×
19.03.2020
220.018.0de6

Результат интеллектуальной деятельности: Мишенный узел ускорителя электронов

Вид РИД

Изобретение

№ охранного документа
0002716824
Дата охранного документа
17.03.2020
Аннотация: Изобретение относится к мишенному узлу ускорителя электронов и может использоваться для производства различных радиоизотопов и радиофармпрепаратов. Устройство содержит конвертер электронов (2) и капсулу (1) с облучаемым веществом (5). Конвертер электронов (2) и капсула (1) с облучаемым веществом помещены в одном корпусе (3), снабженном окном (6) для пучка электронов и входным и выходным патрубками (7) и (8) для протока теплоносителя. Конвертер электронов (2) выполнен в виде плоской пластинки, снабженной с каждой стороны ребрами, расположенными таким образом, что толщина пластинки одинакова по всей облучаемой электронами площади. Капсула (1) выполнена в виде герметичной гильзы, частично заполнена облучаемым веществом (5) и частично снабжена ребрами на наружной поверхности. В качестве теплоносителя используют жидкие металлы, например натрий, калий и их эвтектический сплав. Корпус (3) выполняют из конструкционных материалов, совместимых с жидкометаллическими теплоносителями и относительно слабо поглощающих электроны. В качестве облучаемого вещества (5) используют металлический радий. Техническим результатом является интенсификация теплообмена и упрощение конструкции мишенного узла ускорителя электронов. 3 з.п. ф-лы, 4 ил., 1 пр.

Изобретение относится к области ускорительной техники и может использоваться для производства различных радиоизотопов и радиофармпрепаратов.

Известен мишенный узел, используемый в ускорителях электронов с целью производства радиоизотопов, представленный в патентной заявке [US 20080240330 А1, 2008]. Мишенный узел содержит конвертер электронов в гамма кванты, капсулу с облучаемым веществом и системы охлаждения конвертера электронов и капсулы. Конвертер электронов выполнен в виде круглой трубы из тугоплавкого металла, внутри которой протекает жидкий, или газообразный, теплоноситель. Облучаемое вещество помещено в проницаемые корзинки и непосредственно охлаждается циркулирующим теплоносителем.

Недостатком известного технического решения является наличие двух циркуляционных контуров, усложняющих конструкцию.

Наиболее близким аналогом заявляемого технического решения является мишень по заявке [US 2017301426 (А1), 2017, Производство молибдена 99 используя электронные пучки]. Устройство содержит конвертер электронов в поток фотонов в виде пластинки из тугоплавкого металла, держатель мишени - капсулу, и облучаемое вещество в виде дисков из молибдена 100, две системы охлаждения конвертера и капсулы циркулирующей водой.

Недостатками известного технического решения являются недостаточная эффективность охлаждения конвертера и капсулы и наличие двух циркуляционных контуров, усложняющих конструкцию. Кроме того, вода подвергается радиолизу, в результате чего накапливается водород, являющийся потенциально пожаро-взрывоопасным.

Задача данного изобретения заключается в исключении указанных недостатков, а именно, увеличении эффективности передачи тепла от конвертера и капсулы к теплоносителю и уменьшении количества циркуляционных контуров.

Технический результат - интенсификация теплообмена и упрощение конструкции мишенного узла ускорителя электронов.

Для исключения указанных недостатков в мишенном узле ускорителя электронов, содержащим конвертер электронов и капсулу с облучаемым веществом, предлагается:

- конвертер электронов и капсулу с облучаемым веществом поместить в одном герметичном корпусе, снабженном окном для пучка электронов и входным и выходным патрубками для протока теплоносителя;

- конвертер электронов выполнить в виде, по меньшей мере, одной плоской пластинки, снабженной с каждой стороны ребрами, расположенными таким образом, что толщина пластинки одинакова на всей облучаемой электронами площади;

- капсулу выполнить в виде герметичной гильзы, частично заполненной облучаемым веществом и частично снабженной ребрами на наружной поверхности.

В частных случаях исполнения предлагается:

- во-первых, в качестве теплоносителя использовать жидкие металлы, например, натрий, калий и их эвтектический сплав;

- во-вторых, корпус выполнить из конструкционных материалов, совместимых с жидкометаллическими теплоносителями, например, натрием, калием и их эвтектическим сплавом, и относительно слабо поглощающих электроны, например, ванадия и его сплавов.

