×
27.03.2020
220.018.10b8

Результат интеллектуальной деятельности: Способ винтовой прокатки сплавов системы титан-цирконий-ниобий

Вид РИД

Изобретение

Аннотация: Изобретение относится к термомеханической обработке титановых сплавов, а именно к созданию способа винтовой прокатки сплавов системы титан-цирконий-ниобий, и может быть использовано в качестве полупродукта для изготовления костных имплантатов. Способ винтовой прокатки сплавов системы титан-цирконий-ниобий заключается в том, что осуществляют многопроходную винтовую прокатку заготовки с промежуточными подогревами при углах подъема винтовых траекторий движения металла в очаге деформации 12-24°, при этом сочетают проходы с траекториями движения по правым винтовым линиям и проходы с траекториями движения по левым винтовым линиям, причем суммарная доля истинной деформации в проходах с траекториями движения металла по одному из видов винтовой линии не превышает 65% от общей истинной деформации. Увеличивается прочность и пластичность, а также повышаются служебные свойства сплавов системы титан-цирконий-ниобий, работающих в условиях долговременных скручивающих нагрузок переменного направления. 1 ил., 2 табл., 2 пр.

Изобретение относится к термомеханической обработке титановых сплавов, а именно к созданию способа винтовой прокатки сплавов системы титан-цирконий-ниобий. Прутковые заготовки после обработки с использованием предлагаемого способа могут быть использованы в качестве полупродукта для изготовления костных имплантатов, а также для последующей обработки давлением с целью уменьшения поперечного сечения.

Известен способ получения прутков из сверхупругих сплавов системы титан-цирконий-ниобий, включающий нагрев заготовок до температуры 800-950°С и их деформационно-термическую обработку путем многопроходной винтовой прокатки с промежуточными подогревами и ротационной ковки, отличающийся тем, что винтовую прокатку выполняют с истинной степенью деформации, составляющей 0,55-0,85 от суммарной истинной степени деформации при винтовой прокатке и ротационной ковке, со скоростью вращения раската 9-70 рад/с и при соблюдении соотношения:

где nΣц - где суммарное число частных обжатий при винтовой прокатке за все проходы; N - число проходов (RU 2692003 С1, опублик. 19.06.2019). В отношении способа винтовой прокатки сплавов системы титан-цирконий-ниобий известный способ имеет недостатки. Предписываемая способом винтовая прокатка производится без установленного сочетания проходов с траекториями движения по правым винтовым линиям и проходов с траекториями движения по левым винтовым линиям и без установленных углов подъема винтовых траекторий движения металла в очаге деформации. Это может формировать резко выраженную анизотропию структуры и свойств, которые:

- существенно снижают деформируемость прокатанных промежуточных заготовок, и последующая деформационная обработка может сопровождаться обрывами.

- не позволяет получить требуемый уровень комплекса специальных свойств, в частности высокую пластичность.

Известен также способ получения наноструктурированных прутков круглого сечения из титанового сплава ВТ22, который включает деформацию заготовки прокаткой, отличающийся тем, что нагревают заготовку до температуры 850°С и деформируют путем трехвалковой поперечно-винтовой прокатки в диапазоне температур 850-750°С со ступенчатым снижением температуры заготовки на каждом последующем проходе с непосредственной закалкой с прокатки после каждого прохода, причем степень истинной логарифмической деформации заготовки на каждом проходе составляет 0,21-0,54, а суммарная истинная логарифмическая деформация составляет 1,2, при этом после поперечно-винтовой прокатки полученный пруток подвергают старению при температуре 420-550°С в течение 5 или 10 часов (RU 2604075 С1, опублик. 10.12.2016).

Недостатки известного способа. Предписываемая способом винтовая прокатка производится без установленного сочетания проходов с траекториями движения по правым винтовым линиям и проходов с траекториями движения по левым винтовым линиям и без установленных углов подъема винтовых траекторий движения металла в очаге деформации. Это может формировать резко выраженную анизотропию структуры и свойств, которые:

- существенно снижают деформируемость прокатанных промежуточных заготовок, и последующая деформационная обработка может сопровождаться обрывами.

- не позволяет получить требуемый уровень комплекса специальных свойств, в частности высокую пластичность.

