×
25.04.2020
220.018.197c

Результат интеллектуальной деятельности: Способ слежения за глубиной промораживания ткани при криодеструкции и система для его осуществления

Вид РИД

Изобретение

Аннотация: Группа изобретений относится к медицинской технике. Технический результат состоит в упрощении способа слежения за положением ледяного фронта при криодеструкции, повышении пространственной чувствительности измерения глубины ледяного фронта в ткани с применением спектроскопии рассеяния, не оказывающей воздействия на объекты криохирургии и организм в целом. Способ заключается во внешнем измерении обратнорассеянного излучения с помощью нескольких пар облучающих и приемных волокон с различными глубинами миграции регистрируемых фотонов одновременно с внешним замораживанием; по времени стабилизации сигнала обратнорассеянного излучения в каждой паре волокон оцениваются положение и скорость движения ледяного фронта. Система включает криодеструктор с сапфировым хладопроводом с протяженными каналами, в которых расположены волокна, присоединенные попарно к источнику монохроматического излучения и фотометрической системе, расстояние между волокнами в каждой паре возрастает с равным приращением, на излучающих волокнах имеются волоконные аттенюаторы; в частном случае реализации имеется емкость, содержащая запас жидкого азота, в которую погружен дистальный конец сапфирового хладопровода. 2 н. и 1 з.п. ф-лы, 3 ил.

Изобретение относится к криогенным технологиям, а именно криохирургии и криотерапии, и может быть применено в общей и детской хирургии.

Известны способы предсказания размера зоны промораживания при криодеструкции с использованием математических моделей. При этом в выбранных точках температура может измеряться с использованием термопар или импедансометрии через иглы-электроды с аппроксимацией измеренной температуры на остальной объем. Это может приводить к ошибочным излишнему или недостаточному промораживанию выделенного объема.

Для криодеструкции патологий внутренних органов контроль размера зоны промораживания чрезвычайно важен и прецизионно осуществим при применении дорогостоящих методик визуализации магниторезонансной и компьютерной томографией. Существенно меньшую точностью обеспечивает визуализация криодеструкции с использованием ультразвукового исследования из-за наличия теневой области, создаваемой зоной замораживания.

Криодеструкция кожных патологий, тканей слизистых оболочек и криодеструкция органов при открытой хирургии (печени, поджелудочной железы, мозга и др.) осуществляется при широком спектре заболеваний. Возможность частично визуально наблюдать процесс замораживания по формированию ореола льда вокруг области внешнего контакта криоаппликатора и ткани приводит к уверенности, что такой контроль в совокупности с опытом хирурга достаточен для получения запланированного результата. Тем не менее, контроль глубины промораживания при криодеструкции кожных патологий и тканей слизистых оболочек и органов не менее важен. Из-за сложной структуры этих тканей, недостаточное промораживание на заданную глубину вызовет рецидив заболевания, чрезмерно интенсивное переохлаждение приведет к повреждению здоровых тканей, худшему заживлению и плохому косметическому эффекту.

Известен способ слежения за образованием льда в ткани с применением оптического излучения видимого диапазона. [Otten, D.М., Rubinsky, В., Cheong, W.-F., & Benaron, D.А. (1998). Ice-front propagation monitoring in tissue by the use of visible-light spectroscopy. Applied Optics, 37(25), 6006. doi:10.1364/ao.37.006006]. Замороженная и не замороженная биологическая ткань имеет различные оптические характеристики, в том числе, при образовании льда в ткани возрастает рассеяние. Это приводит к снижению общего пропускания, как за счет возрастания оптического пути излучения, так и за счет увеличения вероятности поглощения излучения в ткани.

В известном способе для измерения пропускания ткани при замораживании используется пара волокон: облучающее и собирающее, погруженные в ткань. Волокна располагаются в линию с ориентацией торцов навстречу друг другу (регистрация прошедшего излучения) или параллельно в одном направлении (регистрация обратнорассеянного излучения). Расположение волокон навстречу позволяет напрямую получить временную зависимость пропускания от положения ледяного фронта, близкую к линейной зависимости. Расстояние между торцами не превышает 10 мм, что соответствует максимальной глубине проникновения излучения в ткань для диапазона λ=700-1000 нм. Практическое применение способа с таким расположением волокон для контроля замораживания в процессе криохиругии в медицине затруднительно.