- в-третьих, в качестве облучаемого вещества использовать металлический радий.

Сущность изобретения поясняется на фигурах чертежей, где на фиг. 1 представлен внешний вид мишенного узла; на фиг. 2 - поперечный разрез мишенного узла; на фиг. 3 -продольный разрез мишенного узла; на фиг. 4 - трехмерный вид конвертера электронов.

На фигурах чертежей приняты следующие позиционные обозначения: 1 - капсула; 2 - конвертер электронов; 3 - корпус; 4 - нажимная гайка; 5 - облучаемое вещество; 6 - окно для пучка электронов; 7 и 8 - входной и выходной патрубки, соответственно; 9 - уплотнитель сальника.

Сущность изобретения состоит в следующем.

Мишенный узел ускорителя электронов содержит конвертер электронов 2 и капсулу 1.

Конвертер электронов 2 выполнен в виде плоской пластинки из тугоплавкого металла, снабжен с каждой стороны ребрами для увеличения теплоотдачи, служит для преобразования пучка ускоренных электронов в поток гамма квантов.

Конвертер электронов 2 и капсула 1 с облучаемым веществом 5 помещены в одном корпусе 3.

Корпус 3 снабжен окном для пучка электронов 6 и входным 7 и выходным 8 патрубками.

В частном случае корпус мишенного узла 3 выполняют из металла, совместимого с жидкометаллическим теплоносителем и относительно слабо поглощающего электроны, например, ванадия и его сплавов.

Окно для пучка электронов 6 выполнено в виде относительно тонкой мембраны в корпусе 3 и служит для отделения вакуумной полости ускорителя электронов от полости теплоносителя и пропускает пучок электронов к конвертеру электронов 2.

Конвертер электронов 2 выполнен в виде, по меньшей мере, одной плоской пластинки. Конвертер электронов 2 служит для преобразования пучка ускоренных электронов в поток гамма квантов.

Плоская пластинка снабжена с каждой стороны ребрами, расположенными таким образом, что толщина пластинки одинакова по всей облучаемой электронами площади. Ребра предназначены для увеличения теплоотдачи.

Капсула 1 выполнена в виде герметичной гильзы.

Капсула 1 частично заполнена облучаемым веществом 5 и частично снабжена ребрами на наружной поверхности. Ребра предназначены для увеличения теплоотдачи.

В частном случае для охлаждения конвертера электронов 2, капсулы 1 с облучаемым веществом и мишенного узла в целом, используют жидкометаллический теплоноситель, например, эвтектический сплав натрий-калий.

Нажимная гайка 4 является элементом сальника и служит для герметизации капсулы 1 в корпусе 3 с помощью уплотнителя сальника 9.

Облучаемое вещество 5 является исходным продуктом для производства нужного радионуклида.

В частном случае в качестве облучаемого вещества 5 используют металлический радий.

Входной 7 и выходной 8 патрубки предназначены для протока теплоносителя, охлаждающего капсулу 1, конвертер электронов 2 и корпус 3.

Использование жидкометаллического теплоносителя и оребрение конвертера электронов 2 и капсулы 1 обеспечивает существенно более высокую теплоотдачу по сравнению с другими теплоносителями, например, водой и более низкую температуру всех элементов мишенного узла. Это позволяет использовать более массивные загрузки облучаемого вещества 5, увеличить наработку конечного радионуклида и способствует оптимизации конструкции мишенного узла. Применение малоактивируемых и относительно слабо поглощающих электроны конструкционных материалов снижает энерговыделение в элементах мишенного узла и также облегчает задачу отвода тепла.

Мишенный узел ускорителя электронов работает следующим образом.

