×
25.04.2020
220.018.19cc

Способ изготовления пластинчатого щелевого теплообменника

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области теплообмена между газовыми потоками. Способ изготовления пластинчатого щелевого теплообменника включает сборку из пластин щелевых каналов, герметизацию которых производят путем сварки образующих щелевой канал пластин попарно между собой, сборку щелевых каналов в пакет и укладку пакета щелевых каналов в корпус, причем щелевые каналы изготавливают в соответствии с соотношением: L – длина щелевого канала, b – ширина щелевого канала, r – размер щелевого канала в поперечном направлении, C – теплоемкость газа, J – поток газа, а после сварки щелевых каналов в их торцы герметично вваривают входные и выходные трубопроводы, которые соединяют, образуя входной и выходной тракт высокотемпературного газового потока, при этом расстояния между соседними щелевыми каналами выбирают равными размеру щелевого канала в поперечном направлении r, после чего пакет щелевых каналов герметично вваривают в толстостенный внешний корпус, а в противоположные торцы внешнего корпуса вваривают входной и выходной трубопроводы тракта низкотемпературного газового потока, причем расстояние между боковыми стенками соседних щелевых каналов и между внешним корпусом и соседними боковыми пластинами щелевых каналов выбирают равным размеру щелевого канала в поперечном направлении r. Технический результат - создание оптимальных условий для повышения теплообмена. 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к области теплообмена между газовыми потоками и может быть использовано для теплообмена между потоками газовых смесей различного количественного и качественного состава в широком спектре технологических процессов, работающих с газовыми смесями, например, в нефтеперерабатывающей, нефтехимической, химической, атомной, холодильной, газовой и других отраслях промышленности, в водородной энергетике и коммунальном хозяйстве.

Данное изобретение может быть применено, в частности, для создания рекуперативных теплообменных аппаратов с неподвижными плоскими щелевыми каналами для теплоносителей, которые контактируют друг с другом через разделяющие их теплопроводные стенки каналов.

Теплообменные аппараты чрезвычайно широко используются в самых различных отраслях промышленности, науки и техники, что привело к созданию большого количества оригинальных конструкций теплообменных аппаратов в зависимости от их назначения (стационарные, мобильные, переносные), качественного (агрессивные, неагрессивные среды) и количественного (малые потоки, средние потоки, большие потоки) состава газовых смесей, диапазона их давлений (низкого, высокого, сверхвысокого), диапазона рабочих температур (низкие, до 100°С; высокие, до 1000°С; сверхвысокие, выше 1000°С) и других параметров использования.

В связи с таким широким использованием в промышленности в настоящее время разработаны различные типы рекуперативных теплообменных аппаратов, таких, например, как представлено в [1], а так же их всевозможные комбинации:

• Кожухотрубчатые (кожухотрубные) теплообменники;

• Элементные (секционные) теплообменники;

• Двухтрубные теплообменники вида «труба в трубе»;

• Витые теплообменники;

• Погружные теплообменники;

• Оросительные теплообменники;

• Ребристые теплообменники;

Спиральные теплообменники• ;

Пластинчатые теплообменники• ;

Пластинчато-ребристые теплообменники• ;

• Графитовые теплообменники;

• Миниканальные теплообменники;

Геликоидные теплообменники• ;

• Щелевые теплообменники;

• Пластинчатые щелевые теплообменники;

• Конденсаторные теплообменники;

• Трубчато-ленточные теплообменники и множество других.

Известно техническое решение «Щелевой теплообменник» [2], способ изготовления которого заключается в следующем: щелевой теплообменник изготавливают из двух контактирующих по линиям ненулевой ширины и соединенных контактной сваркой листов металла, с общим герметичным наружным контуром, причем, по меньшей мере, в одном из этих листов выполнены фигурные выемки, которые образуют в пространстве между листами щелевые каналы, при этом длина каждой линии контакта листов больше ее ширины, причем все линии контакта листов, включая наружный герметичный контур, расположены в одной плоскости. Изобретение относится к области теплотехники и может быть использовано в теплообменных аппаратах. Его применение приводит к повышению прочности и надежности конструкции теплообменника.

