×
20.08.2013
216.012.6185

СПОСОБ ИЗМЕРЕНИЯ РАСХОДА ЖИДКОГО МЕТАЛЛА ЧЕРЕЗ ПРОТОЧНУЮ ЧАСТЬ ЦИРКУЛЯЦИОННОГО КОНТУРА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области измерительной техники. Способ измерения расхода жидкого металла через проточную часть циркуляционного контура включает измерение электрического сопротивления рабочего канала между токоподводящими шинами при нулевом расходе и рабочей температуре жидкого металла, прокачку жидкого металла электромагнитным насосом через рабочий канал, измерение силы тока питания электромагнитного насоса и падения напряжения на его рабочем канале между токоподводящими шинами и вычисление расхода по формуле, учитывающей расход жидкого металла, силу тока питания насоса, падение напряжения на рабочем канале насоса, электрическое сопротивление рабочего канала насоса при нулевом расходе и постоянную величину, определяемую путем градуировки при рабочей температуре насоса. Технический результат заключается в упрощении циркуляционного контура. 2 ил.
Основные результаты: Способ измерения расхода жидкого металла через проточную часть циркуляционного контура, включающий измерение электрического сопротивления рабочего канала между токоподводящими шинами при нулевом расходе и рабочей температуре жидкого металла, прокачку жидкого металла электромагнитным насосом через рабочий канал, измерение силы тока питания электромагнитного насоса и падения напряжения на его рабочем канале между токоподводящими шинами, и вычисление расхода по формуле V=C(U-IR), где V - расход жидкого металла, м/с; I - сила тока питания насоса, А; U - падение напряжения на рабочем канале насоса, В; R - электрическое сопротивление рабочего канала насоса при нулевом расходе, Ом; С - постоянная величина, которую определяют градуировкой при рабочей температуре насоса, м/(с·B).
Реферат Свернуть Развернуть

Изобретение относится к области измерительной техники, в частности к измерению расхода жидких металлов в циркуляционных контурах различных установок.

Известен электромагнитный способ измерения расхода жидкого металла, включающий прокачку его через участок трубопровода, снабженный двумя электродами, присоединенными диаметрально противоположно к его внешней поверхности, и помещенный в магнитное поле [Шерклиф Дж. Теория электромагнитного измерения расхода. М., Мир, 1965]. При движении жидкого металла вдоль трубопровода, помещенного в магнитное поле, в жидкости возникает электродвижущая сила (эдс) индукции, пропорциональная скорости жидкости и определяемая законом Фарадея. Измеряя разность потенциалов между электродами, определяют скорость и вычисляют расход жидкости.

Известен способ прокачки жидких металлов с помощью кондукционных электромагнитных насосов, содержащих магнитную систему и рабочий канал с перекачиваемым жидким металлом, снабженный токоподводящими шинами для пропускания через него постоянного тока в направлении, перпендикулярном магнитному полю. В соответствии с законом Ампера на проводник с током, находящийся в магнитном поле, действует сила, которая и заставляет жидкий металл двигаться вдоль рабочего канала насоса. При движении жидкого металла в магнитном поле такого насоса также возникает эдс индукции, пропорциональная скорости жидкости. Однако индуцированная эдс недоступна для непосредственного измерения, а разность потенциалов между токоподводящими шинами зависит не только от скорости жидкого металла, но и от силы тока, питающего насос.

Ни одно из указанных технических решений в отдельности не позволяет обеспечить комплексное решение задачи прокачки и измерения расхода жидкого металла в циркуляционном контуре. Поэтому требуется два устройства (насос и расходомер), каждое из которых имеет значительные размеры и массу, и соответствующую стоимость.

Цель данного изобретения состоит в исключении указанного недостатка, а именно в исключении излишнего оборудования циркуляционного контура.

Для исключения указанного недостатка предлагается:

- измерять электрическое сопротивление рабочего канала электромагнитного насоса при нулевом расходе жидкого металла при рабочей температуре;

- прокачивать жидкий металл с помощью электромагнитного насоса;

- измерять силу тока питания электромагнитного насоса I при прокачке жидкого металла;

- измерять падение напряжения U на рабочем канале электромагнитного насоса при прокачке жидкого металла;

- определять расход жидкого металла V по соотношению (1), с учетом измеренных величин, перечисленных выше, и градуировочного коэффициента С.