Пучок электронов от ускорителя электронов проходит сквозь окно 6 и взаимодействует с конвертером 2, в котором возникает тормозное излучение гамма квантов. При этом в окне бив конвертере 2 выделяется тепло, которое необходимо отводить. Поток гамма квантов падает на капсулу 1 и проходит в облучаемое вещество 5. В облучаемом веществе 5 происходит фотоядерная реакция, в результате которой нарабатывается желаемый радионуклид и также выделяется тепло. Часть гамма квантов рассеивается, попадает в материал корпуса 3 мишенного узла и также нагревает его. Жидкометаллический теплоноситель, протекающий в корпусе 3 через входной и выходной патрубки 7 и 8, охлаждает с двух сторон конвертер 2, окно 6, капсулу 1 с облучаемым веществом 5 и корпус 3 мишенного узла в целом.

После необходимой экспозиции облучаемого вещества 5 под облучением капсулу 1 извлекают из корпуса 3 и заменяют другой капсулой. Эта операция обеспечивается наличием уплотнительного сальника, состоящего из нажимной гайки 4 и уплотнителя сальника 9.

Пример конкретного исполнения мишенного узла ускорителя электронов.

Изготовлен экспериментальный образец мишенного узла, предназначенный для теплогидравлических испытаний вне ускорителя. Он отличается от разработанной конструкции натурного образца только тем, что в нем использован нерадиоактивный имитатор мишенного вещества 5, выполненный в виде медной таблетки высотой 7 мм, и имитатор конвертера электронов 2, выполненный из дюралюминия Д16, имеющего теплопроводность близкую к теплопроводности вольфрама.

Капсула 1 выполнена из нержавеющей стали Х18Н10Т. Наружный диаметр капсулы 8 мм, внутренний - 6 мм, длина - 25 мм. Толщина донышка капсулы составляет 0,5 мм. Капсула снабжена опорным буртиком с внешним диаметром 15 мм. Капсула 1 заглушена хвостовиком, с помощью которого она дистанционно устанавливается в корпус 3 и извлекается из него. Капсула 1 герметизируется в корпусе 3 сальником, состоящим из нажимной гайки 4 и графитового уплотнителя 9.

Корпус 3 мишенного узла выполнен из нержавеющей стали Х18Н10Т. Наибольший диаметр корпуса 30 мм. Внутренняя полость корпуса 3 выполнена в виде ступенчатого цилиндра. Наименьший диаметр равен 13 мм, средний - 14 мм, наибольший - 15 мм. На нижнем уступе расположен имитатор конвертера 2, а на средний уступ опирается буртик капсулы 1. В верхней части внутренней поверхности корпуса 3 выполнена резьба, в которую ввинчивается нажимная гайка 4, сжимающая уплотнитель сальника 9. Корпус 3 снабжен входным 7 и выходным 8 патрубками с внутренним диаметром 12 мм для входа и выхода теплоносителя.

Окно 6 для входа пучка электронов имеет толщину 1 мм и диаметр 10 мм. Полная высота мишенного узла, включая захват капсулы 1, составляет 70 мм.

Преимущества предлагаемого мишенного узла ускорителя электронов заключаются в повышении эффективности охлаждения (коэффициента теплопередачи) конвертера и капсулы в 2-3 раза за счет применения жидкометаллического теплоносителя вместо воды и оребрения теплопередающих поверхностей, и упрощение конструкции мишенного узла за счет исключения одного циркуляционного контура.


Мишенный узел ускорителя электронов
Мишенный узел ускорителя электронов
Источник поступления информации: Роспатент

Showing 1-10 of 33 items.
20.09.2015
№216.013.7c87

Модуль сорбционной очистки жидкой среды

Изобретение относится к фильтровальной технике. Модуль сорбционной очистки содержит вертикальный корпус, состоящий из цилиндрической обечайки (17), днища (5) и крышки (11), верхний (1) и нижний (12) перфорированные насадки, поддерживающий слой (14), коллектор (10), фильтрующую загрузку....
Тип: Изобретение
Номер охранного документа: 0002563476
Дата охранного документа: 20.09.2015
10.05.2016
№216.015.3ded

Способ проверки работоспособности системы контроля течи трубопровода

Изобретение относится к диагностике технического состояния систем контроля технологических процессов. Предложен способ проверки работоспособности системы контроля течи трубопровода, который включает воспроизведение системой параметров эталонного имитатора измеряемых системой физических...
Тип: Изобретение
Номер охранного документа: 0002583893
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.3f7a

Способ измерения термодинамической активности кислорода в расплавах жидких металлов