Однако, изготовление щелевых каналов данного устройства, как видно из вышеприведенного описания, представляет собой сложный процесс. Кроме того, отсутствие критерия выбора размеров щелевых каналов и пластин их образующих не дает возможности создания требуемого режима теплопередачи между газовыми потоками.

Известно так же техническое решение «Способ изготовления пластинчатого теплообменника» [3], выбранное за прототип, при котором пластины, образующие каналы, собирают в пакет, герметизацию которого осуществляют путем сварки сначала пластин попарно между собой в секции, а затем секций в пакет, после чего производят укладку пакета пластин в корпус. Изобретение относится к области теплотехники, а именно к теплообменникам и способам их изготовления, и его применение приводит к совершенствованию динамических характеристик потоков в каналах, вследствие чего происходит улучшение гидро- и теплотехнических характеристик теплообменника при одновременном снижении технологических затрат и повышении производительности труда при изготовлении.

Однако в данном способе отсутствует возможность выбора оптимальных размеров как каналов для пропускания теплоносителя, так и, соответственно, выбора размеров пластин, что делает мало предсказуемым теплообмен между нагревающим и нагреваемым потоками газа, что приводит к большим неконтролируемым потерям тепла теплоносителя, особенно в случае использования различных газовых смесей.

Достигаемым техническим результатом предлагаемого изобретения является создание оптимальных условий для повышения теплообмена между нагревающим и нагреваемым потоками газов и, тем самым, снижение потерь тепла теплоносителя.

Достижение указанного результата обеспечивается в предлагаемом способе изготовления пластинчатого щелевого теплообменника, включающем сборку из пластин щелевых каналов, герметизацию которых производят путем сварки образующих щелевой канал пластин попарно между собой, сборку щелевых каналов в пакет и укладку пакета щелевых каналов в корпус, отличающемся тем, что щелевые каналы изготавливают в соответствии с соотношением:

, где

L – длина щелевого канала,

b – ширина щелевого канала,

r – размер щелевого канала в поперечном направлении,

CV – теплоемкость газа,

– коэффициент теплопроводности газа,

J – поток газа,

а после щелевых каналов в их торцы герметично вваривают входные и выходные трубопроводы, которые соединяют, образуя входной и выходной тракт высокотемпературного газового потока, при этом расстояния между соседними щелевыми каналами выбирают равными размеру щелевого канала в поперечном направлении r, после чего пакет щелевых каналов герметично вваривают в толстостенный внешний корпус, а в противоположные торцы внешнего корпуса вваривают входной и выходной трубопроводы тракта низкотемпературного газового потока, причем расстояние между боковыми стенками соседних щелевых каналов и между внешним корпусом и соседними боковыми пластинами щелевых каналов выбирают равным размеру щелевого канала в поперечном направлении r.

Настоящее изобретение представляет собой способ изготовления переносного малогабаритного пластинчатого щелевого теплообменника, работающего в условиях неагрессивной газовой среды в диапазоне высокого, до 50 бар, давления газа, высоких, до 1000°С температур и обладающего минимальными потерями тепла, то есть обеспечивающего высокий коэффициент передачи тепла, от нагревающего теплоносителя нагреваемому газовому потоку.

Получение указанного технического результата приведенными выше отличиями обеспечивают путем оптимального использования тепла теплоносителя. Для этого при изготовлении теплообменника размеры щелевых каналов и пластин выбирают исходя из следующих соображений.

Для эффективного теплообмена между потоками нагревающего и нагреваемого газов время нахождения газа в теплообменнике должно быть достаточным для того, чтобы обеспечить передачу тепла по теплопроводности в поперечном направлении при толщине зазора щелевого канала r (фиг. 1) за время нахождения нагревающего и нагреваемого потоков газов в теплообменнике. При этом количество тепла, Q, которое необходимо передать нагреваемому газу в теплообменнике для изменения его температуры на величину ΔT, равно:

Q = СV⋅V⋅P⋅ΔT (1), где

CV – теплоемкость газа,

V – объем,

P – давление.

