×
13.01.2019
219.016.aebe

СПОСОБ ХИМИЧЕСКОГО НАНЕСЕНИЯ АНТИФРИКЦИОННОГО ПОКРЫТИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к химическому нанесению металлических покрытий из сплавов на основе никеля и может найти применение в машиностроении, приборостроении, авиастроении для создания коррозионностойких и износостойких покрытий. Cпособ включает выдержку изделий в водном растворе, содержащем соли никеля, меди и свинца, гипофосфит натрия, глицин, ортофосфорную кислоту, тетраборат натрия и фталоцианинат меди, модифицированный карбоксифенильными группами, при следующем соотношении компонентов, моль/л: соль никеля 0,075-0,125, соль меди 0,0008-0,0008, соль свинца (0,6-1,2)⋅10, гипофосфит натрия 0,28-0,40, глицин 0,10-0,40, ортофосфорная кислота 0,10-0,30, тетраборат натрия 0,05-0,10, модифицированный фталоцианинат меди 2⋅10-5⋅10. Нанесение покрытия проводят при перемешивании, температуре раствора 70-90°С и рН 6,5-8. Модифицирование фталоцианината меди осуществляют обработкой 4-бензилдиазония карбоксилатом при его доле от массы фталоцианината от 3 до 30%. Техническим результатом является повышение антифрикционных свойств покрытий в условиях сухого трения. Полученное покрытие характеризуется пониженным коэффициентом трения по стали и пониженным износом контртела в трибологическом контакте. 2 з.п. ф-лы, 1 табл., 8 пр.
Реферат Свернуть Развернуть

Изобретение относится к химическому нанесению металлических покрытий из сплавов на основе никеля и может найти применение в машиностроении, приборостроении и авиастроении для создания покрытий, сочетающих высокие антикоррозионные свойства и способность противостоять износу в условиях сухого трения (антифрикционные свойства).

Известен способ химического нанесения покрытий сплавом никель-медь-фосфор из водного раствора, содержащего, моль/л: сульфат, хлорид или ацетат никеля 0,075-0,125, сульфат, хлорид или ацетатмеди 0,0008-0,0016, гипофосфит натрия 0,28-0,40, янтарную кислоту 0,08-0,12, малоновую кислоту 0,10-0,20, аминоуксусную кислоту (глицин) 0,07-0,25, нитрат или ацетат свинца (0,6-1,2)⋅10-5, при рН 6,3-7,0 и температуре 87-96°С. Из этого раствора осаждают покрытия, содержащие 7,2-8,7% фосфора и 0,6-1,6% меди[RU 2343222, С23С 18/50, опубликовано 13.07.2007].

Легирование никель-фосфорного покрытия медью позволяет повысить износостойкость благодаря эффекту избирательного переноса меди в условиях граничного трения.

Наиболее близким по технической сущности является способ химического нанесения покрытий из сплавов на основе никеля на поверхность изделий, который включает выдержку изделий в водном растворе, содержащем соли никеля, меди и свинца, гипофосфит натрия, глицин, ортофосфорную кислоту и тетраборат натрия при следующем соотношении компонентов, моль/л:соль никеля - 0,075-0,125,соль меди -0,0008-0,008, соль свинца - (0,6-1,2)⋅10-5, гипофосфит натрия - 0,28-0,40, глицин - 0,10-0,40, ортофосфорная кислота - 0,10-0,30, тетраборат натрия - 0,05-0,10, при температуре водного раствора 70-93°С и рН 6,3-8,7 [RU 2592601, МПК С23С 18/50, опубликовано 27.07.2016].

Указанный способ позволяет получать покрытия с высокой производительностью и при пониженных энергозатратах (более низкой температуре), которые отличаются высокой коррозионной стойкостью и износостойкостью в условиях граничного трения (со смазкой). Однако при использовании этого покрытия в условиях сухого трения наблюдается значительный износ самого покрытия и контртела.

Техническим результатом изобретения является улучшение антифрикционных свойств покрытий на основе сплава никель-медь-фосфор в условиях сухого трения.

Технический результат достигается тем, что способ химического нанесения антифрикционного покрытия на основе сплава никель-медь-фосфор на поверхность стальных изделий включает выдержку изделий в водном растворе, содержащем соли никеля, меди и свинца, гипофосфит натрия, глицин, ортофосфорную кислоту, тетраборат натрия и фталоцианинат меди, модифицированный карбоксифенильными группами, при следующем соотношении компонентов, моль/л:

соль никеля 0,075-0,125
соль меди 0,0008-0,008
соль свинца (0,6-1,2)⋅10-5
гипофосфит натрия 0,28-0,40
глицин 0,10-0,40
ортофосфорная кислота 0,10-0,30
тетраборат натрия 0,05-0,10
модифицированный фталоцианинат меди 2⋅10-4 - 5⋅10-4,

причем нанесение покрытия проводят при перемешивании, температуре водного раствора 70-90°С и рН 6,5-8.