Способ измерения расхода жидкого металла через проточную часть циркуляционного контура осуществляют следующим образом.

1. При закрытом напорном вентиле циркуляционного контура измеряют электрическое сопротивление рабочего канала R0 при нулевом расходе жидкого металла, при рабочей температуре.

2. Открывают напорный вентиль циркуляционного контура и осуществляют прокачку жидкого металла в циркуляционном контуре с помощью электромагнитного насоса.

3. Измеряют силу тока питания электромагнитного насоса I.

4. Измеряют падение напряжения U на рабочем канале электромагнитного насоса между токоподводящими шинами.

5. Вычисляют расход жидкого металла V по соотношению:

где V - расход жидкого металла, м3/с; С - градуировочный коэффициент, определяемый экспериментально, м3/(с·В); U - падение напряжения на рабочем канале электромагнитного насоса, В; I - сила тока питания электромагнитного насоса. А; R0 - электрическое сопротивление рабочего канала при нулевом расходе жидкого металла, при рабочей температуре.

На фиг.1 представлена эквивалентная электрическая схема кондукционного электромагнитного насоса. На указанном фиг.1 приняты следующие обозначения:

I - ток питания насоса;

Iж - ток в жидком металле, заполняющем рабочий канал электромагнитного насоса;

Ic - ток в стенке рабочего канала электромагнитного насоса;

Е - электродвижущая сила, индуцируемая в жидком металле, движущемся в рабочем канале электромагнитного насоса;

U - напряжение на стенке рабочего канала электромагнитного насоса;

Rж - электрическое сопротивление жидкого металла, между токоподводящими шинами электромагнитного насоса;

Rc - электрическое сопротивление стенки рабочего канала между токоподводящими шинами электромагнитного насоса, т.е. сопротивление пустого канала.

Следует заметить, что Rж и Rc являются постоянными величинами для конкретного насоса и конкретного теплоносителя.

На основании закона Кирхгофа для электрической цепи можно записать два уравнения:

Кроме того, из закона Ома следует

Совместное решение этих уравнений дает выражение для индуцированной эдс в виде

Сомножитель при токе питания I представляет собой электрическое сопротивление параллельно включенных сопротивлений стенки рабочего канала и жидкого металла в нем, т.е. сопротивление насоса между токоподводящими шинами R0.

Тогда уравнение (5) можно переписать в виде:

Сопротивление R0 легко измерить, когда индуцированная эдс равна нулю, т.е. при неподвижном жидком металле в рабочем канале.

где U0 и I0 - напряжение и ток, измеренные на пустом канале электромагнитного насоса.

Итак, для осуществления способа необходимо измерить электрическое сопротивление рабочего канала насоса при нулевом расходе теплоносителя, т.е. при закрытом вентиле на напорной линии. При этом канал насоса должен быть разогрет до рабочей температуры, при которой будет эксплуатироваться насос.

С другой стороны, эдс, индуцированная в жидкости при ее движении в магнитном поле, в соответствии с законом Фарадея, равна

где В - магнитная индукция, известная и постоянная величина для конкретного насоса, W - скорость жидкости, L - размер канала между электродами. В случае круглой трубы это - внутренний диаметр, а в случае прямоугольного канала - его высота. В любом случае - это постоянная величина для конкретного канала.

Объемный расход жидкости V равен

где S - поперечное сечение канала.

Из формул (8, 9, 10) следует формула для определения расхода жидкого металла

Обозначив постоянную для конкретного насоса величину (1+Rж/Rc)S/BL коэффициентом С, получим приведенную выше формулу (1)

где С - постоянная величина, равная

Поэтому для определения расхода по предлагаемому способу достаточно измерить, кроме сопротивления R0, ток питания насоса и падение напряжения на рабочем канале между токоподводящими шинами.