Это количество тепла должно быть передано нагреваемому потоку газа от горячих стенок за счет теплопроводности в поперечном направлении, то есть:

 , (2), где

– коэффициент теплопроводности газа, не зависящий от давления,

r – размер трубопровода в поперечном направлении,

BS – площадь поверхности пластин,

– время нахождения газа в теплообменнике.

Из уравнений 1 и 2 получаем, что время, требуемое на нагрев газа в теплообменнике, должно быть не меньше:

(3)

С учетом геометрии теплообменника, , уравнение (3) можно представить в виде:

(4)

С другой стороны, время нахождения газа в теплообменнике,определяется объемом щелевого канала теплообменника и потоком газа сквозь него:

(5), где

L – длина трубопровода,

b – ширина щелевого канала трубопровода,

J – поток газа.

Очевидно, что для того, чтобы произошел теплообмен, время нахождения газа в теплообменнике должно превышать время, требуемое на его нагрев, то есть . Окончательно, с учетом уравнений (4) и (5) получаем:

(6)

Как видно, выражение (6) включает в себя как геометрические параметры теплообменника, так и скорость течения газовой смеси и ее параметры.

Таким образом, при заданных габаритах теплообменника (определяются величинами L и b) можно соответствующим выбором оптимальных размеров зазора теплообменника обеспечить его эффективную работу при разных потоках и свойствах газа. При этом из выражения (6) следует, что обеспечить одну и ту же эффективность можно при разном соотношении L и b при выполнении условия .

Сущность предлагаемого способа создания пластинчатого щелевого теплообменника поясняется фиг. 1а и 1б, где схематически представлен процесс изготовления теплообменника, состоящего из двух щелевых каналов. Причем на фиг. 1а и 1б показан окончательный вид теплообменника в сборке в разрезе.

На фиг. 2 представлен внешний вид пакета щелевых каналов, состоящий из четырех каналов и изготовленный в соответствии с предлагаемым способом.

На фиг. 1а и 1б показаны:

1 – щелевой канал;

2 – пластины, образующие щелевой канал;

3 – корпус;

4 – входной трубопровод высокотемпературного газового потока;

5 – входной тракт высокотемпературного газового потока;

6 – выходной трубопровод высокотемпературного газового потока;

7 – выходной тракт высокотемпературного газового потока;

8 – входной трубопровод тракта низкотемпературного газового потока;

9 – выходной трубопровод тракта низкотемпературного газового потока;

L – длина щелевого канала;

r – размер щелевого канала в поперечном направлении, расстояние между щелевыми каналами и между щелевым каналом и корпусом;

b – ширина щелевого канала;

Поток 1 – высокотемпературный газовый поток;

Поток 2 – низкотемпературный газовый поток.

Процесс изготовления пластинчатого щелевого теплообменника в соответствии с фиг, 1а и 1б осуществляется следующим образом.

Пластины 2, образующие щелевой канал 1 собирают попарно, сваривая их по образующей с помощью аргонно-дуговой сварки, таким образом, что бы размер щелевого канала в поперечном направлении был равен величине r, определяемой для конкретных газовых потоков согласно выражению (6). Затем в противоположные торцы каждого из образованных щелевых каналов 1 вваривают, соответственно, входной 4 и выходной 6 трубопроводы высокотемпературного газового потока. Далее входные трубопроводы 4 объединяют с помощью аргонно-дуговой сварки с образованием входного тракта высокотемпературного газового потока 5, а выходные трубопроводы 6 объединяют с помощью аргонно-дуговой сварки с образованием выходного тракт высокотемпературного газового потока 7 таким образом, чтобы расстояние между соседними боковыми пластинами щелевых каналов составляло величину r.

Образованный пакет щелевых каналов (в рассматриваемом случае пакет, состоящий из двух каналов) монтируют в корпус 3 таким образом, чтобы расстояние между стенками корпуса и соседними стенками щелевых каналов составляло величину r, после чего осуществляют герметизацию корпуса по его периметру с помощью аргонно-дуговой сварки. Затем в противоположные торцы корпуса 3 вваривают, соответственно, входной 8 и выходной 9 трубопроводы тракта низкотемпературного газового потока.

