×
27.03.2020
220.018.10c7

Результат интеллектуальной деятельности: Способ получения объёмных наноструктурированных полуфабрикатов из сплавов с памятью формы на основе никелида титана (варианты)

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии, а именно к получению прутков из сплава с памятью формы на основе никелида титана (Ti-Ni), и может быть использовано при производстве объемных и длинномерных полуфабрикатов из сплавов на основе никелида титана с памятью формы. Способ получения объемных наноструктурированных прутков из сплавов с памятью формы на основе никелида титана включает равноканальное угловое прессование горячекатаной заготовки после закалки в интервале температур 700-800°С с охлаждением в воде. Равноканальное угловое прессование проводят в квазинепрерывном режиме в интервале температур 350-450°С за 5-7 проходов с углом пересечения каналов 110-120°, далее осуществляют последеформационный отжиг при температуре 350-450°С в течение 1-2 часов. После равноканального углового прессования может быть проведена ротационная ковка в интервале температур 350-400°С с единичными обжатиями 1-15% до требуемого конечного диаметра заготовки. Обеспечивается повышение механических и функциональных свойств полуфабрикатов из Ti-Ni путем формирования в них УМЗ структуры: смешанной нанокристаллической и наносубзеренной после РКУП и после деформационного отжига, смешанной наносубзеренной и субмикрокристаллической после равноканального углового прессования, ротационной ковки и последеформационного отжига. 2 н.п. ф-лы, 1 табл., 2 пр.

Изобретение относится к металлургическому производству, конкретно к получению прутков из сплавов с памятью формы (СПФ) на основе никелида титана марки ТН-1, и может быть использовано в промышленности, медицине и технике. Особенно актуально использование полученных результатов для производства изделий и устройств с повышенными требованиями к функциональным характеристикам. Использование наноструктурированных полуфабрикатов из никелида титана позволит существенно повысить надежность и долговечность существующих устройств (в медицине: е хирургические клипсы, скобки, фиксаторы, имплантаты; в технике: термочувствительные элементы, актуаторы и др.), действующих на основе эффекта памяти формы, снизить их металлоемкость и значительно расширить сферу применения данной группы сплавов.

Известен способ получения длинномерных прутков из сплавов на основе никелида титана, заключающийся в применении ротационной ковки в интервале температур 300-500°С с суммарной степенью деформации 40-90%.

Недостатком данного способа можно считать температурно-деформационные режимы обработки никелида титана, не позволяющие сформировать близкую к нанокристаллической структуру, что обуславливает пониженный по сравнению с предлагаемым способом комплекса свойств. (Патент РФ №2536614, МПК C22F 1/10 C22F 1/18 С22С 1/02, 2013 г.)

Известен способ получения прутка наностуктурного сплава титан-никель с эффектом памяти формы с размером зерна менее 0,1 мкм и высокоугловой разориентировкой зерен (не менее 50% зерен) заключающийся в следующем. Предварительно отоженную заготовку подвергают интенсивной пластической деформации методом равноканального углового прессования (РКУП) со степенью накопленной деформации не менее 4 при температуре не выше 400°С, а затем деформации кузнечной вытяжкой и/или волочением с суммарной накопленной степенью деформации не менее 60% в интервале температур 450-200°С. (Патент РФ №2503733, МПК C22F 1/16 B82Y 40/00 B21J 5/00, 2018 г.).

Недостатки данного способа заключаются в том, что непосредственно после РКУП в СПФ Ti-Ni не удается сформировать структуру, близкую к нанокристаллической. Кроме того, кузнечная вытяжка приводит к неравномерному распределению деформации по сечению заготовки, а волочение возможно производить только после получения заготовки малого диаметра (менее 5 мм).

Ближайшим аналогом к предлагаемому изобретению является способ получения заготовки из сплава Ti49,3Ni50,7, заключающийся в комбинировании РКУП и осадки с целью формирования нанокристаллической структуры в объемных образцах (Патент РФ №2641207, МПК C22F 1/16 B82Y 40/00 B21J 5/00, 2018 г.).