При расположении волокон параллельно рядом друг с другом об изменениях свойств ткани судят по изменению интенсивности обратнорассеянного излучения: при подаче излучения в одно из волокон, вторым волокном захватывается часть рассеянного излучения, отклонившегося от первоначального направления на 180 градусов. Траектории регистрируемых (диагностических) фотонов лежат преимущественно внутри области, имеющей форму «банана», опирающейся на торцы волокон. При образовании льда у поверхности ткани, часть пути диагностических фотонов лежит в области, где образовался лед, что приводит к изменению (увеличению) доли обратнорассеянного излучения. По мере движения ледяного фронта вглубь ткани интенсивность регистрируемого рассеянного излучения изменяется до момента, когда все траектории окажутся внутри зоны замораживания, - регистрируемое излучение принимает стационарное значение, а глубина промораживания ткани соответствует средней глубине миграции диагностических фотонов в замороженной ткани.

Последний способ обладает преимуществами, заключающимися в простоте реализации устройства и интерпретации получаемых данных. Внешнее измерение обратнорассеянного излучения реализовано для большинства органов и тканей с применение волоконно-оптических зондов.

Недостатком использования измерения обратного рассеяния для слежения за глубиной промораживания при криодеструкции является «ступенчатая» (а не линейная, как в случае измерений по пропусканию) характеристика чувствительности. Она позволяет фиксировать преодоление границей льда единственной известной глубины, определяемой фиксированным расстоянием между парой волокон. При этом отсутствует возможность динамического слежения за перемещением ледяного фронта, оценки скорости его движения.

Известным устройством, позволяющим осуществлять криодеструкцию одновременно с измерением оптических свойств ткани в окрестности контактной площадки криоаппликатора, является крионаконечник с сапфировым аппликатором-облучателем [Патент РФ 2496442 «Крионаконечник с сапфировым хладопроводом-облучателем», опубл. 27.10.2013]. Аппликатор изготовлен из прозрачного сапфира с протяженным одним или несколькими каналами, внутри которых располагаются оптические волокна, волокна присоединены к источнику излучения и спектрометру. Лазерное излучение передается непосредственно в область криодеструкции для флуоресцентной диагностики, комбинации криохирургии и температурного воздействия, а также оттаивания контактной области крионаконечника. Известное устройство не может быть применено для осуществления динамического слежения за движением ледяного фронта при криодеструкции с использованием спектроскопии обратного рассеяния, так как в нем не предусмотрено согласованное расположение пар облучающих и приемных волокон, а также не предусмотрено устройство регулировки излучения, доставляемого по волокнам к зоне криодеструкции.

Задачей данного изобретения является предложение простого в реализации и интерпретации способа оценки скорости и глубины промораживания при криодеструкции.

Технический результат состоит в упрощении способа и системы слежения за положением ледяного фронта при криодеструкции, снижении системного вреда от использования слежения за положением ледяного фронта при криодеструкции, повышении пространственной чувствительности при слежении за положением ледяного фронта в ткани с применением спектроскопии рассеяния.

Технический результат достигается за счет того, что в способе измерения глубины промораживания при криодеструкции, заключающемся во внешнем измерении обратнорассеянного излучения с помощью облучающего и приемного волокна одновременно с внешним замораживанием, в момент стабилизации сигнала обратнорассеянного излучения глубина промораживания ткани равна глубине чувствительности для данной пары волокон, используются несколько пар волокон с различными глубинами чувствительности, по времени стабилизации сигнала обратнорассеянного излучения в разных парах волокон оцениваются положение и скорость движения ледяного фронта.