Технический результат достигается также тем, что модифицирование проводят гетерогенной реакцией между фталоцианинатом меди и с 4-бензолдиазония карбоксилатом, масса которого составляет 3-30% от массы фталоцианината. Технический результат также достигается тем, что водный раствор для нанесения покрытия в качестве соли никеля содержит сульфат, хлорид или ацетат никеля, в качестве соли меди содержит сульфат, хлорид или ацетат меди, в качестве соли свинца - нитрат или ацетат свинца.

В указанных условиях получают никель-медь-фосфорные покрытия, содержащие от 5 до 8% фосфора и до 2% меди, отличающиеся повышенными антифрикционными свойствами в условиях сухого трения. Скорость нанесения покрытий при температуре 90°С достигает 40 мкм/ч. Модифицированный фталоцианинат меди включается в состав покрытия (объемная доля модифицированного фталоцианината меди в покрытии составляет 2-3%, массовая доля - 0,5-0,6%) и проявляет себя как твердая смазка в условиях сухого трения, что выражается в снижении коэффициента трения и массовых потерь трибологической пары.

Производные фталоцианина используются в качестве красителей и катализаторов, отличаются высокой химической и термической устойчивостью. Известно применение немодифицированного фталоцианината меди в качестве добавки в растворы для электроосаждения никелевых покрытий с целью повышения рассеивающей способности электролита, однако использование его в растворах для химического осаждения покрытий на основе сплавов никель-фосфор и никель-медь-фосфор не описано. Более того, введение его в раствор для химического осаждения покрытий на основе сплава никель-медь-фосфор не приводит к улучшению антифрикционных свойств покрытий (пример 2 таблицы 1) вследствие гидрофобности поверхности и низкой седиментационной стабильности водных суспензий. Включение фталоцианината меди в состав осаждаемого покрытия с антифрикционным эффектом достигается только при модифицировании его карбоксильными группами на 3 - 30% по массе (примеры 3-8).

Модифицирование фталоцианината меди можно осуществить гетерофазной реакцией с 4-бензолдиазония карбоксилатом (при его введении до 30 мас. % - эквимольно с фталоцианинатом меди) в условиях арилирования по Гомбергу-Бахману. Для этого в стакан бисерной мельницы вносят 10 г фталоцианината меди, 3n моль CH3COONH4 и 140 см3 стеклянных шаров диаметром ~3 мм. Добавляют воду с расчетом на ее суммарное количество после внесения всех реагентов - 150 г. Перемешивают суспензию со скоростью 150-200 мин-1 15 мин при 20-25°С, затем добавляют раствор n моль 4-бензолдиазония карбоксилата (полученного диазотированием 4-аминобензойной кислоты в водном растворе, содержащем HCl и NaNO2). Поднимают температуру до 75°С и поддерживают ее 2 ч. Вспенивание реакционной массы устраняют изопропиловым спиртом. После охлаждения фильтруют суспензию под вакуумом, промывают пасту фталоцианината меди водой и экстрагируют примеси ацетоном в аппарате Сокслета. В зависимости от мольного соотношения модифицирующего агента и фталоцианината меди получают продукт с различным содержанием карбоксифенильных групп, которое определяется кислотно-основным титрованием. Очищенный модифицированный фталоцианинат меди сушат до постоянной массы и измельчают в мельнице ножевого типа, получая продукт с выходом 90-95%. Средний размер частиц модифицированного фталоцианината меди составляет 270 нм; частицы размером более 1 мкм отсутствуют.

Приготовление раствора осуществляют последовательным растворением в деионизированной или дистиллированной воде глицина, затем неорганических компонентов и доведением рН до необходимой величины растворами щелочей. Затем в раствор при перемешивании вводят фталоцианинат меди, модифицированный карбоксифенильными группами. Приготовленный раствор отличается стабильностью и высокой скоростью осаждения и работоспособен в течение длительного времени при условии периодической корректировки по содержанию основных компонентов.