Недостатки данного способа состоят в том, что, во-первых, получение наноструктурного состояния и заметное улучшение комплекса свойств наблюдается только после осадки. Непосредственно после РКУП получить подобную структуру не удается. Во-вторых, к недостаткам процесса осадки можно отнести кривизну конечного геометрического профиля изделия ввиду бочкообразования и неравномерность деформации, приводящую к анизотропии свойств. В-третьих, в данном способе отсутствует возможность получения длинномерных заготовок круглого сечения, которые обычно используются для изготовления различных изделий медицинского и технического назначения.

Технический результат, решаемый изобретением, заключается в получении объемных и длинномерных наноструктурированных полуфабрикатов из СПФ Ti-Ni круглого сечения, сочетающих высокие значения механических и функциональных свойств.

Технический результат достигается тем, что равноканальное угловое прессование горячекатаной заготовки после закалки в воду в интервале температур 700-800°С проводят в кавазинепрерывном режиме в интервале температур 350-450°С за 5-7 проходов с углом пересечения каналов 110-120 град, далее осуществляют последеформационный отжиг в течение 1-2 часов при температуре 350-450°С. После применения равноканального углового прессования и перед отжигом при необходимости получения прутков меньшего диаметра осуществляют ротационную ковку в интервале температур 350-400°С с единичными обжатиями 1-15% до требуемого конечного диаметра заготовки.

Сущность заявленного способа заключается в проведении РКУП в квазинепрерывном режиме на первом этапе, ротационной ковки (при необходимости) на втором этапе, и последеформационного отжига, на заключительном этапе. РКУП горячекатаной заготовки осуществляют в квазинепрерывном режиме, т.е. без пауз и дополнительных подогревов между проходами, что позволяет заметно уменьшить разупрочнение заготовки между проходами, и приводит к формированию смешанной нанокристаллической и наносубзеренной структуры непосредственно после РКУП, что позволяет исключить необходимость проведения последующих технологических операций для дополнительного измельчения структуры. РКУП в квазинепрерывном режиме проводят в интервале температур 350-450°С. Проведение РКУП при температуре выше 450°С приводит к значительному динамическому разупрочнению заготовки, которое не позволяет сформировать требуемую структуру. Проведение РКУП при температуре ниже 350°С приводит к преждевременному разрушению заготовки. Ротационную ковку после РКУП следует проводить только с целью получения требуемого конечного диаметра заготовки. Она может быть исключена из технологического цикла, в том случае, когда для производства изделий медицинского или технического назначения подходит заготовка непосредственно после РКУП. Последеформационный отжиг может производиться как непосредственно после изготовления наноструктурной заготовки, так и после изготовления из нее требуемого изделия на этапе запоминания требуемой формы.

Проведение РКУП в квазинепрерывном режиме в интервале температур 350-450°С и последующий отжиг при температуре деформации позволяет сформировать в объемной заготовке смешанную нанокристаллическую и наносубзеренную структуру, обеспечивающую значение полностью обратимой деформации 9.5%.

По первому варианту способ осуществляется следующим образом. Горячекатаная или литая заготовки из сплава Ti-Ni подвергается закалке в диапазоне температур 700-850°С с охлаждением в воде. Далее проводят РКУП в казинепрерывном режиме в интервале температур 350-450°С за 5-7 проходов с углом пересечения каналов 110-120 градусов. Последеформационный отжиг проводят в интервале температур 350-450°С либо непосредственно после изготовления наноструктурной заготовки, либо на этапе запоминания требуемой формы конечным изделием.

По второму варианту способ осуществляется следующим образом. Горячекатаная или литая заготовки из сплава Ti-Ni подвергается закалке в диапазоне температур 700-850°С с охлаждением в воде. Далее проводят РКУП в казинепрерывном режиме в интервале температур 350-450°С за 5-7 проходов с углом пересечения каналов 110-120 градусов. Далее проводят ротационную ковку в интервале температур (350-400°С) до требуемого конечного диаметра, с промежуточными нагревами до температуры деформации, не превышающими 15-25 мин, и с относительной степенью деформации за проход 1-15% во избежание разрушения заготовки. Последеформационный отжиг проводят в интервале температур 350-450°С либо непосредственно после изготовления наноструктурной заготовки, либо на этапе запоминания требуемой формы конечным изделием.

