изобретение
Номер охранного документа: 0002667910
Дата охранного документа: 25.09.2018
03.10.2018
№218.016.8cde

N-замещенные 3-алкилсульфанил-5-(1,2,4-триазол-1-илметил)-1,2,4-триазолы, способ их получения, фунгицидные и рострегуляторные композиции на их основе

Изобретение относится к N-замещенные-3-алкилсульфанил-5-(1,2,4-триазол-1-илметил)-1,2,4-триазолы общей формулы I, в которой R1 означает циклоалкильную группу с числом атомов углерода от 3 до 6, арильную группу общей формулы XCH, арилметильную группу общей формулы XCHCH или гетерилметильную...
Тип: Изобретение
Номер охранного документа: 0002668212
Дата охранного документа: 27.09.2018
15.11.2018
№218.016.9dce

Оптическое стекло

Изобретение относится к области оптического материаловедения, в частности к бесцветным оптическим стеклам, не содержащим оксидов свинца, со значением коэффициента преломления n≥l,73, числом Аббе ν≥40 и плотностью ρ≤4,2 г/см. Изобретение можно использовать для изготовления высокоразрешающих...
Тип: Изобретение
Номер охранного документа: 0002672367
Дата охранного документа: 14.11.2018
13.12.2018
№218.016.a634

Защитное покрытие для медицинских инструментов и способ его нанесения

Изобретение относится к медицине, конкретно к защитным покрытиям, состоящим из последовательно наносимых слоев меди - толщиной 7-10 мкм, бронзы - толщиной 3-7 мкм и содержащим медь - 55% и олово 45%, и верхнего слоя толщиной 10-15 мкм и представляющего собой сплав, содержащий кобальт (93±0,5%),...
Тип: Изобретение
Номер охранного документа: 0002674694
Дата охранного документа: 12.12.2018
15.12.2018
№218.016.a802

Калиевая соль 1,1-динитро-1-(4-нитро-3-(1н-тетразол-1-ил)-1н-пиразол-1-ил)метана и способ ее получения

Изобретение относится к технологии взрывчатых веществ, а именно к способу получения калиевой соли 1,1-динитро-1-(4-нитро-3-(1H-тетразол-1-ил)-1H-пиразол-1-ил)метана (2), которая может быть использована в качестве компонента энергоемких инициирующих и воспламенительных композиций, не содержащего...
Тип: Изобретение
Номер охранного документа: 0002674964
Дата охранного документа: 13.12.2018
13.01.2019
№219.016.aebe

Способ химического нанесения антифрикционного покрытия

Изобретение относится к химическому нанесению металлических покрытий из сплавов на основе никеля и может найти применение в машиностроении, приборостроении, авиастроении для создания коррозионностойких и износостойких покрытий. Cпособ включает выдержку изделий в водном растворе, содержащем соли...
Тип: Изобретение
Номер охранного документа: 0002676934
Дата охранного документа: 11.01.2019
19.01.2019
№219.016.b18f

Способ регенерации медно-хлоридного травильного раствора

Изобретение относится к регенерации травильного раствора хлорида меди и может быть использовано в производстве печатных плат. Способ регенерации медно-хлоридного травильного раствора, содержащего 70-200 г/л ионов меди и 75-90 г/л хлористого водорода, включает электрохимическую обработку...
Тип: Изобретение
Номер охранного документа: 0002677583
Дата охранного документа: 17.01.2019
Showing 21-30 of 31 items.
20.06.2018
№218.016.6479

Способ очистки промышленных и сточных вод от соединений хрома

Изобретение может быть использовано для очистки сточных вод процессов нанесения гальванических покрытий. Для осуществления способа сточные воды, содержащие соединения хрома(VI), обрабатывают соединениями титана(II или III) в количестве 100-200% от стехиометрического при интенсивном...
Тип: Изобретение
Номер охранного документа: 0002658032
Дата охранного документа: 19.06.2018
01.03.2019
№219.016.d07a