Кроме того, обрабатываемый материал сплав ВТ22 не является сверхупругим. Соответственно материал после реализации данного способа не будет проявлять сверхупругое поведение, а величина накопленной остаточной деформации, оцениваемая в ходе функциональных циклических механических испытаний прутков на растяжение (с постоянной величиной деформации в цикле 2%) будет значительно выше 2%. Непосредственная закалка с прокатки после каждого прохода отрицательно сказывается на трудоемкости и энергоемкости передела.

Наиболее близким техническим решением, принятым за прототип, является способ получения субмикрокристаллической структуры в сортовом прокате из нелегированного титана, включающий деформацию заготовки осуществляемой трехвалковой винтовой прокаткой со скручиванием при условии повышения коэффициента вытяжки в каждом последующем проходе. По п. 2. способ предусматривает трехвалковую винтовую прокатку с положительным скручиванием, а по п. 3 с отрицательным скручиванием. (Патент РФ №2389568, МПК В21В 1/02 (2006.01), C22F 1/18 (2006.01). Опубликовано: 20.05.2010, Бюл. №14.)

Недостатками способа-прототипа являются наличие неспошностей и развитая поперечная (спиральная) волокнистость в структуре получаемых прутков, которые снижают уровень специальных свойств в прутках сплавов системы титан-цирконий-ниобий, применяемых в качестве заготовок для изготовления костных имплантатов. Особенно сплавов типа Ti-18Zr-(14-15)Nb (в ат. %) и особенно при эксплуатации знакопеременных нагрузках изделий с кручением и изгибом.

Данный недостаток обусловлен отсутствием регламента при выполнении винтовой прокатки в отношении геометрии геликоидальных траекторий течения металла в очаге деформации, направленных на формирование заданной структуры и свойств в сплавах этого типа.

Основными параметрами геометрии геликоидальных траекторий течения металла являются углы подъема винтовых траекторий движения металла в очаге деформации и их ориентация правая или левая (правая и левая хиральность,

https://ru.wikipedia.org/wiki/%D0%92%D0%B8%D0%BD%D1%82%D0%BE%D0%B2%D0%B0%D1%8F_%D0%BB%D0%B8%D0%BD%D0%B8%D1%8F).

Перемещение прокатываемой заготовки по правым винтовым линиям происходит с вращением ее по часовой стрелке (при взгляде по направлению прокатки) и против часовой стрелки при движении по левым винтовым линиям.

При малых углах подъема траекторий (углах подачи валков β<12°) характерных для процесса прошивки трубного производства, деформация металла существенно неравномерна по сечению. Максимальна на периферии, минимальна в центре. В центральной зоне заготовки наблюдается разрыхление металла вплоть до осевого разрушения. (Потапов И.Н., Полухин П.И. Технология винтовой прокатки, М: Металлургия, 334 с., ил.) При чрезмерно больших углах β>24° ухудшаются условия вращения заготовки, нарушается стабильность условий захвата и винтового движения заготовки в очаге деформации. Заготовка может двигаться рывками, с проскальзыванием, вплоть до полной пробуксовки. На поверхности образуются задиры и плены.

Углы подъема траекторий изменяется по длине очага деформации, достигая максимального значения на выходе из валков и минимального значения на входе. Максимальное значение β на выходе задается настройкой валков и практически совпадает углом подачи валков. Минимальное значение на входе определяется отношением начального диаметра заготовки di-1 к конченному диаметру di проката в i-ом проходе (точнее кубом отношения di-1/di по зависимости * см. ниже). В данном способе прокатка ведется при увеличении отношения (di-1/di) и, соответственно, уменьшением минимального значения β в каждом последующем проходе. Когда в части очага деформации, примыкающей сечению входа движение заготовки, происходит с малыми углами β<12°, то в ней реализуются условия прошивного стана. Т.е. металл в центральной части разрыхляется, вплоть до образования разрушения, следы которого остаются в готовом прутке. Физико-механические и служебные свойства металла резко снижаются.

Кроме, того известный способ предписывает винтовую прокатку с однонаправленным скручиванием во всех проходах, либо положительным, либо отрицательным. В станах винтовой прокатки типа 14-40, на который ориентирован известный способ скручивание задается направлением вращения заготовки. Т.е., согласно способу, заготовка вращается в одном направлении во всех проходах - либо по часовой стрелке, либо против.