Технический результат достигается за счет того, что в системе для осуществления способа изобретения, включающей крионаконечник с сапфировым хладопроводом с протяженными каналами, в которых расположены волокна, присоединенные к источнику монохроматического излучения и фотометрической системе, облучающие волокна и приемные волокна образуют диагностические пары, расстояние между волокнами в каждой паре возрастает с равным приращением, на излучающих волокнах имеются волоконные аттенюаторы, имеется емкость, содержащая запас жидкого азота, в которую погружен дистальный конец сапфирового хладопровода.

Способ осуществляется без применения дорогостоящего оборудования. Так как измерения проводят через криоаппликатор с применением излучения видимого диапазона малой мощности, то данный способ не оказывает сколько-нибудь заметного воздействия на объекты криохирургии и организм в целом и может применяться многократно.

Измерения, проводимые на нескольких глубинах, позволяют определять положение ледяного фронта в различное время в течение аппликации, оценивать скорость смещения границы зоны замораживания вглубь ткани, обеспечивая возможность определения положения границы льда в ткани с погрешностью, которая может не превышать 0,5 мм.

Изобретение поясняется рисунками:

Фиг. 1 Схема криодеструктора с сапфировым хладопроводом для контроля глубины промораживания ткани в процессе криодеструкции.

Фиг. 2 Схема системы для криодеструкциис возможностью слежения за глубиной промораживания.

Фиг. 3 Динамическое изменение пропускания 4-х диагностических каналов системы, Δz=1 мм

1 - сапфировый хладопровод

2 - центральный канал хладопровода

2а - радиальный канал хладопровода

3 - волокна, присоединенные к фотометрической системе

4 - волокна, присоединенные к источнику оптического излучения

5 - источник оптического излучения

6 - фотометрическая система

7 - волоконные аттенюаторы

8 - устройство ввода/вывода и отображения информации

9 - жидкий азот

10 - резервуар

11 - биологическая ткань, содержащая зону криодеструкции

12 - изотермы зоны замораживания

13 - среднестатистическая траектория миграции диагностических фотонов

Δх - шаг изменения расстояния между волокнами диагностических пар

Δz - шаг измерения глубины зондирования

Пример реализации системы

Частный случай реализации системы включает криоаппликатор с цилиндрическим сапфировым хладопроводом 1 диаметром 12,5 мм (Фиг. 1). В криоаппликаторе имеется два канала - центральный 2 диаметром 1.2 мм и радиальный 2а в виде щели размерами 1 мм на 5 мм, закрытые со стороны контактной площадки наконечника. В центральном канале 2 располагается приемное волокно 3 диаметром 600 мкм, в щелевом канале 2а располагается жгут, содержащий девять излучающих волокон 4 (диаметр сердцевины 200 мкм), расположенных в линию на фиксированном расстоянии друг от друга Δх=0,6 мм, соответствующем шагу изменения глубины зондирования Δz=0,4 мм. Волоконные окончания подключены к источнику оптического излучения 5 и фотометрической системе 6 посредством SMA-разъемов. Для выравнивания динамического диапазона измерений и возможности индивидуальной подстройки каждое излучающее волокно имеет волоконный аттенюатор 7. Управление измерениями, хранение и отображение информации производится посредством устройства ввода/вывода и отображения информации 8. Для охлаждения сапфирового хладопровода 1 его поверхность омывается жидким азотом 9, находящимся в резервуаре 10, образуя, таким образом, криодеструктор заливного типа.

Работа системы осуществляется следующим образом. Собирается криодеструктор заливного типа, а именно, стерилизованный сапфировый хладопровод 1 закрепляется в резервуаре 10, приемное оптическое волокно 4 и волоконный жгут 3 вводятся в каналы 2 и 2а хладопровода. Проводится калибровка системы с использованием эталонного фантома с известными параметрами оптического рассеяния, соответствующего типу замораживаемой ткани. Резервуар 10 заполняется жидким азотом 9, после чего система выдерживается в течение 2 минут для полного охлаждения сапфирового хладопровода. После чего приступают к криодеструкции. Контактная площадка сапфирового хладопровода приводится в соприкосновение с биологической тканью, содержащей зону криодеструкции 11 (не допускается отлипание и повторное приложение), при непрерывной регистрации диффузно рассеянного излучения.