Результаты апробации заявленного способа приведены в виде конкретных примеров.

Пример №1. Исходным материалом служил пруток из сплава Ti-50.2 ат. % Ni диаметром 20 мм и длиной 90 мм, полученный горячей поперечно-винтовой прокаткой. Перед процессом РКУП образец отжигали в течение 30 минут при температуре 750°С с охлаждением в воде. Далее осуществляли РКУП с углом пресечения каналов 120 градусов в квазинепрерывном режиме при температуре 400°С за 7 проходов. После этого осуществляли последеформационный отжиг при температуре 400°С в течение 1 часа с охлаждением в воде. В результате применения данного способа в заготовке диаметром 20 мм и длиной 90 мм была сформирована смешанная нанокристаллическая и наносубзеренная структура со средним размером структурных элементов 95±15 нм и заметно увеличен комплекс свойств. Полученные в результате применения данного способа механические и функциональные свойства приведены в таблице 1. В качестве контрольной обработки использовали пруток, подвергнутый отжигу при температуре 750°С в течение 30 минут с охлаждением в воде.

Пример №2. Исходным материалом служил пруток из сплава Ti-50.0 ат. % Ni диаметром 20 мм и длиной 100 мм, полученный горячей поперечно-винтовой прокаткой. Перед процессом РКУП образец отжигали в течение 30 минут при температуре 750°С с охлаждением в воде. Далее осуществляли процесс РКУП с углом пресечения каналов 120 градусов в квазинепрерывном режиме при температуре 400°С за 5 проходов. После этого осуществляли ротационную ковку до диаметра 12 мм при температуре 350°С с единичными частными обжатиями 1-10%. После этого заготовка подвергалась последеформационному отжигу при температуре 400°С в течение 1 часа с охлаждением в воде. В результате применения данного способа в заготовке была получена смешанная нанокристаллическая и субмикрокристаллическая структура со средним размером структурных элементов 110±15 нм с улучшенным комплексом свойств. Полученные в результате применения данного способа механические и функциональные свойства приведены в таблице 1.

Исходя из представленных примеров можно заключить, что благодаря заявленному способу удалось получить объемные и длинномерные качественные прутки из СПФ Ti-Ni с сочетанием высоких механических и функциональных свойств. Из полученных прутков возможно изготовление изделий, технического и медицинского назначения, действующих на основе эффекта памяти формы.

Технико-экономический эффект заявленного способа состоит в обеспечении возможности получения объемных наноструктурных полуфабрикатов из СПФ Ti-Ni с улучшенными механическими и функциональными свойствами. Использование данных полуфабрикатов позволит существенно повысить надежность и долговечность существующих устройств (в медицине: самоизвлекаемые хирургические скобки, сосудистые стенты, имплантаты; в технике: термочувствительные элементы, актуаторы и др.), действующих на основе эффекта памяти формы, снизить их металлоемкость и значительно расширить сферу применения данного сплава.

Источник поступления информации: Роспатент

Showing 61-70 of 322 items.
25.08.2017
№217.015.a97e

Способ получения органо-минерального полимера на основе сапропеля

Изобретение относится к сельскому хозяйству. Способ получения органо-минерального полимера из сапропеля включает измельчение сапропеля естественной влажности до гомогенного состояния, определение его влажности и показателя pH, механохимическую активацию полученной смеси при помощи добавления к...
Тип: Изобретение
Номер охранного документа: 0002611816
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.aa74

Способ измельчения смеси карбоната стронция и оксида железа в производстве гексаферритов стронция

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Мокрое измельчение стехиометрической смеси карбоната стронция и оксида железа проводят в кислой среде, содержащей полиакриловую кислоту и изопропиловый спирт при...
Тип: Изобретение
Номер охранного документа: 0002611814
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.abde