Как известно (Никулин А.Н. Винтовая прокатка. Напряжения и деформации. М.: Металлургиздат, 2015, 380 с., ил.) формирование макроструктуры металла характеризуется образованием в поперечных сечениях спиральных волокон, изгибающихся против направления вращения заготовки. Спиралезация структурного строения до определенной стадии способствует раздроблению структурных составляющих, измельчению зерна. Однако, постепенно процесс измельчения зерна затухает и переходит в стадию образования нежелательной спиральной анизотропии в виде скрученного жгута из элементов структурного строения. Это сопровождается снижением служебных свойств сплава. Особенно, при действии скручивающих нагрузок противоположного направления или знакопеременного скручивания, что недопустимо для костных имплантатов.

Технический результат (эффект) изобретения состоит в значительном увеличении пластичности, а также в повышении служебных свойств сплавов системы титан-цирконий-ниобий, работающих в условиях долговременных скручивающих нагрузок переменного направления. Применение этого способа позволит получать длинномерные прутковые заготовки из сверхупругих сплавов Ti-Zr-Nb. Полученные прутковые заготовки будут демонстрировать предел прочности не менее 550 МПа и относительное удлинение не менее 20% при испытаниях на растяжение. Величина накопленной остаточной деформации, оцениваемая в ходе функциональных циклических механических испытаний прутков на растяжение (с постоянной величиной деформации в цикле 2%), будет составлять не более 1,5%. Имплантаты, изготовленные из прутковых заготовок, будут адекватно функционировать в контакте с костной тканью человека, в частности, обладать схожим с живой тканью механическим поведением (низкий модуль Юнга менее 60 ГПа, выраженный эффект сверхупругости), а также обладать высокой коррозионной стойкостью (не ниже чистого титана).

Технический результат достигается тем, что в способе винтовой прокатки сплавов системы титан-цирконий-ниобий, включающем нагрев заготовок до температуры 800-950°С и их деформационно-термическую обработку сочетанием многопроходной винтовой прокатки с промежуточными подогревами, отличающийся тем, что винтовую прокатку выполняют при углах подъема винтовых траекторий движения металла в очаге деформации 12-24°, при этом сочетают проходы с траекториями движения по правым винтовым линиям и проходы с траекториями движения по левым винтовым линиям, причем суммарная доля истинной деформации в проходах с траекториями движения металла по одному из видов винтовой линии не должна превышать 65% от общей истинной деформации.

Изобретение поясняется рисунком, где на фиг. 1 показана схема реализации винтовой прокатки, где А - проход(ы) с траекториями движения металла по левым винтовым линиям; В - подогрев; С - проход(ы) с траекториями движения металла по правым винтовым линиям; β0, β, β1 - углы подъема винтовых траекторий движения металла в различных сечениях. На увеличенных поперечных сечениях D-D и Е-Е показана схема спиральной макроструктуры при прокатке по левым и правым винтовым линиям, соответственно.

В данном способе реализуются принципы приспособляемости металла к условиям эксплуатации, путем адаптирующих условий проведения термомеханической обработки. Адаптация металла к знакопеременным нагрузкам производится за счет двух уровневой дробно-циклической деформации. Дробность деформации первого уровня выполняется многопроходной (3-10 проходов) винтовой прокаткой с промежуточными подогревами. В каждом отдельном проходе цикличность деформации второго уровня создается винтовым движением по заданным траекториям. При этом сочетают проходы с траекториями движения по правым винтовым линиям и проходы с траекториями движения по левым винтовым линиям, причем суммарная доля истинной деформации в проходах с траекториями движения металла по одному из видов винтовой линии не должна превышать 65% от общей истинной деформации.

В условиях реализации способа радиально-сдвиговой прокаткой формируется функционально градиентная по сечению заготовки структура металла. В периферийных слоях образуется мелкодисперсное строение с практически изотропным распределением структурных элементов и максимальным уровнем вязкопластических свойств металла. По мере приближения к центру прутка линейные размеры зерен укрупняются и вытягиваются в осевом направлении. При это повышаются прочностные показатели. В целом создается естественный псевдокомпозит с пластичной оболочкой и «жесткой» сердцевиной, который обеспечивает достижение технического результата.

Существенные отличительные признаки предлагаемого способа установлены в результате прямой экспериментальной отработки. Они необходимы для достижения технического результата.