Изобретение может быть проиллюстрировано следующими примерами. Пример 1 (прототип). Нанесение химического покрытия никель-медь-фосфор на стальное изделие известным способом проводили в растворе, содержащем сульфат никеля - 0,12 моль/л, сульфат меди - 0,0012 моль/л,глицин - 0,13 моль/л, гипофосфит натрия - 0,37 моль/л, фосфорную кислоту- 0,20 моль/л, тетраборат натрия - 0,08 моль/л, ацетат свинца - 9⋅10-6 моль/л, который доводили раствором гидроксида калия до рН 6,8. Обезжиренные и активированные в растворе соляной кислоты изделия из стали 3 завешивали в ванну с раствороми выдерживали в течение 1 часа при температуре 80°С. Затем изделия вынимали, промывали, сушили и термообрабатывали при 400°С на воздухе в течение 1 часа. Коэффициенты трения покрытия определяли на установке МТУ-01 при нагрузке 10,4 Н (0,32 МПа) в течение 1 часа. В качестве контртела использовали сталь 20 (HV 4,6 ГПа или HRC 38). Испытания на износ покрытий в условиях сухого трения проводили на абразиметре Табера для линейного истирания с использованием в качестве контртела стержня из стали ст. 45 (∅ 6 мм,) со средней скоростью 60 циклов/мин, при нагрузке 10,8 Н (0,38 МПа), длине рабочего хода 25,4 мм, пути трения до 2000 м. Износ пары трения во всех случаях оценивали гравиметрическим методом, а интенсивность износа пересчитывали в единицы толщины по формуле:

где Δm - потери массы образца, кг; ρ - плотность сплава, кг/м3; S - геометрическая площадь контакта, м2; L - путь трения, м.

Сопротивление износу (WR) или износостойкость оценивали как величину, обратную интенсивности изнашивания WR=(1/W).

Результаты экспериментов приведены в таблице 1 (раствор 1).

Пример 2. В раствор, описанный в примере 1, вводили при перемешивании немодифицированный фталоцианинат меди в количестве 3,5⋅10-4 моль/л. Обезжиренные и активированные в растворе соляной кислоты изделия из стали 3 завешивали в ванну с раствороми выдерживали в течение 1 часа при температуре 80°С. Затем изделия вынимали, промывали, сушили и термообрабатывали на воздухе при 400°С в течение 1 часа. Определение коэффициентов трения и испытания на износ проводили в условиях, описанных в примере 1. Результаты экспериментов приведены в таблице 1 (раствор 2).

Пример 3. В раствор, описанный в примере 1, вводили при перемешивании в количестве 3,5⋅10-4 моль/л модифицированный карбоксифенильными группами фталоцианинат меди (содержание модифицирующего агента составляло 3% от массы фталоцианината меди). Обезжиренные и активированные в растворе соляной кислоты изделия из стали 3 завешивали в ванну с растворами выдерживали в течение 1 часа при температуре 80°С. Затем изделия вынимали, промывали, сушили и термообрабатывали при 400°С на воздухе в течение 1 часа. Определение коэффициентов трения и испытания на износ проводили в условиях, описанных в примере 1. Результаты экспериментов приведены в таблице 1 (раствор 3).

Пример 4. В раствор, описанный в примере 1, вводили при перемешивании в количестве 3,5⋅10-4 моль/л модифицированный карбоксифенильными группами фталоцианинат меди (содержание модифицирующего агента составляло 30% от массы фталоцианината меди). Обезжиренные и активированные в растворе соляной кислоты изделия из стали 3 завешивали в ванну с раствором и выдерживали в течение 1 часа при температуре 80°С. Затем изделия вынимали, промывали, сушили и термообрабатывали при 400°С на воздухе в течение 1 часа. Определение коэффициентов трения и испытания на износ проводили в условиях, описанных в примере 1. Результаты экспериментов приведены в таблице 1 (раствор 4).

Пример 5. Нанесение химического покрытия никель-медь-фосфор на стальное изделие известным способом проводили в растворе, содержащем сульфат никеля - 0,125 моль/л, сульфат меди - 0,008 моль/л, глицин - 0,40 моль/л, гипофосфит натрия - 0,40 моль/л, ортофосфорную кислоту - 0,30 моль/л, тетраборат натрия - 0,10 моль/л, ацетат свинца - 1,2⋅10-5 моль/л, который доводили раствором гидроксида калия до рН 8. Затем при перемешивании вводили 5⋅10-4 моль/л модифицированного карбоксифенильными группами фталоцианината меди (содержание модифицирующего агента составляло 3% от массы фталоцианината меди). Обезжиренные и активированные в растворе соляной кислоты изделия из стали 3 завешивали в ванну с раствороми выдерживали в течение 1 часа при температуре 80°С. Затем изделия вынимали, промывали, сушили и термообрабатывали на воздухе при 400°С в течение 1 часа. Определение коэффициентов трения и испытания на износ проводили в условиях, описанных в примере 1. Результаты экспериментов приведены в таблице 1 (раствор 5).