Приемное центральное волокно 4 и каждое из излучающих волокон образуют диагностическую пару со своим межосевым расстоянием. При этом глубина зондирования соответствует глубине залегания среднестатистической траектории миграции диагностических фотонов 12 между этими волокнами. Регистрация происходит последовательно через каждую диагностическую пару (последовательное «включение» излучающих волокон), длительность одного измерения выбирается таким образом, чтобы время измерений и обработки данных в полном цикле было существенно меньше времени прохождения ледяным фронтом расстояния, соответствующего шагу глубины зондирования Δz=0,4 мм.

После контакта сапфирового хладопровода, находящегося при температуре, близкой к температуре жидкого азота (-196°С), в живой биологической ткани 11 вблизи контактной площадки температура резко падает, что приводит к образованию градиента температуры, распространяющегося вглубь ткани, который можно характеризовать изотермами зоны замораживания 12 (Фиг. 2). Поверхность изотермы, соответствующая температуре замерзания воды, смещается вглубь ткани от площадки контакта. По мере ее движения происходит последовательное превышение ею глубин зондирования 13 каждой диагностической пары, при этом интенсивность регистрируемого сигнала диффузно-рассеянного излучения в среде, которая стала оптически-изотропной, выравнивается (приобретает стационарное значение).

Динамическое изменение сигнала четырех диагностических каналов системы с глубиной зондирования z=1,6 мм, полученное при криодеструкции модели фрагмента биологической ткани, показаны на Фиг. 3. По моменту наступления стационарного режима для пары волокон с минимальной глубиной зондирования и последующих пар (t1,…t4соответственно) определяется текущая глубина промораживания ткани и оценивается скорость движения ледяного фронта вглубь ткани. Возможность реализации, доступность комплектующих деталей и технологии изготовления соответствуют критерию изобретения «промышленная применимость».


Способ слежения за глубиной промораживания ткани при криодеструкции и система для его осуществления
Способ слежения за глубиной промораживания ткани при криодеструкции и система для его осуществления
Способ слежения за глубиной промораживания ткани при криодеструкции и система для его осуществления
Способ слежения за глубиной промораживания ткани при криодеструкции и система для его осуществления
Источник поступления информации: Роспатент

Showing 1-10 of 91 items.
10.01.2013
№216.012.1846

Устройство для получения массивов углеродных нанотрубок на металлических подложках

Изобретение относится к нанотехнологии. Устройство для получения массивов углеродных нанотрубок (УНТ) на металлических подложках состоит из двух электродов 7 и 8, расположенных соосно и перемещаемых навстречу друг другу водоохлаждаемыми штоками 8 и 9, скользящих графитовых токоподводов 11 и 12,...
Тип: Изобретение
Номер охранного документа: 0002471706
Дата охранного документа: 10.01.2013
10.02.2013
№216.012.2477

Устройство и способ с речевым интерфейсом определения водолазом направления на источник тонального звукового сигнала

Использование: для определения водолазом направления на источник тонального звукового сигнала. Сущность: сигнал источника принимается на две ненаправленные антенны, расстояние между которыми λ/4. Сигнал от первой антенны подается на вход сумматора, сигнал от второй антенны последовательно...
Тип: Изобретение
Номер охранного документа: 0002474837
Дата охранного документа: 10.02.2013
10.04.2013
№216.012.3480

Способ определения глубины погружения приводняющегося объекта

Использование: для измерения глубины погружения приводняющегося объекта с использованием гидролокатора ближнего действия, установленного на движущемся носителе относительно горизонта его движения. Сущность: с помощью гидролокатора производят излучение зондирующих сигналов гидролокатором, прием...
Тип: Изобретение
Номер охранного документа: 0002478983
Дата охранного документа: 10.04.2013
20.06.2013
№216.012.4cb3

Способ получения монокристаллов теллурида галлия (ii)