Использование: для контроля содержания кислорода в жидких металлах. Сущность изобретения заключается в том, что способ определения термодинамической активности кислорода в расплавленных металлах твердоэлектролитным датчиком с чувствительным элементом из кислородно-ионной проводящей керамики...
Тип: Изобретение
Номер охранного документа: 0002584378
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.40a0

Термоэлектрический преобразователь и способ его метрологического контроля в процессе эксплуатации без демонтажа с объекта

Изобретение относится к термометрии и может быть использовано для измерения температуры объекта. Термоэлектрический преобразователь содержит защитный чехол (1), термометрическую вставку, направляющую трубку (2) для временного размещения в ней контрольного средства измерения температуры и...
Тип: Изобретение
Номер охранного документа: 0002584379
Дата охранного документа: 20.05.2016
20.08.2016
№216.015.4c51

Способ определения наличия отложений в полости линейного участка трубы постоянного проходного сечения при прокачке кислородосодержащего потока и устройство для его реализации

Способ и устройство предназначены для определения наличия отложений в полости линейного участка трубы постоянного проходного сечения при прокачке кислородосодержащего потока. Способ включает облучение кислородосодержащего потока. Создают радиоактивную метку в кислородосодержащем потоке...
Тип: Изобретение
Номер охранного документа: 0002594397
Дата охранного документа: 20.08.2016
10.08.2016
№216.015.522d

Способ определения границ раздела сред в сепараторах сырой нефти и устройство для его реализации

Изобретение относится к области измерительной техники. Способ определения границ раздела сред в сепараторах сырой нефти включает облучение сепаратора с отстоявшимся скважинным флюидом, регистрацию гамма-квантов и анализ полученных спектров гамма-квантов. Производят пошаговое перемещение сверху...
Тип: Изобретение
Номер охранного документа: 0002594114
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.530d

Способ определения массы силикатных отложений на единицу длины канала

Изобретение относится к области измерительной техники. Способ определения массы силикатных отложений на единицу длины канала включает в себя этапы, на которых осуществляют облучение силикатных отложений нейтронами, регистрацию гамма-квантов, при этом облучение проводят быстрыми нейтронами,...
Тип: Изобретение
Номер охранного документа: 0002594116
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5312

Способ определения массы кислорода в кислородосодержащем потоке

Изобретение относится к области измерительной техники. Способ определения массы кислорода в кислородосодержащем потоке включает облучение кислородосодержащего потока и регистрацию гамма-квантов. Облучают быстрыми нейтронами в импульсном режиме Кислородосодержащий поток, регистрируют...
Тип: Изобретение
Номер охранного документа: 0002594113
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5c31

Вихревой электромагнитный расходомер

Изобретение относится к измерительной технике и представляет собой вихревой электромагнитный расходомер. Устройство содержит измерительный участок, тело обтекания, постоянный магнит, индукционную катушку. Измерительный участок выполнен в виде трубопровода. Тело обтекания установлено по диаметру...
Тип: Изобретение
Номер охранного документа: 0002589758
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6d33

Способ очистки жидких радиоактивных отходов от органических примесей

Изобретение относится к средствам обращения с жидкими радиоактивными отходами. Способ переработки жидких радиоактивных отходов (ЖРО) содержит следующие основные стадии: подача исходного раствора ЖРО, выпаривание ЖРО, корректировка рН исходного раствора, добавление активированного пиролюзита к...
Тип: Изобретение
Номер охранного документа: 0002597242
Дата охранного документа: 10.09.2016
Showing 1-10 of 11 items.
20.08.2013
№216.012.6185

Способ измерения расхода жидкого металла через проточную часть циркуляционного контура

Изобретение относится к области измерительной техники. Способ измерения расхода жидкого металла через проточную часть циркуляционного контура включает измерение электрического сопротивления рабочего канала между токоподводящими шинами при нулевом расходе и рабочей температуре жидкого металла,...
Тип: Изобретение
Номер охранного документа: 0002490597
Дата охранного документа: 20.08.2013
13.01.2017
№217.015.6c8a