Пример 6. Нанесение химического покрытия никель-медь-фосфор на стальное изделие известным способом проводили в растворе, содержащем хлорид никеля - 0,12 моль/л, хлорид меди - 0,0005 моль/л, глицин -0,13 моль/л, гипофосфит натрия - 0,37 моль/л, ортофосфорную кислоту - 0,20 моль/л, тетраборат натрия - 0,08 моль/л, ацетат свинца - 1⋅10-5 моль/л, который доводили раствором гидроксида калия до рН 6,5. Затем при перемешивании вводили 3,5-10"4 моль/л модифицированного карбоксифенильными группами фталоцианината меди (содержание модифицирующего агента составляло 20% от массы фталоцианината меди). Обезжиренные и активированные в растворе соляной кислоты изделия из стали 3 завешивали в ванну с раствороми выдерживали в течение 1 часа при температуре 70°С. Затем изделия вынимали, промывали, сушили и термообрабатывали при 400°С на воздухе в течение 1 часа. Определение коэффициентов трения и испытания на износ проводили в условиях, описанных в примере 1. Результаты экспериментов приведены в таблице 1 (раствор 6).

Пример 7. Нанесение химического покрытия никель-медь-фосфор на стальное изделие известным способом проводили в растворе, содержащем ацетат никеля - 0,12 моль/л, ацетат меди - 0,0012 моль/л, глицин - 0,13 моль/л, гипофосфит натрия - 0,37 моль/л, ортофосфорную кислоту - 0,20 моль/л, тетраборат натрия - 0,08 моль/л, ацетат свинца - 9⋅10-6 моль/л, который доводили раствором гидроксида калия до рН 7,5. Затем при перемешивании вводили в количестве 3,5⋅10-4 моль/л модифицированный карбоксифенильными группами фталоцианинат меди (содержание модифицирующего агента составляло 10% от массы фталоцианината меди). Обезжиренные и активированные в растворе соляной кислоты изделия из стали 3 завешивали в ванну с раствороми выдерживали в течение 1 часа при температуре 80°С. Затем изделия вынимали, промывали, сушили и термообрабатывали при 400°С на воздухе в течение 1 часа. Определение коэффициентов трения и испытания на износ проводили в условиях, описанных в примере 1. Результаты экспериментов приведены в таблице 1 (раствор 7).

Пример 8. Нанесение химического покрытия никель-медь-фосфор на стальное изделие известным способом проводили в растворе, содержащем сульфат никеля - 0,075 моль/л, сульфат меди - 0,0008 моль/л, глицин -0,10 моль/л, гипофосфит натрия - 0,28 моль/л, ортофосфорную кислоту - 0,10 моль/л, тетраборат натрия - 0,05 моль/л, ацетат свинца - 6⋅10-6 моль/л, который доводили раствором гидроксида калия до рН 7. Затем вводили при перемешивании 2-10"4 моль/л модифицированного карбоксифенильными группами фталоцианината меди (содержание модифицирующего агента составляло 30% от массы фталоцианината меди). Обезжиренные и активированные в растворе соляной кислоты изделия из стали 3 завешивали в ванну с раствороми выдерживали в течение 1 часа при температуре 90°С. Затем изделия вынимали, промывали, сушили и термообрабатывали на воздухе при 400°С в течение 1 часа. Определение коэффициентов трения и испытания на износ проводили в условиях, описанных в примере 1. Результаты экспериментов приведены в таблице 1 (раствор 8).

Как видно из приведенных примеров, при использовании описанного способа химического нанесения антифрикционных покрытий формируется покрытие с пониженным коэффициентом трения и пониженным износом стального контртела при трибологическом контакте.