Изобретение относится к технологии получения кристаллов GaTe, которые могут быть использованы в нелинейной оптике, а именно для оптических преобразователей частоты ИК и ТГц диапазонов. Кристаллы теллурида галлия (II) выращивают вертикальной зонной плавкой в графитовых тиглях под давлением...
Тип: Изобретение
Номер охранного документа: 0002485217
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4cb4

Способ получения кристаллов вольфрамата натрия-висмута

Изобретение относится к области выращивания из расплава нелегированных кристаллов вольфрамата натрия-висмута NaBi(WO), являющегося перспективным материалом для Черепковских детекторов. Выращивание кристаллов осуществляют методом Чохральского в воздушной атмосфере со скоростью вытягивания 4-5...
Тип: Изобретение
Номер охранного документа: 0002485218
Дата охранного документа: 20.06.2013
27.10.2013
№216.012.783c

Крионаконечник с сапфировым хладопроводом-облучателем

Изобретение относится к хирургическим инструментам, применяемым для локального замораживания и деструкции выделенных участков биологической ткани, и может быть использовано в общей и детской хирургии, в онкологии, дерматологии, отоларингологии, гинекологии, косметологии. Крионаконечник с...
Тип: Изобретение
Номер охранного документа: 0002496442
Дата охранного документа: 27.10.2013
20.01.2014
№216.012.98be

Устройство для визуализации электрических полей свч в пространстве

Использование: относится к области визуализации распределения в пространстве электрических полей СВЧ диапазона. Сущность: в установке визуализации СВЧ полей применены измерительная камера «открытого» типа из двух расположенных горизонтально параллельных медных дисков, антенна-зонд,...
Тип: Изобретение
Номер охранного документа: 0002504801
Дата охранного документа: 20.01.2014
27.03.2014
№216.012.adf5

Способ удаления опухолей мозга с выделением границ опухоли флуоресцентной диагностикой с одновременной коагуляцией и аспирацией и устройство для его осуществления

Группа изобретений относится к медицине. Устройство включает сапфировый зонд с продольными каналами, в которых размещены оптические волокна, одни из которых предназначены для подачи излучения, возбуждающего флуоресценцию и коагулирующего излучения в зону деструкции ткани от присоединенных...
Тип: Изобретение
Номер охранного документа: 0002510248
Дата охранного документа: 27.03.2014
10.06.2014
№216.012.d04b

Способ эксфолиации слоистых кристаллических материалов

Изобретение относится к нанотехнологиям. Способ включает эксфолиацию заготовок из слоистых кристаллических материалов, закрепленных с одной стороны на опоре из глипталя, с использованием клейкой ленты, глипталь по окончании эксфолиации растворяют в ацетоне, где образуется взвесь кристаллических...
Тип: Изобретение
Номер охранного документа: 0002519094
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d5ae

Способ получения слоев карбида кремния

Изобретение относится к области получения карбида кремния, используемого в полупроводниковой промышленности в качестве материала для радиопоглощающих покрытий, диодов, светодиодов, солнечных элементов и силовых вентилей. Карбид кремния получают перемещением ленты углеродной фольги в...
Тип: Изобретение
Номер охранного документа: 0002520480
Дата охранного документа: 27.06.2014
Showing 1-10 of 14 items.
27.10.2013
№216.012.783c

Крионаконечник с сапфировым хладопроводом-облучателем

Изобретение относится к хирургическим инструментам, применяемым для локального замораживания и деструкции выделенных участков биологической ткани, и может быть использовано в общей и детской хирургии, в онкологии, дерматологии, отоларингологии, гинекологии, косметологии. Крионаконечник с...
Тип: Изобретение
Номер охранного документа: 0002496442
Дата охранного документа: 27.10.2013
27.03.2014
№216.012.adf5

Способ удаления опухолей мозга с выделением границ опухоли флуоресцентной диагностикой с одновременной коагуляцией и аспирацией и устройство для его осуществления

Группа изобретений относится к медицине. Устройство включает сапфировый зонд с продольными каналами, в которых размещены оптические волокна, одни из которых предназначены для подачи излучения, возбуждающего флуоресценцию и коагулирующего излучения в зону деструкции ткани от присоединенных...
Тип: Изобретение
Номер охранного документа: 0002510248
Дата охранного документа: 27.03.2014
10.06.2015
№216.013.51b3