Существенный отличительный признак способа состоит в сочетании проходов с траекториями движения по правым винтовым линиям и проходов с траекториями движения по левым винтовым линиям, при котором суммарная доля истинной деформации в проходах с траекториями движения металла по одному из видов винтовой линии не должна превышать 65% от общей истинной деформации. Он задает требуемые условия по цикличности пластической деформации и предупреждает образование чрезмерной спиральной анизотропии.

В условиях цикличности процесса формоизменения при РСП, угол подъема винтовой траектории β является одним из основных факторов, определяющих напряженно-деформированное состояние заготовки.

При малых углах подъема траекторий (углах подачи валков β1<12°) характерных для процесса прошивки трубного производства, деформация металла существенно неравномерна по сечению. Максимальна на периферии, минимальна в центре. В центральной зоне заготовки наблюдается разрыхление металла вплоть до осевого разрушения. При чрезмерно больших углах β1>24° ухудшаются условия вращения заготовки, нарушается стабильность условий захвата и винтового движения заготовки в очаге деформации. Заготовка может двигаться рывками, с проскальзыванием, вплоть до полной пробуксовки. На поверхности образуются задиры и плены.

Физическая сущность признака поясняется схемой реализации винтовой прокатки на фиг. 1. и состоит в следующем. Цикличность винтовой прокатки является, с одной стороны, фактором прямого действия, обеспечивающим искомый технический результат, но с другой стороны, от числа циклов зависит деформируемость заготовок и вероятность образования разрыв и дефектов. Чтобы получить результат и не допустить образования дефектов, необходимо предусматривать подогревы (выдержку прутка при температуре 800-950°С). В процессе подогрева в сплаве титан-цирконий-ниобий за счет термодиффузионных процессов и релаксационных явлений снимается накопленная деформационная поврежденность металла. Его пластические свойства восстанавливаются на повышенном уровне, и становится возможной дальнейшая прокатка.

Угол β изменяется вдоль оси прокатки от максимального значения β1 на выходе из очага деформации до β0 на входе. Между углами β1 и β0 существует соотношение

где di-1 и di диаметр исходной заготовки и получаемого проката в i-ом проходе, соответственно.

Режим деформирования в каждом проходе назначается следующим образом. Угол β1 на выходе устанавливается углом подачи валков β1=21-24°. Угол на входе контролируется выбором коэффициента обжатия по диаметру в данном проходе, таким что

Соблюдение этих условий позволит создать благоприятные условия формоизменения, исключающие разрыхление металла во всем объеме очага деформации.

Пример 1 реализации способа.

Слиток сплава Ti-18Zr-14Nb (в ат. %) диаметром 50 мм, длиной 500 мм был выплавлен методом вакуумной индукционной плавки

Слиток был обточен до диаметра 46 мм. Контрольные пробы были отобраны на образцы для исследования структуры и свойств.

Далее слиток был подвергнут деформационно-термической обработке. Нагрев в камерной электропечи сопротивления до температуры 900°С в течении 60 мин.

Нагретый слиток был деформирован винтовой прокаткой за четыре прохода с траекториями движения по правым винтовым линиям до диаметра 26,4 мм по маршруту ∅58,0→∅47,7→∅39,1→∅32,1→∅26,4. Далее деформация заготовки проводилась винтовой прокаткой за четыре прохода с траекториями движения по левым винтовым линиям до диаметра 12 по маршруту ∅26,4→∅21,7→∅17,8→∅14,6→∅12. Между проходами раскат подогревался (выдерживался) в печи в течение 10-15 мин при температуре 850°С.

Углы подъема винтовых траекторий движения металла в очаге деформации и деформационные режимы винтовой прокатки приведены в табл. 1.

Как видно из Таблицы 1 общая истинная деформация за передел составляет 3,15, суммарная в проходах с траекториями движения по правым винтовым линиям составляет 1,58, т.е. 0,5 от общей.

Деформационно-термическая обработка слитка сочетанием многопроходной винтовой прокатки с промежуточными подогревами на всех этапах проходила устойчиво без образования каких-либо дефектов.

Полученные прутковые заготовки были подвергнуты всесторонним исследованиям, в результате которых установлено, что технический результат, достигнут в полном объеме.