10

Источник поступления информации: Роспатент

Showing 1-10 of 62 items.
13.01.2017
№217.015.86f1

Способ получения нитрата церия (iv)

Изобретение относится к способу получения нитрата церия (IV) электрохимическим окислением нитрата церия (III) в анодной камере электролизера, содержащей раствор с начальной концентрацией ионов церия (III) 100-130 г/л и начальной концентрацией свободной азотной кислоты в анолите и в католите...
Тип: Изобретение
Номер охранного документа: 0002603642
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.9c5b

Способ очистки триоксида молибдена

Изобретение может быть использовано для получения триоксида молибдена высокой чистоты, используемого при выращивании монокристаллов трибората лития, при синтезе сырья для выращивания монокристаллов молибдата лития и теллуритных стекол. Очистку триоксида молибдена ведут сублимацией в вакууме....
Тип: Изобретение
Номер охранного документа: 0002610494
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.9e48

Способ извлечения ионов церия (iv) из водных растворов

Изобретение относится к способам извлечения церия (IV) методом электрофлотации из сточных вод, бедного или техногенного сырья. Описан способ извлечения церия (IV) из водного раствора, включающий электрофлотацию с нерастворимыми анодами, в котором в очищаемую воду вводят катионный флокулянт на...
Тип: Изобретение
Номер охранного документа: 0002610864
Дата охранного документа: 16.02.2017
25.08.2017
№217.015.b628

Способ получения оксидов урана и тетрафторида кремния из тетрафторида урана

Изобретение относится к области технологии ядерных материалов и может быть использовано для конверсии тетрафторида урана, в том числе обедненного, в наноструктурированные оксиды урана и с получением другого ценного неорганического вещества - тетрафторида кремния. Способ заключается в смешивании...
Тип: Изобретение
Номер охранного документа: 0002614712
Дата охранного документа: 28.03.2017
26.08.2017
№217.015.d493

Способ термоокислительного крекинга гудрона

Изобретение относится к нефтехимии, в частности к переработке гудрона для получения светлых нефтепродуктов и битума. Описан способ термоокислительного крекинга гудрона в реакторе непрерывного действия при повышенной температуре, включающий подачу предварительно нагретых до температуры реакции...
Тип: Изобретение
Номер охранного документа: 0002622291
Дата охранного документа: 14.06.2017
26.08.2017
№217.015.dc0c

Способ получения алюмокремниевого коагулянта

Изобретение относится к технологии переработки алюмокремниевого сырья. Нефелиновое сырье измельчают, спекают при температуре 400-1000°C с карбонатом натрия, или дисульфатом калия, или гидросульфатом калия. Спек обрабатывают водой, или водным раствором серной или соляной кислоты, или водным...
Тип: Изобретение
Номер охранного документа: 0002624326
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.e980

Способ извлечения рения из урановых растворов

Изобретение относится к сорбционной гидрометаллургии урана и рения и может быть использовано для селективного извлечения рения из растворов. Способ извлечения рения из урансодержащих растворов включает сорбцию рения слабоосновным наноструктурированным ионитом на стиролакрилатной матрице,...
Тип: Изобретение
Номер охранного документа: 0002627838
Дата охранного документа: 11.08.2017
29.12.2017
№217.015.f9d0

Способ очистки l-лактида

Изобретение относится к усовершенствованному способу очистки L-лактида - циклического димера (диэфира) молочной кислоты, мономера для получения биодеградируемых полимерных материалов, используемых в качестве покрытий или контейнеров для пищевых продуктов, а также в медицинской промышленности....
Тип: Изобретение
Номер охранного документа: 0002639705
Дата охранного документа: 22.12.2017
19.01.2018
№218.016.05ed

Способ электролитического осаждения медных покрытий

Изобретение относится к области гальванотехники и может быть использовано в производстве печатных плат и других компонентов электронных устройств. Способ электролитического осаждения медных покрытий из электролита, содержащего пентагидрат сульфата меди и серную кислоту, с использованием...
Тип: Изобретение
Номер охранного документа: 0002630994
Дата охранного документа: 15.09.2017
19.01.2018
№218.016.0678

Способ получения l-лактида

Изобретение относится к усовершенствованному способу очистки L-лактида - циклического димера (диэфира) молочной кислоты, мономера для получения биодеградируемых полимерных материалов, используемых в качестве покрытий или контейнеров для пищевых продуктов, а также в медицинской промышленности,...
Тип: Изобретение
Номер охранного документа: 0002631110
Дата охранного документа: 19.09.2017
Showing 1-10 of 10 items.
10.06.2014
№216.012.ce69

Способ получения покрытий на основе диоксида кремния

Изобретение относится к листовому стеклу, используемому в строительной индустрии, для считывающих устройств, для солнечных батарей. Техническим результатом изобретения является создание для листового стекла покрытия, обладающего повышенными показателями микротвердости и стойкости к царапанию...
Тип: Изобретение
Номер охранного документа: 0002518612
Дата охранного документа: 10.06.2014
27.11.2014
№216.013.0b05