Способ получения наноразмерных частиц гексаферрита стронция

Изобретение относится к области наноразмерной технологии и может быть использовано для создания носителей информации с высокой плотностью записи, магнитных сенсоров с высокой чувствительностью и т.п., а также для применения в области медицины. Способ получения наноразмерных частиц гексаферрита...
Тип: Изобретение
Номер охранного документа: 0002612289
Дата охранного документа: 06.03.2017
25.08.2017
№217.015.b2ab

Способ получения покрытий из нанолистов нитрида бора

Изобретение относится к области получения покрытий, содержащих двумерные керамические структуры, а именно нанолисты гексагонального нитрида бора, имеющие толщину 1-10 нм и характерный линейный размер от 100 нм до 5 мкм, которые могут применяться в качестве носителя катализаторов, а также для...
Тип: Изобретение
Номер охранного документа: 0002613996
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b2fc

Способ контроля работы воздушной фурмы доменной печи с теплоизоляцией со стороны дутьевого канала

Изобретение относится к области металлургии и может быть использовано при эксплуатации воздушных фурм доменных печей с теплоизоляцией со стороны дутьевого канала. В способе контроля состояния теплоизоляции со стороны дутьевого канала воздушной фурмы доменной печи определяют разность расходов...
Тип: Изобретение
Номер охранного документа: 0002613834
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b2fd

Способ контроля работы воздушной фурмы доменной печи с теплоизоляцией со стороны дутьевого канала

Изобретение относится к области металлургии и может быть использовано при эксплуатации воздушных фурм доменных печей с теплоизоляцией со стороны дутьевого канала. В способе контроля состояния теплоизоляции со стороны дутьевого канала воздушной фурмы доменной печи определяют разность расходов...
Тип: Изобретение
Номер охранного документа: 0002613834
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b34b

Композиционный материал на основе нитинола

Изобретение относится к области металлургии, преимущественно к композиционным материалам на основе нитинола, и предназначено для изготовления деталей микромашин и механизмов, медицинских инструментов. Композиционный материал на основе нитинола содержит, ат. %: Cu - 5-10, Zr - 5-10, Ti - 36-44,...
Тип: Изобретение
Номер охранного документа: 0002613835
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b394

Способ дефосфорации железных руд и концентратов

Изобретение относится к черной металлургии и может быть использовано в процессах получения чугуна из окисленного железосодержащего сырья. В способе осуществляют расплавление в печи железорудного концентрата и дефосфорацию оксидного железосодержащего расплава. При этом доводят температуру...
Тип: Изобретение
Номер охранного документа: 0002613833
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b435

Способ измельчения смеси карбоната бария и оксида железа в производстве гексаферритов бария

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов бария. Мокрое измельчение стехиометрической смеси карбоната бария и оксида железа проводят в кислой среде, содержащей полиакриловую кислоту и изопропиловый спирт при следующем...
Тип: Изобретение
Номер охранного документа: 0002614005
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b43e

Способ получения нанопористого нитрида бора

Изобретение относится к способам получения нанопористых керамических материалов, в частности из нитрида бора, применяемых для очистки газов или жидкостей от вредных примесей, а также для сорбции и хранения водорода. Сущность изобретения состоит в том, что готовят реакционную смесь из борной...
Тип: Изобретение
Номер охранного документа: 0002614007
Дата охранного документа: 22.03.2017
Showing 61-70 of 74 items.
29.06.2019
№219.017.9c74

Способ изготовления сварных замкнутых профилей прямоугольного сечения

Изобретение относится к прокатному производству, конкретнее к изготовлению гнутых профилей и, в частности, прямоугольных сварных замкнутых профилей. Способ включает профилирование прямоугольной заготовки с вытяжкой в шовообжимном переходе, высокочастотную сварку с заданным углом схождения...
Тип: Изобретение
Номер охранного документа: 0002393036
Дата охранного документа: 27.06.2010
10.07.2019
№219.017.ac66