Таким образом, в результате применения способа, включающего деформационно-термическую обработку заготовок сочетанием многопроходной винтовой прокатки и ротационной ковки по определенному режиму получены прутковые заготовки из сверхупругого сплава системы Ti-18Zr-14Nb. Показано, что полученные заготовки демонстрируют предел прочности 601 МПа и относительное удлинение 32% при испытаниях на растяжение. Модуль Юнга полученных заготовок составляет 50ГПа. Величина накопленной остаточной деформации, оцениваемая в ходе функциональных циклических механических испытаний прутков на растяжение (с постоянной величиной деформации в цикле 2%), составляет 0,9%. В ходе функциональных циклических механических испытаний прутковые заготовки проявляют выраженный эффект сверхупругости. Имплантаты, изготовленные из прутковых заготовок, будут адекватно функционировать в контакте с костной тканью человека, в частности, обладать схожим с живой тканью механическим поведением.

Пример 2 реализации способа.

Слиток сплава Ti-18Zr-15Nb (в ат. %) диаметром 73 мм, длиной 200 мм был выплавлен методом вакуумной индукционной плавки

Слиток был обточен до диаметра 69,3 мм. Контрольные пробы были отобраны на образцы для исследования структуры и свойств.

Далее слиток был подвергнут деформационно-термической обработке. Нагревался в камерной электропечи сопротивления до температуры 950°С в течении 60 мин.

Нагретый слиток был деформирован винтовой прокаткой с траекториями движения по левым винтовым линиям до диаметра 25,5 мм по маршруту ∅69,3→∅56,8→∅46,5→∅38,1→∅31,2→025,5. Далее деформация заготовки проводилась винтовой прокаткой за три прохода с траекториями движения по правым винтовым линиям до диаметра 14 по маршруту ∅25,5→∅20,9→∅17,1→∅14,0.

Между проходами раскат подогревали (выдерживали) в печи в течение 10-15 мин при температуре 850°С.

Углы подъема винтовых траекторий движения металла в очаге деформации и деформационные режимы винтовой прокатки приведены в табл. 2.

Как видно из Таблицы 2, суммарная истинная деформация в проходах с траекториями движения по правым винтовым линиям составляет 37% от общей, а по левым, соответственно 63%.

Деформационно-термическая обработка слитка сочетанием многопроходной винтовой прокатки с промежуточными подогревами и ротационной ковки на всех этапах проходила устойчиво без образования каких-либо дефектов.

Полученные прутковые заготовки были подвергнуты всесторонним исследованиям, в результате которых установлено, что технический результат, достигнут в полном объеме.

Таким образом, в результате применения способа, включающего деформационно-термическую обработку заготовок сочетанием многопроходной винтовой прокатки и ротационной ковки по определенному режиму получены прутковые заготовки из сверхупругого сплава системы Ti-18Zr-14Nb. Показано, что полученные заготовки демонстрируют предел прочности 615 МПа и относительное удлинение 24% при испытаниях на растяжение. Модуль Юнга полученных заготовок составляет 53 ГПа Величина накопленной остаточной деформации, оцениваемая в ходе функциональных циклических механических испытаний прутков на растяжение (с постоянной величиной деформации в цикле 2%), составляет 1,1%. В ходе функциональных циклических механических испытаний прутковые заготовки проявляют выраженный эффект сверхупругости. Имплантаты, изготовленные из прутковых заготовок, будут адекватно функционировать в контакте с костной тканью человека, в частности, обладать схожим с живой тканью механическим поведением.

Способ винтовой прокатки сплавов системы титан-цирконий-ниобий, заключающийся в том, что осуществляют многопроходную винтовую прокатку заготовки с промежуточными подогревами при углах подъема винтовых траекторий движения металла в очаге деформации 12-24°, при этом сочетают проходы с траекториями движения по правым винтовым линиям и проходы с траекториями движения по левым винтовым линиям, причем суммарная доля истинной деформации в проходах с траекториями движения металла по одному из видов винтовой линии не превышает 65% от общей истинной деформации.
Способ винтовой прокатки сплавов системы титан-цирконий-ниобий
Источник поступления информации: Роспатент