Однако вычисление коэффициента С по формуле (12) сопряжено со значительными погрешностями физических величин, входящих в нее. Достаточно сказать, что измерение магнитной индукции доступными приборами дает погрешность 1,5-2,5%. Поэтому, как и в известном электромагнитном способе измерения расхода, нужно произвести экспериментальную градуировку и определить коэффициент С.

Таким образом, формула (1) позволяет определить расход жидкого металла, создаваемого кондукционным насосом, без применения каких бы то ни было расходомеров.

Пример конкретного осуществления способа

Данный способ был реализован в опытном образце кондукционного электромагнитного насоса, имеющего следующие параметры:

Диаметр подсоединительных патрубков, мм 11
Ширина сплющенной части рабочего канала, мм 3
Высота сплющенной части рабочего канала, мм 16
Магнитная индукция, Тл 0,184
Масса насоса, кг 5
Ток питания, А 200
Перекачиваемая среда натрий
Температура натрия, °С 425
Электрическое сопротивление рабочего канала насоса при неподвижном натрии при температуре 425°С, Ом 76,5·10-6
Напор на закрытый вентиль, Па 10000
Производительность насоса (расход), м3 10-4
Напряжение на рабочем канале, В 14,5·10-3

Рабочий канал насоса выполнен из нержавеющей стали Х18Н10Т, магнитное поле создавалось постоянными магнитами, изготовленными из железо-никель-кобальтового сплава ЮН 13ДК24.

Испытания насоса и его градуировка в режиме расходомера производились на экспериментальном стенде, обеспечивающем возможность определения расхода натрия по времени заполнения мерного бака известного объема. Погрешность определения расхода, воспроизводимого на экспериментальном стенде, составляла ±0,8%. Градуировочная зависимость представлена на фиг.2 в виде (U-IR0)=f(V), где U - измеренное падение напряжения на рабочем канале, I - измеренный ток питания электромагнитного насоса,

R0 - измеренное электрическое сопротивление рабочего канала электромагнитного насоса,

V - расход натрия, вычисленный по формуле (1) описания изобретения.

Технический результат использования данного способа измерения расхода состоит в снижении капитальных затрат и стоимости эксплуатации циркуляционного контура.

Способ измерения расхода жидкого металла через проточную часть циркуляционного контура, включающий измерение электрического сопротивления рабочего канала между токоподводящими шинами при нулевом расходе и рабочей температуре жидкого металла, прокачку жидкого металла электромагнитным насосом через рабочий канал, измерение силы тока питания электромагнитного насоса и падения напряжения на его рабочем канале между токоподводящими шинами, и вычисление расхода по формуле V=C(U-IR), где V - расход жидкого металла, м/с; I - сила тока питания насоса, А; U - падение напряжения на рабочем канале насоса, В; R - электрическое сопротивление рабочего канала насоса при нулевом расходе, Ом; С - постоянная величина, которую определяют градуировкой при рабочей температуре насоса, м/(с·B).
СПОСОБ ИЗМЕРЕНИЯ РАСХОДА ЖИДКОГО МЕТАЛЛА ЧЕРЕЗ ПРОТОЧНУЮ ЧАСТЬ ЦИРКУЛЯЦИОННОГО КОНТУРА
СПОСОБ ИЗМЕРЕНИЯ РАСХОДА ЖИДКОГО МЕТАЛЛА ЧЕРЕЗ ПРОТОЧНУЮ ЧАСТЬ ЦИРКУЛЯЦИОННОГО КОНТУРА
Источник поступления информации: Роспатент

Showing 1-10 of 555 items.
20.01.2013
№216.012.1cd2

Гальванопластический способ изготовления сложно-рельефных элементов антенно-фидерных устройств

Изобретение относится к гальванопластике и может быть использовано для изготовления элементов антенно-фидерных устройств повышенной сложности. Гальванопластический способ включает использование форм из алюминия или его сплавов и гальваническое нанесение на формы никеля с последующим их...
Тип: Изобретение
Номер охранного документа: 0002472872
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1d92