Композит на основе алюмосиликатной стеклокерамики и способ его получения (варианты)

Изобретение относится к области химической промышленности, теплоэнергетики, авиакосмической техники, в частности к композиту на основе алюмосиликатной стеклокерамики, армированной одной из наноформ углерода. Композит на основе стронцийалюмосиликатной стеклокерамики имеет следующий состав,...
Тип: Изобретение
Номер охранного документа: 0002534229
Дата охранного документа: 27.11.2014
10.11.2015
№216.013.8e9b

Способ модификации нефтеполимерных смол

Изобретение относится к области прикладной органической химии, а именно к способу модификации нефтеполимерных смол и применению полученной смеси для изготовления мишеней-тарелочек для стендовой стрельбы дробью из огнестрельного оружия. Композиция для производства мишеней-тарелочек для стендовой...
Тип: Изобретение
Номер охранного документа: 0002568116
Дата охранного документа: 10.11.2015
27.03.2016
№216.014.c637

Композиция для изготовления мишеней-тарелочек

Настоящее изобретение относится к выбору органического компонента для композиции, применяемой для изготовления экологически чистых мишеней-тарелочек для стендовой стрельбы. Описана композиция для производства мишеней-тарелочек для стендовой стрельбы состоящая из: (1) омыленного талового пека с...
Тип: Изобретение
Номер охранного документа: 0002578716
Дата охранного документа: 27.03.2016
10.06.2016
№216.015.458e

Способ электроосаждения композиционных покрытий на основе никеля и наноразмерного диоксида циркония

Изобретение относится к области гальванотехники и может быть использовано для нанесения на детали, работающие под нагрузкой в агрессивных средах, для повышения надежности работы изделий. Способ включает электроосаждение композиционного покрытия на основе никеля и наноразмерного диоксида...
Тип: Изобретение
Номер охранного документа: 0002586371
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.46c4

Способ электроосаждения медных покрытий

Изобретение относится к области гальванотехники и может быть использовано для нанесения медных покрытий на профилированные изделия. Способ включает электроосаждение медного покрытия из электролита, содержащего соль меди и серную кислоту, с использованием реверсивного тока, при этом электролиз...
Тип: Изобретение
Номер охранного документа: 0002586370
Дата охранного документа: 10.06.2016
13.01.2017
№217.015.6b96

Способ химического нанесения покрытий из сплава никель-медь-фосфор

Изобретение относится к химическому нанесению металлических покрытий из сплавов на основе никеля. Способ включает выдержку изделий в водном растворе, содержащем компоненты при следующем соотношении, моль/л: соль никеля 0,075-0,125; соль меди - 0,0008-0,008, соль свинца (0,6-1,2)·10; гипофосфит...
Тип: Изобретение
Номер охранного документа: 0002592601
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.6c53

Способ химического нанесения покрытий из сплава никель-фосфор

Изобретение относится к химическому нанесению металлических покрытий из сплавов на основе никеля и может найти применение в машиностроении, приборостроении и авиастроении для создания коррозионно-стойких, износостойких и декоративных покрытий. Способ включает выдержку изделий в водном растворе,...
Тип: Изобретение
Номер охранного документа: 0002592654
Дата охранного документа: 27.07.2016
25.08.2017
№217.015.c138

Способ электроосаждения покрытий никель-фосфор

Изобретение относится к области гальванотехники и может быть использовано при нанесении покрытий с повышенной твердостью и износостойкостью. Способ включает нанесение покрытия из электролита, содержащего сульфат никеля семиводный, аминоуксусную кислоту, хлорид-ион, гипофосфит натрия одноводный,...
Тип: Изобретение
Номер охранного документа: 0002617470
Дата охранного документа: 25.04.2017
21.05.2023
№223.018.685b

Производные 1-гидрокси- и 1-метокси-2-(4-нитрофенил)имидазола, обладающие противовирусной активностью в отношении ортопоксвирусов

Изобретение относится к области органической химии, а именно к новым производным 1-гидрокси- и 1-метокси-2-(4-нитрофенил)имидазола общей формулы Ia-d, обладающим противовирусной активностью в отношении ортопоксвирусов. В соединениях формулы Ia-d R = H; R = R = CH (Ia); R = H; RR = CHC(CH)CH...
Тип: Изобретение
Номер охранного документа: 0002794763
Дата охранного документа: 24.04.2023
+ добавить свой РИД