Showing 1-10 of 322 items.
20.06.2016
№217.015.03df

Оправка прошивного стана

Изобретение относится к области обработки металлов давлением на станах винтовой прокатки. Оправка имеет переменный профиль. Возможность удаления дефектов непрерывнолитой заготовки, уменьшение разностенности получаемых гильз обеспечивается за счет того, что в оправке с переднего торца,...
Тип: Изобретение
Номер охранного документа: 0002587702
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2b53

Способ изготовления струеформирующих сопел

Изобретение относится к области производства струеформирующих сопел, которые могут быть использованы для очистки поверхностей, удаления покрытий, создания шероховатости на поверхности, для резки и разделения материалов. Способ включает формирование рабочего отверстия в композиционном алмазном...
Тип: Изобретение
Номер охранного документа: 0002579598
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2b79

Усиливающий сверхпроводящий метаматериал

Использование: для сверхмалошумящего усиления слабых радиотехнических сигналов. Сущность изобретения заключается в том, что усиливающий сверхпроводящий метаматериал состоит из гальванически связанных элементарных ячеек, смещенных постоянным током и проявляющих эффект квантовой интерференции с...
Тип: Изобретение
Номер охранного документа: 0002579813
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2c52

Способ акустического каротажа

Изобретение относится к горному делу и предназначено для определения координат трещиноватых зон, пересекающих измерительную скважину, пробуренную в кровле выработки. Способ основан на экспериментально установленной закономерности влияния трещиноватой зоны на корреляционные характеристики...
Тип: Изобретение
Номер охранного документа: 0002579820
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cca

Способ извлечения золота из руд

Изобретение относится к области цветной металлургии. Способ извлечения золота включает цианирование руды при измельчении. В мельницу последовательно подают при соотношении твердой фазы к жидкой фазе от 3:2 до 2:1 предварительно дробленную до крупности фракций от 2 мм до 4 мм руду, добавку...
Тип: Изобретение
Номер охранного документа: 0002579858
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cd6

Способ защиты поверхности сляба из низколегированной стали перед его нагревом в методической печи под прокатку

Изобретение относится к области металлургии и может быть использовано при подготовке слябов из низколегированных сталей перед нагревом под прокатку. Способ защиты поверхности сляба из низколегированной стали при прокатке включает напыление алюминиевого газотермического покрытия на широкие грани...
Тип: Изобретение
Номер охранного документа: 0002579866
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d7d

Способ получения деформированных полуфабрикатов из сплава на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия системы Al-Fe-Si в виде тонколистового проката, фольги, листов, плит, прессованных профилей, проволоки и др. Из деформированных полуфабрикатов могут быть получены изделия, предназначенные для...
Тип: Изобретение
Номер охранного документа: 0002579861
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e9d

Способ определения количества незамерзшей воды в мерзлых грунтах

Изобретение относится к геологии и может быть использовано при проектировании зданий и сооружений для определения количества незамерзшей воды в мерзлых грунтах. Для этого осуществляют бурение скважин с отбором керна, оттаивают полученный образец замороженного грунта и определяют суммарное...
Тип: Изобретение
Номер охранного документа: 0002580316
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3217

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к медицине. Описан способ получения биоактивного покрытия с антибактериальным эффектом, который включает электроискровую обработку поверхности подложки обрабатывающим электродом, следующего состава (вес. %):биоактивная добавка - 5-40,антибактериальная металлическая добавка...
Тип: Изобретение
Номер охранного документа: 0002580628
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.321e

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к области медицины, а именно к способу получения биоактивного покрытия с антибактериальным эффектом, включающий электроискровую обработку поверхности токопроводящей подложки обрабатывающим электродом, состоящим из биоактивной добавки в количестве 5-40 вес.%;...
Тип: Изобретение
Номер охранного документа: 0002580627
Дата охранного документа: 10.04.2016
Showing 1-10 of 23 items.
27.02.2013
№216.012.2a00

Направляющий инструмент стана винтовой прокатки

Изобретение предназначено для уменьшения габаритов станины и упрощения настройки направляющего инструмента в оборудовании станов винтовой прокатки, используемых для производства трубчатых изделий, деформирования сплошной заготовки и т.д. Направляющий инструмент включает раму, закрепленную на...
Тип: Изобретение
Номер охранного документа: 0002476279
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2b54

Способ обработки сплавов титан-никель с содержанием никеля 49-51 ат.% с эффектом памяти формы и обратимым эффектом памяти формы (варианты)