Пневматическая установка для испытаний

Изобретение относится к области испытательной техники, а именно к установкам для испытаний на ударные воздействия конструкций различного назначения. Пневматическая установка для испытаний содержит ресивер со сжатым газом, полость которого отделена от внешнего пространства диафрагмой, средство...
Тип: Изобретение
Номер охранного документа: 0002473064
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1d9b

Шланговый гамма-дефектоскоп

Использование: для радиографического контроля промышленных изделий. Сущность: заключается в том, что шланговый гамма-дефектоскоп для радиографического контроля промышленных изделий содержит оснащенную ампулопроводом радиационную головку с корпусом, систему блокировок с замком и блоком защиты из...
Тип: Изобретение
Номер охранного документа: 0002473073
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1de3

Способ переработки жидких радиоактивных отходов от применения дезактивирующих растворов

Изобретение относится к радиохимической технологии, конкретно к очистке жидких радиоактивных отходов. Способ переработки жидких радиоактивных отходов от применения дезактивирующих растворов включает сорбцию радионуклидов, обработку реагентами при комнатной температуре, осаждение осадка при...
Тип: Изобретение
Номер охранного документа: 0002473145
Дата охранного документа: 20.01.2013
27.01.2013
№216.012.20c9

Ультразвуковой способ контроля плотности в процессе эксплуатации деталей из высоконаполненных композитных материалов на основе октогена

Использование: для ультразвукового контроля плотности в процессе эксплуатации деталей из высоконаполненных композитных материалов на основе октогена. Сущность: заключается в том, что возбуждают ультразвуковые волны в заданной зоне исследуемой детали с известной начальной плотностью ρ, измеряют...
Тип: Изобретение
Номер охранного документа: 0002473894
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.2137

Способ изготовления многоуровневых тонкопленочных микросхем

Изобретение относится к области изготовления микросхем и может быть использовано для изготовления многоуровневых тонкопленочных гибридных интегральных схем и анизотропных магниторезистивных преобразователей. Технический результат - упрощение технологии изготовления микросхем и повышение их...
Тип: Изобретение
Номер охранного документа: 0002474004
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.218e

Способ герметизации трубчатых электронагревателей

Изобретение относится к электротехнике и может быть использовано при изготовлении трубчатых электронагревателей. Технический результат изобретения заключается в увеличении надежности герметизации и срока службы ТЭН, а также снижении трудоемкости и ускорении процесса герметизации. В способе...
Тип: Изобретение
Номер охранного документа: 0002474091
Дата охранного документа: 27.01.2013
10.02.2013
№216.012.2360

Способ получения керамических блочно-ячеистых фильтров-сорбентов для улавливания газообразных радиоактивных и вредных веществ

Настоящее изобретение относится к области химической технологии высокопористых керамических материалов и предназначено для использования непосредственно для фильтрации и адсорбции газообразных радиоактивных и вредных веществ в условиях высоких температур (свыше 1000°С) и химически агрессивных...
Тип: Изобретение
Номер охранного документа: 0002474558
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.245f

Широкополосный спектрометр мягкого рентгеновского излучения

Использование: для определения пространственно-спектральных характеристик рентгеновского излучения. Сущность: заключается в том, что широкополосный спектрометр мягкого рентгеновского излучения включает герметичный корпус, в котором расположены каналы регистрации, каждый из которых включает в...
Тип: Изобретение
Номер охранного документа: 0002474813
Дата охранного документа: 10.02.2013
20.02.2013
№216.012.28bf

Блок трансформаторной развязки

Изобретение относится к области схемотехники. Техническим результатом является передача сигналов с меньшей длительностью. Блок трансформаторной развязки содержит генератор импульсов 5, первый трансформатор 14, первый резистор 6 и второй резистор 30, первый диод 22, трансформаторы 15, 16, 17,...
Тип: Изобретение
Номер охранного документа: 0002475951
Дата охранного документа: 20.02.2013
Showing 1-10 of 414 items.
20.01.2013
№216.012.1cd2

Гальванопластический способ изготовления сложно-рельефных элементов антенно-фидерных устройств

Изобретение относится к гальванопластике и может быть использовано для изготовления элементов антенно-фидерных устройств повышенной сложности. Гальванопластический способ включает использование форм из алюминия или его сплавов и гальваническое нанесение на формы никеля с последующим их...
Тип: Изобретение
Номер охранного документа: 0002472872
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1d92