Практическая осуществимость способа изготовления пластинчатого щелевого теплообменника не вызывает каких либо затруднений. Поскольку давления нагревающего и нагреваемого потоков газовых смесей равны друг другу, боковые пластины щелевых каналов, их разделяющие, не испытывают напряжения и представляют собой плоские прямоугольники требуемых размеров, которые вырезают из нержавеющей стали толщиной 1.0–1.5 мм. Расстояние между пластинами, образующими щелевой канал, задают с помощью шаблона, имеющего толщину r, который устанавливают между пластинами. Далее производят аргонно-дуговую сварку пластин, образующих щелевой канал с двух противоположных торцов щелевого канала, вынимают шаблон и осуществляют герметичную сварку щелевого канала по периметру. Входные и выходные трубопроводы щелевых каналов изготавливают из стандартных трубок из нержавеющей стали, которые вваривают в торцы щелевых каналов. При сборке щелевых каналов в пакет расстояние между соседними щелевыми каналами выдерживают с помощью шаблона толщиной r, который помещают между соседними щелевыми каналами. Далее входные и выходные трубопроводы объединяют во входной и выходной тракты путем аргонно-дуговой сварки и удаляют шаблон. Входной и выходной тракты так же выполняют из стандартной трубки из нержавеющей стали. Окончательно пакет щелевых каналов помещают во внешний корпус, изготовленный из листовой нержавеющей стали толщиной 3 мм. Между боковыми стенками внешнего корпуса и соседними стенками щелевых каналов размещают шаблоны, которые определяют расстояние между ними и имеют толщину r.

Затем в противоположные торцы внешнего корпуса вваривают с помощью аргонно-дуговой сварки низкотемпературные входной и выходной тракты щелевого пакета, а также входной и выходной тракты нагреваемой смеси газов. После чего удаляют шаблоны и герметично заваривают внешний корпус по периметру.

Таким образом, предлагаемый способ изготовления щелевого пластинчатого теплообменника представляется легко осуществимым и требует для реализации широко распространенные материалы (лист и трубка из нержавеющей стали), а также повсеместно используемую
аргонно-дуговую сварку.

Источники информации

1. Теплообменник. Википедия https://ru.wikipedia.org/wiki/Теплообменник;

2. «Щелевой теплообменник». Патент РФ на изобретение №2472089, МПК F28D 9/00, опубликовано: 10.01.2013;

3. «Способ изготовления пластинчатого теплообменника». Патент РФ на изобретение №2188374, МПК F28D 9/00, F28F 3/00, опубликовано: 27.08.2002 (прототип).


Способ изготовления пластинчатого щелевого теплообменника
Способ изготовления пластинчатого щелевого теплообменника
Способ изготовления пластинчатого щелевого теплообменника
Способ изготовления пластинчатого щелевого теплообменника
Способ изготовления пластинчатого щелевого теплообменника
Способ изготовления пластинчатого щелевого теплообменника
Способ изготовления пластинчатого щелевого теплообменника
Источник поступления информации: Роспатент

Showing 1-10 of 56 items.
27.08.2016
№216.015.50c7

Способ и устройство дистанционного обнаружения и распознавания объектов с нелинейными маркерами

Изобретение относится к нелинейной радиолокации и может быть использовано для дистанционного обнаружения и распознавания объектов, находящихся вне зоны визуального наблюдения. Достигаемый технический результат - увеличение дальности обнаружения объектов поиска с нелинейными маркерами при...
Тип: Изобретение
Номер охранного документа: 0002595775
Дата охранного документа: 27.08.2016
10.08.2016
№216.015.549b

Способ селекции движущихся целей

Изобретение относится к радиолокации, может быть использовано в радиолокационных станциях (РЛС) малой дальности дециметрового диапазона и предназначено для выделения движущихся на фоне пассивных помех целей. Достигаемый технический результат - повышение эффективности помехозащищенности РЛС при...
Тип: Изобретение
Номер охранного документа: 0002593276
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.54ce