Изобретение относится к области металлургии, в частности к термомеханической обработке сплавов с памятью формы на основе никелида титана. Заявлен способ обработки сплавов титан-никель с содержанием никеля 49-51 ат.% с эффектом памяти формы и обратимым эффектом памяти формы (варианты). Способ...
Тип: Изобретение
Номер охранного документа: 0002476619
Дата охранного документа: 27.02.2013
20.06.2013
№216.012.4c9f

Металлический наноструктурный сплав на основе титана и способ его обработки

Изобретение относится к области металлургии, а именно к функциональным металлическим сплавам на основе титана и способу их обработки и может быть использовано для сверхупругих элементов конструкций, а также в хирургии и ортопедической имплантологии. Заявлены сплав на основе титана с эффектом...
Тип: Изобретение
Номер охранного документа: 0002485197
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.4f5b

Способ создания гемостаза с возможностью восстановления кровотока в трубчатых эластичных структурах организма и устройства для его осуществления

Группа изобретений относится к хирургии и может быть использована в холецистэктомии, аппендэктомии, резекции желудка, гемиколэктомии, фундаппликации. Способ создания гемостаза с возможностью восстановления кровотока в трубчатых эластичных структурах организма осуществляют с помощью клипсы....
Тип: Изобретение
Номер охранного документа: 0002485908
Дата охранного документа: 27.06.2013
20.09.2013
№216.012.6a25

Траловое устройство для извлечения инородных тел из трубчатых органов

Изобретение относится к медицинской технике и может быть использовано, в частности, для извлечения камней из мочеточника или желчных протоков. Траловое устройство для извлечения инородных тел из трубчатых органов содержит манипулятор, на выходном конце корпуса которого установлен переходник, на...
Тип: Изобретение
Номер охранного документа: 0002492824
Дата охранного документа: 20.09.2013
27.12.2013
№216.012.8fb5

Способ хирургического лечения кишечных непроходимостей тонкого и толстого кишечника и устройство для его осуществления

Группа изобретений относится к медицине и может быть применима для хирургического лечения кишечных непроходимостей тонкого и толстого кишечника. Проводят продвижение эндоскопа по тонкому и толстому кишечнику. Эндоскоп для хирургического лечения кишечных непроходимостей тонкого и толстого...
Тип: Изобретение
Номер охранного документа: 0002502482
Дата охранного документа: 27.12.2013
20.10.2015
№216.013.85ac

Способ сшивания рваных и резаных ран в условиях экстренной хирургии и устройство для его осуществления

Группа изобретений относится к хирургии и может быть применима для сшивания рваных и резаных ран века в условиях экстренной хирургии. Накладывают скобку, выполненную из материала, обладающего эффектом памяти формы, на края раны. Перед наложением на рану скобку пластически деформируют при...
Тип: Изобретение
Номер охранного документа: 0002565823
Дата охранного документа: 20.10.2015
10.06.2016
№216.015.4960

Устройство для гребли лицом вперед

Изобретение относится к области судостроения, а именно к весельным движителям для гребли лицом вперед. Устройство для гребли лицом вперед содержит вертикальную ось, весло, поворотный кронштейн и раму. Весло установлено таким образом, чтобы рукоятка весла располагалась между вертикальной осью,...
Тип: Изобретение
Номер охранного документа: 0002586998
Дата охранного документа: 10.06.2016
25.08.2017
№217.015.a74a

Способ температурно-деформационного воздействия на сплавы титан-никель с содержанием никеля 49-51 ат.% с эффектом памяти формы

Изобретение относится к металлургии, а именно к термической обработке сплавов с памятью формы, и может быть использовано в медицине и технике. Способ обработки сплавов титан-никель с содержанием никеля 49-51 ат.% с эффектом памяти формы включает термомеханическую обработку заготовки,...
Тип: Изобретение
Номер охранного документа: 0002608246
Дата охранного документа: 17.01.2017
26.08.2017
№217.015.d492

Способ получения прутков из высокопрочного алюминиевого сплава

Изобретение относится к области металлургии высокопрочных материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок, таких как детали летательных аппаратов, автомобилей и других транспортных средств, детали спортинвентаря и др....
Тип: Изобретение
Номер охранного документа: 0002622199
Дата охранного документа: 13.06.2017
+ добавить свой РИД