Устройство для выращивания из расплава тугоплавких волокон со стабилизацией их диаметра

Изобретение относится к производству профилированных высокотемпературных волокон тугоплавких оксидов, гранатов, перовскитов. Устройство содержит ростовую камеру 1 с установленными в ней тиглем 2 для расплава с формообразователем 3, нагреватель 4 тигля 2, экраны 5, затравкодержатель 6, средство...
Тип: Изобретение
Номер охранного документа: 0002552436
Дата охранного документа: 10.06.2015
20.01.2016
№216.013.a220

Композиция углеродной заготовки для получения sic/c/si керамики и способ получения sic/c/si изделий

Изобретение относится к получению керамики на основе SiC/C/Si, которая может быть использована для производства конструкционных изделий, используемых в нефтедобывающей и нефтеперерабатывающей, химической, металлургической и пищевой промышленности, ВПК, ЖКХ. Технический результат изобретения -...
Тип: Изобретение
Номер охранного документа: 0002573146
Дата охранного документа: 20.01.2016
13.01.2017
№217.015.7e6d

Способ нанесения газоплотного покрытия из карбида кремния

Изобретение относится к области термозащитных и антиокислительных покрытий, и может быть использовано для повышения химической инертности и температуры эксплуатации материалов, используемых в авиакосмической промышленности, топливо-энергетическом комплексе и др. Способ нанесения газоплотного...
Тип: Изобретение
Номер охранного документа: 0002601049
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.8350

Сапфировый терагерцовый фотонно-кристаллический волновод

Изобретение относится к области элементной базы терагерцовой оптотехники, в частности к волноводам для передачи терагерцового излучения. Сапфировый терагерцовый фотонно-кристаллический волновод представляет собой диэлектрическое тело, в котором имеются параллельные каналы, расположенные в виде...
Тип: Изобретение
Номер охранного документа: 0002601770
Дата охранного документа: 10.11.2016
04.04.2018
№218.016.3094

Зубной имплантат и способ его имплантации

Группа изобретений относится к ортопедической стоматологии, а именно протезированию зубов, и предназначено для использования при установке зубных протезов на альвеолярных отростках, как верхней, так и нижней челюсти. Проводят операцию по установке одноэтапного имплантата. Осуществляют лечение...
Тип: Изобретение
Номер охранного документа: 0002644851
Дата охранного документа: 14.02.2018
04.06.2019
№219.017.7349

Способ внутриволноводной терагерцовой интерферометрии и сапфировая ячейка для его реализации

Группа изобретений относится к интерферометрии. При осуществлении способа излучение вводят в двухмодовый волновод, часть которого занимает анализируемое вещество, и выводят через фигурную диафрагму, где на расстоянии, превышающем на порядок среднюю длину волны используемого излучения (>10λ),...
Тип: Изобретение
Номер охранного документа: 0002690319
Дата охранного документа: 31.05.2019
31.05.2020
№220.018.22bb

Сапфировый роликовый аппликатор для криохирургии и криотерапии

Изобретение относится к криогенной технике, а именно криоаппликаторам иммерсионного типа, и может использоваться в криомедицине и ветеринарии. Криоаппликатор содержит ролик и ручку, ролик выполнен из сапфира в виде шлифованного или полированного шара или цилиндра с углублениями на торцах, в...
Тип: Изобретение
Номер охранного документа: 0002722352
Дата охранного документа: 29.05.2020
20.04.2023
№223.018.4ab9

Композиция для высокотемпературной керамики и способ получения высокотемпературной керамики на основе карбида кремния и силицида молибдена

Группа изобретений относится к области получения керамических материалов на основе карбида кремния (SiC) и силицида молибдена, которые могут использоваться при получении изделий повышенной термостойкости, при изготовлении деталей турбин, авиационных двигателей, фрикционных элементов,...
Тип: Изобретение
Номер охранного документа: 0002788686
Дата охранного документа: 24.01.2023
+ добавить свой РИД