Способ измерения угловых координат в нелинейном радиолокаторе

Настоящее изобретение относится к области радиолокации, в частности к области ближней радиолокации, к которой принадлежат нелинейные радиолокаторы (НРЛ), осуществляющие поиск объектов, содержащих радиоэлектронные элементы. Достигаемый технический результат - однозначное измерение азимута в...
Тип: Изобретение
Номер охранного документа: 0002593595
Дата охранного документа: 10.08.2016
13.01.2017
№217.015.6dbc

Способ измерения дальности цели в ближней радиолокации

Изобретение относится к области ближней радиолокации, в частности к радиолокационным станциям (РЛС) ближнего действия, в которых применяются цифровые методы обработки сигналов. Достигаемый технический результат - повышение точности измерения дальности цели с помощью вычисления поправки к...
Тип: Изобретение
Номер охранного документа: 0002597221
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7e98

Способ построения микрополосковых направленных ответвителей

Изобретение относится к технике сверхвысоких частот и может быть использовано при проектировании фазированных антенных решеток, в частности, направленных ответвителей (НО). Реализуют емкостную связь путем включения в определенных местах дополнительных емкостей между связанными микрополосковыми...
Тип: Изобретение
Номер охранного документа: 0002601233
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.8c93

Пассивная система охлаждения радиоэлементов электронных блоков

Пассивная система охлаждения радиоэлементов электронных блоков относится к радиоэлектронике, в частности к устройствам, рассеивающим тепло от нагруженных источников нагрева электронных блоков и СВЧ модулей, эксплуатирующихся в полевых условиях, расположенных на вращающихся областях конструкции...
Тип: Изобретение
Номер охранного документа: 0002604825
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.a741

Устройство обработки сигналов в наземно-космической просветной радиолокационной системе

Изобретение относится к радиолокации и может быть использовано для обработки сигналов при решении задачи обнаружения малозаметных целей в наземно-космических просветных радиолокационных системах (РЛС). Техническим результатом предлагаемого изобретения является снижение стоимости...
Тип: Изобретение
Номер охранного документа: 0002608338
Дата охранного документа: 17.01.2017
25.08.2017
№217.015.a80e

Способ радиолокационного обзора пространства

Изобретение относится к области радиолокационной техники и может быть использовано при построении или модернизации вращающихся многофункциональных радиолокационных систем с активными фазированными антенными решетками (АФАР) с электронным сканированием для обзора воздушного пространства....
Тип: Изобретение
Номер охранного документа: 0002611434
Дата охранного документа: 22.02.2017
25.08.2017
№217.015.ac07

Способ распознавания баллистических целей и определения координат точек их пуска и падения для обзорных радиолокационных станций

Изобретение относится к устройствам обработки траекторной радиолокационной информации и может быть использовано для распознавания воздушных объектов (ВО) и определения точек пуска и падения в радиолокационных станциях (РЛС) обзорного типа. Достигаемый технический результат изобретения -...
Тип: Изобретение
Номер охранного документа: 0002612029
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.b43b

Способ и устройство обнаружения объектов поиска, содержащих металлические контакты, в нелинейных радиолокаторах ближнего действия

Изобретение относится к области радиолокации, в частности к радиолокационным станциям ближней радиолокации, в которые входят нелинейные радиолокаторы (НРЛ), осуществляющие поиск объектов, содержащих контактирующие металлические поверхности. Достигаемый технический результат - увеличение...
Тип: Изобретение
Номер охранного документа: 0002614038
Дата охранного документа: 22.03.2017
Showing 1-10 of 12 items.
20.03.2013
№216.012.2f71

Способ соединения изделий из металлов и/или сплавов металлов с разной растворимостью водорода

Изобретение относится к области соединения разнородных металлов или сплавов металлов с различными физико-химическими характеристиками, в частности соединения металлов или сплавов металлов с разной растворимостью в них водорода. Изготавливают соединительный переход из металла или сплава металла,...
Тип: Изобретение
Номер охранного документа: 0002477680
Дата охранного документа: 20.03.2013
27.06.2014
№216.012.d934