Способ непрерывной прокатки тонких полос на многоклетевом стане

Изобретение предназначено для снижения энергозатрат без ухудшения чистоты поверхности тонких холоднокатаных полос, получаемых на многоклетевых непрерывных широкополосных станах. Способ включает обжатие полосы, по меньшей мере, в пять проходов с корректировкой технологических параметров для...
Тип: Изобретение
Номер охранного документа: 0002397032
Дата охранного документа: 20.08.2010
10.07.2019
№219.017.ad43

Способ производства круглых прямошовных труб

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении круглых сварных прямошовных труб различного назначения. При формовке среднюю часть полосы изгибают в направлении, обратном кривизне трубы, и выформовывают боковые участки полосы в виде двух дуг...
Тип: Изобретение
Номер охранного документа: 0002350421
Дата охранного документа: 27.03.2009
15.02.2020
№220.018.02d1

Способ определения площади контакта оправки и заготовки при винтовой прошивке

Изобретение относится к области обработки металлов давлением. Способ заключается в том, что заготовку прошивают на глубину, равную 0,5÷0,75 от ее исходной длины, процесс прошивки останавливают, заготовку снимают с оправки. Далее определяют размеры заготовки и оправки. На основе измерений в...
Тип: Изобретение
Номер охранного документа: 0002714225
Дата охранного документа: 13.02.2020
19.03.2020
№220.018.0dc9

Сплав на основе титана и способ его обработки для создания внутрикостных имплантатов с повышенной биомеханической совместимостью с костной тканью

Изобретение относится к металлургии, а именно к биосовместимым сплавам с механическим поведением, близким к поведению костной ткани человека, и может быть использован для несущих конструкций медицинских внутрикостных имплантатов. Сверхупругий сплав на основе титана содержит, ат.%: цирконий...
Тип: Изобретение
Номер охранного документа: 0002716928
Дата охранного документа: 17.03.2020
27.03.2020
№220.018.10b8

Способ винтовой прокатки сплавов системы титан-цирконий-ниобий

Изобретение относится к термомеханической обработке титановых сплавов, а именно к созданию способа винтовой прокатки сплавов системы титан-цирконий-ниобий, и может быть использовано в качестве полупродукта для изготовления костных имплантатов. Способ винтовой прокатки сплавов системы...
Тип: Изобретение
Номер охранного документа: 0002717765
Дата охранного документа: 25.03.2020
07.06.2020
№220.018.24b3

Способ раскатки трубных заготовок

Изобретение относится к области обработки металлов давлением и может быть использовано для получения бесшовных труб раскаткой полых трубных заготовок в стане винтовой прокатки. Полую трубную заготовку - гильзу подвергают раскатке в четырехвалковом стане винтовой прокатки, все валки которого...
Тип: Изобретение
Номер охранного документа: 0002722952
Дата охранного документа: 05.06.2020
01.07.2020
№220.018.2d4d

Устройство для изучения коррозионно-усталостного разрушения металлов и сплавов в ходе механических испытаний в жидком электролите

Изобретение относится к способу механических испытаний металлических материалов, а именно к созданию устройства, позволяющего циклически деформировать изгибом образцы металлических материалов, погруженных в электролит, с одновременным непрерывным измерением электродного потенциала образца....
Тип: Изобретение
Номер охранного документа: 0002725108
Дата охранного документа: 29.06.2020
04.07.2020
№220.018.2eec

Способ андреева психотерапии наркоманий

Изобретение может быть использовано для эмоциональной стрессовой психотерапии наркоманий. Снимают анозогнозиию к наркотической зависимости. Составляют дневник развития зависимости. Определяют адаптационный потенциал системы кровообращения по Р.М. Баевскому. При показателях адаптационного...
Тип: Изобретение
Номер охранного документа: 0002725339
Дата охранного документа: 02.07.2020
20.05.2023
№223.018.6681

Стан винтовой прокатки

Изобретение относится к прокатному оборудованию, в частности к станам винтовой прокатки. Стан винтовой прокатки содержит рабочую клеть с четырьмя валками, образующими очаг деформации с входным и выходным конусами. При этом все четыре валка являются приводными. Два валка выполнены чашевидными и...
Тип: Изобретение
Номер охранного документа: 0002764066
Дата охранного документа: 13.01.2022
+ добавить свой РИД