Линейное устройство разделения на удлиненном кумулятивном заряде

Изобретение относится к области взрывного дела. Линейное устройство разделения включает удлиненный кумулятивный заряд бризантного взрывчатого вещества, зарядную камеру, разрезаемую преграду, запреградную ловушку для перехвата остатков кумулятивного ножа, стойки для крепления удлиненного...
Тип: Изобретение
Номер охранного документа: 0002463544
Дата охранного документа: 10.10.2012
03.03.2019
№219.016.d257

Кумулятивный заряд

Изобретение относится к взрывным работам. Кумулятивный заряд может быть использован для перфорации нефтяных и газовых скважин, взрывного бурения шпуров, разрушения негабаритов горных пород, прибивания металлических листов в промышленности и в строительстве. Заряд содержит корпус, инициатор,...
Тип: Изобретение
Номер охранного документа: 0002681019
Дата охранного документа: 01.03.2019
19.04.2019
№219.017.319b

Способ дожигания продуктов неполного сгорания при утилизации ракетных двигателей твердого топлива

Способ дожигания продуктов неполного сгорания при утилизации ракетных двигателей твердого топлива путем сжигания на стенде включает закрепление ракетного двигателя твердого топлива сопловой частью внутрь нижнего конца смесительной камеры большого удлинения, воспламенение двигателя и подачу...
Тип: Изобретение
Номер охранного документа: 0002428578
Дата охранного документа: 10.09.2011
03.07.2019
№219.017.a402

Удлиненный кумулятивный заряд

Изобретение относится к области взрывных работ и может найти применение при разделке на металлолом громоздких металлических конструкций, реконструкции и демонтаже бетонных и железобетонных сооружений, плановой ликвидации вооружения и военной техники, ликвидации аварийных ситуаций. Согласно...
Тип: Изобретение
Номер охранного документа: 0002693065
Дата охранного документа: 01.07.2019
15.11.2019
№219.017.e2c1

Удлиненный кумулятивный заряд и способ его изготовления

Изобретение относится в области взрывного дела, в частности к зарядам для взрывных работ и может быть использовано при демонтаже крупногабаритных инженерных сооружений, конструкций, а также при ликвидации с утилизацией тяжелой военной техники и вооружений. Устройство относится к составным...
Тип: Изобретение
Номер охранного документа: 0002706155
Дата охранного документа: 14.11.2019
29.11.2019
№219.017.e7a0

Способ получения треххлористого титана

Изобретение относится к получению треххлористого титана, используемого в качестве компонента активного покрытия анодов, катализатора в органическом синтезе, а также в процессах очистки воды. Способ получения треххлористого титана включает восстановление тетрахлорида титана металлом при...
Тип: Изобретение
Номер охранного документа: 0002707362
Дата охранного документа: 26.11.2019
19.12.2019
№219.017.ef37

Взрывной генератор электромагнитных импульсов

Изобретение относится к области использования энергии взрыва и предназначено для преобразования ее в энергию электромагнитного импульса повышенной мощности. Взрывной генератор состоит из металлического корпуса в форме либо двух изолированных друг от друга плоских пластин из алюминия или...
Тип: Изобретение
Номер охранного документа: 0002709255
Дата охранного документа: 17.12.2019
17.01.2020
№220.017.f636

Способ получения треххлористого титана

Изобретение относится к получению треххлористого титана, используемого в качестве компонента активного покрытия анодов, катализатора в органическом синтезе, а также в процессах очистки воды. Для получения треххлористого титана проводят восстановление тетрахлорида титана металлом при нагревании....
Тип: Изобретение
Номер охранного документа: 0002711226
Дата охранного документа: 15.01.2020
12.05.2023
№223.018.5455

Способ получения диоксида титана из кварц-лейкоксенового концентрата

Изобретение относится к переработке кварц-лейкоксенового концентрата, полученного при обогащении нефтеносных кремнисто-титановых руд, и может быть использовано для получения диоксида титана. Комплексная переработка кварц-лейкоксенового концентрата с получением диоксида титана включает обжиг в...
Тип: Изобретение
Номер охранного документа: 0002795543
Дата охранного документа: 04.05.2023
+ добавить свой РИД