Пневматическая установка для испытаний

Изобретение относится к области испытательной техники, а именно к установкам для испытаний на ударные воздействия конструкций различного назначения. Пневматическая установка для испытаний содержит ресивер со сжатым газом, полость которого отделена от внешнего пространства диафрагмой, средство...
Тип: Изобретение
Номер охранного документа: 0002473064
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1d9b

Шланговый гамма-дефектоскоп

Использование: для радиографического контроля промышленных изделий. Сущность: заключается в том, что шланговый гамма-дефектоскоп для радиографического контроля промышленных изделий содержит оснащенную ампулопроводом радиационную головку с корпусом, систему блокировок с замком и блоком защиты из...
Тип: Изобретение
Номер охранного документа: 0002473073
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1de3

Способ переработки жидких радиоактивных отходов от применения дезактивирующих растворов

Изобретение относится к радиохимической технологии, конкретно к очистке жидких радиоактивных отходов. Способ переработки жидких радиоактивных отходов от применения дезактивирующих растворов включает сорбцию радионуклидов, обработку реагентами при комнатной температуре, осаждение осадка при...
Тип: Изобретение
Номер охранного документа: 0002473145
Дата охранного документа: 20.01.2013
27.01.2013
№216.012.20c9

Ультразвуковой способ контроля плотности в процессе эксплуатации деталей из высоконаполненных композитных материалов на основе октогена

Использование: для ультразвукового контроля плотности в процессе эксплуатации деталей из высоконаполненных композитных материалов на основе октогена. Сущность: заключается в том, что возбуждают ультразвуковые волны в заданной зоне исследуемой детали с известной начальной плотностью ρ, измеряют...
Тип: Изобретение
Номер охранного документа: 0002473894
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.2137

Способ изготовления многоуровневых тонкопленочных микросхем

Изобретение относится к области изготовления микросхем и может быть использовано для изготовления многоуровневых тонкопленочных гибридных интегральных схем и анизотропных магниторезистивных преобразователей. Технический результат - упрощение технологии изготовления микросхем и повышение их...
Тип: Изобретение
Номер охранного документа: 0002474004
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.218e

Способ герметизации трубчатых электронагревателей

Изобретение относится к электротехнике и может быть использовано при изготовлении трубчатых электронагревателей. Технический результат изобретения заключается в увеличении надежности герметизации и срока службы ТЭН, а также снижении трудоемкости и ускорении процесса герметизации. В способе...
Тип: Изобретение
Номер охранного документа: 0002474091
Дата охранного документа: 27.01.2013
10.02.2013
№216.012.2360

Способ получения керамических блочно-ячеистых фильтров-сорбентов для улавливания газообразных радиоактивных и вредных веществ

Настоящее изобретение относится к области химической технологии высокопористых керамических материалов и предназначено для использования непосредственно для фильтрации и адсорбции газообразных радиоактивных и вредных веществ в условиях высоких температур (свыше 1000°С) и химически агрессивных...
Тип: Изобретение
Номер охранного документа: 0002474558
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.245f

Широкополосный спектрометр мягкого рентгеновского излучения

Использование: для определения пространственно-спектральных характеристик рентгеновского излучения. Сущность: заключается в том, что широкополосный спектрометр мягкого рентгеновского излучения включает герметичный корпус, в котором расположены каналы регистрации, каждый из которых включает в...
Тип: Изобретение
Номер охранного документа: 0002474813
Дата охранного документа: 10.02.2013
20.02.2013
№216.012.28bf

Блок трансформаторной развязки

Изобретение относится к области схемотехники. Техническим результатом является передача сигналов с меньшей длительностью. Блок трансформаторной развязки содержит генератор импульсов 5, первый трансформатор 14, первый резистор 6 и второй резистор 30, первый диод 22, трансформаторы 15, 16, 17,...
Тип: Изобретение
Номер охранного документа: 0002475951
Дата охранного документа: 20.02.2013
+ добавить свой РИД