Тепловая труба и способ ее защиты от диффузионного водорода

Изобретение относится к области технологического оборудования для осуществления газофазных каталитических процессов и может быть использовано в химической, нефтехимической и других областях промышленности, использующих газофазные каталитические процессы с образованием диффузионного водорода....
Тип: Изобретение
Номер охранного документа: 0002597087
Дата охранного документа: 10.09.2016
25.08.2017
№217.015.a3c4

Мишень источника нейтронов

Изобретение относится к источникам нейтронов. Мишень источника нейтронов содержит мембрану (1), генерирующую нейтроны при облучении ускоренными заряженными частицами, и корпус мишени (2). При этом толщину мембраны (1) выбирают по соотношению с учетом теплопроводности мембраны, допустимого...
Тип: Изобретение
Номер охранного документа: 0002607463
Дата охранного документа: 10.01.2017
10.05.2018
№218.016.4eb1

Ядерный реактор с прямым преобразованием энергии за пределами активной зоны

Изобретение относится к области атомной энергетики. Ядерный реактор содержит активную зону, термофотопреобразователь (ТФП), электрогенерирующие модули (ЭГМ), высокотемпературные тепловые трубы (ВТТ), тепловыделяющие элементы (ТВЭЛ), боковой отражатель, систему управления, теплоизоляцию, систему...
Тип: Изобретение
Номер охранного документа: 0002650885
Дата охранного документа: 18.04.2018
12.07.2018
№218.016.7014

Активная зона ядерного реактора

Изобретение относится к области ядерной энергетики с прямым преобразованием энергии. Активная зона ядерного реактора содержит, по меньшей мере, один модуль, твердый и жидкий замедлители нейтронов. Модуль содержит корпус, по меньшей мере, одну тепловую трубу и, по меньшей мере, один...
Тип: Изобретение
Номер охранного документа: 0002660942
Дата охранного документа: 11.07.2018
21.02.2019
№219.016.c509

Активная зона ядерного реактора

Изобретение относится к области ядерной энергетики и может быть использовано в реакторах с прямым преобразованием тепловой энергии в электрическую. Активная зона ядерного реактора включает по меньшей мере один модуль, твердый и жидкий замедлители нейтронов. Модуль содержит корпус, по меньшей...
Тип: Изобретение
Номер охранного документа: 0002680250
Дата охранного документа: 19.02.2019
08.03.2019
№219.016.d4dd

Способ извлечения деформированного технологического канала из активной зоны ядерного уран-графитового реактора

Изобретение относится к ядерной энергетике и касается вопросов эксплуатации ядерных реакторов, в частности извлечения дефектных технологических каналов из активной зоны уран-графитового реактора. Способ извлечения деформированного технологического канала из активной зоны ядерного...
Тип: Изобретение
Номер охранного документа: 0002357304
Дата охранного документа: 27.05.2009
14.05.2019
№219.017.51c7

Активная зона ядерного реактора

Изобретение относится к области ядерной энергетики и может быть использовано в реакторах с прямым преобразованием энергии в электрическую. Активная зона ядерного реактора включает по меньшей мере один модуль, а также твердый и жидкий замедлители нейтронов. Модуль содержит корпус, по меньшей...
Тип: Изобретение
Номер охранного документа: 0002687288
Дата охранного документа: 13.05.2019
09.06.2019
№219.017.7942

Термоэмиссионный электрогенерирующий модуль активной зоны ядерного реактора с прямым преобразованием энергии

Изобретение относится к области преобразования тепловой энергии в электрическую и может быть использовано в качестве источника электропитания в составе космической ядерной энергетической установки. Термоэмиссионный электрогенерирующий модуль ядерного реактора с прямым преобразованием энергии...
Тип: Изобретение
Номер охранного документа: 0002347291
Дата охранного документа: 20.02.2009
20.02.2020
№220.018.0481

Кондукционный насос-расходомер

Изобретение относится к электротехнике. Кондукционный насос-расходомер содержит источник магнитного поля, рабочий канал (4) для протока жидкого металла, частично помещенный в магнитное поле и снабженный токоподводящими шинами (5) и электродами для измерения напряжения (6), и кожух (1) из...
Тип: Изобретение
Номер охранного документа: 0002714504
Дата охранного документа: 18.02.2020
+ добавить свой РИД