Способ изготовления мембраны для выделения водорода из газовых смесей

Изобретение относится к области водородной энергетики. Cпособ изготовления мембраны для выделения водорода из газовых смесей включает нанесение на поверхность мембраны на базе металлов 5 группы слоя палладия или его сплавов. Перед нанесением палладия или его сплавов мембрану рекристаллизуют...
Тип: Изобретение
Номер охранного документа: 0002521382
Дата охранного документа: 27.06.2014
27.11.2014
№216.013.0a3c

Источник электропитания аппаратуры радиолокационной станции

Изобретение относится к электротехнике, а именно к источникам вторичного электроснабжения, преобразующим входную трехфазную сеть в трехфазную сеть другого напряжения и другой частоты, и предназначено для формирования стабилизированной по напряжению трехфазной сети электропитания для различной...
Тип: Изобретение
Номер охранного документа: 0002534028
Дата охранного документа: 27.11.2014
10.02.2015
№216.013.25e2

Система управления вентильным электродвигателем вращения антенны рлс

Изобретение относится к системам управления вентильными электродвигателями вращения антенны радиолокационной станции (РЛС) и может быть использовано в регулируемых электроприводах. Техническим результатом изобретения является улучшение тактико-технических и эксплуатационных характеристик...
Тип: Изобретение
Номер охранного документа: 0002541151
Дата охранного документа: 10.02.2015
27.06.2015
№216.013.5826

Способ и система управления электродвигателем вращения антенны рлс

Изобретение относится к области электротехники и может быть использовано в регулируемых электроприводах антенн радиолокационных станций (РЛС). Техническим результатом является улучшение технико-экономических характеристик за счет уменьшения переменной составляющей мощности на валу...
Тип: Изобретение
Номер охранного документа: 0002554107
Дата охранного документа: 27.06.2015
20.11.2015
№216.013.91fd

Композитная мембрана для выделения водорода из газовых смесей

Изобретение относится к области водородной энергетики, выделения водорода из газовых смесей, получения особо чистого водорода. Предложена композитная мембрана для выделения водорода из газовых смесей на основе сплавов металлов 5-й группы Периодической системы друг с другом с...
Тип: Изобретение
Номер охранного документа: 0002568989
Дата охранного документа: 20.11.2015
20.06.2016
№217.015.03f3

Способ изготовления мембраны для выделения водорода из газовых смесей

Изобретение относится к области водородной энергетики, выделения водорода из газовых смесей, получения особо чистого водорода. В способе изготовления мембраны для выделения водорода из газовых смесей, при котором на поверхности мембраны, выполненной на основе сплавов металлов 5-й группы...
Тип: Изобретение
Номер охранного документа: 0002587443
Дата охранного документа: 20.06.2016
13.01.2017
№217.015.80f3

Способ изготовления мембраны для выделения атомов и ионов водорода из газовых смесей

Изобретение относится к физической химии, газовому анализу, вакуумной технике и может быть использовано для выделения атомов и ионов водорода, а также его изотопов из газовых смесей. Способ изготовления мембраны для выделения атомов и ионов водорода из газовых смесей на основе металлов 5-й...
Тип: Изобретение
Номер охранного документа: 0002602104
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8eb6

Способ выделения изотопов водорода из газовых смесей

Изобретение относится к физической химии, вакуумной технике, термоядерной энергетике и может быть использовано для выделения изотопов водорода из газовых смесей, а также для откачки вакуумных систем, в которых изотопы водорода служат рабочим газом. Способ выделения изотопов водорода из газовых...
Тип: Изобретение
Номер охранного документа: 0002605561
Дата охранного документа: 20.12.2016
26.08.2017
№217.015.dca9

Устройство для откачки изотопов водорода из вакуумного объема термоядерной установки

Изобретение относится к области физической химии, вакуумной технике, управляемого термоядерного синтеза и предназначено для поддержания требуемого вакуума в вакуумном объеме термоядерных установок и удаления из них остатков топлива: изотопов водорода дейтерия и трития, а также для откачки...
Тип: Изобретение
Номер охранного документа: 0002624312
Дата охранного документа: 03.07.2017
+ добавить свой РИД